
The Age of Programmable Networks

Algorithms for Designing Flexible and Robust SDNs

Stefan Schmid

Aalborg University, DK & TU Berlin, DE

❏ Datacenter networks, enterprise networks, Internet: a critical
infrastructure of the information society

❏ While many Internet protocols hardly changed…

❏ … we have seen a huge shift in scale and application diversity

Why SDN? Why RNDM? The Internet Works!

Goal: connectivity between researchers

Applications: file transfer, email
Goal: QoS, security, …

Applications: live streaming, IoT, etc.

❏ Datacenter networks, enterprise networks, Internet: a critical
infrastructure of the information society

❏ While many Internet protocols hardly changed…

❏ … we have seen a huge shift in scale and application diversity

Goal: connectivity between researchers

Applications: file transfer, email
Goal: QoS, security, …

Applications: live streaming, IoT, etc.

Hardly any outages over
the last decades!

Why SDN? Why RNDM? The Internet Works!

❏ Datacenter networks, enterprise networks, Internet: a critical
infrastructure of the information society

❏ While many Internet protocols hardly changed…

❏ … we have seen a huge shift in scale and application diversity

Goal: connectivity between researchers

Applications: file transfer, email
Goal: QoS, security, …

Applications: live streaming, IoT, etc.

But new requirements and
challenges, especially in

terms of reliability!

Hardly any outages over
the last decades!

Why SDN? Why RNDM? The Internet Works!

Even techsavvy companies struggle to provide reliable operations

We discovered a misconfiguration on this
pair of switches that caused what's called a
“bridge loop” in the network.

A network change was […] executed
incorrectly […] more “stuck” volumes and
added more requests to the re-mirroring
storm

Service outage was due to a series of internal
network events that corrupted router data tables

Experienced a network connectivity issue […]
interrupted the airline's flight departures,
airport processing and reservations systems

Source: Talk by Nate Foster at DSDN Workshop

Mostly manual and ad-hoc!

Reliability is The Big Networking Challenge

The Wall Street Bank Anecdote

❏ Outage of a data center of a Wall Street investment bank: lost
revenue measured in USD 106 / min!

❏ Quickly, assembled emergency team:

Source: «The world’s fastest and most programmable networks»
White Paper Barefoot Networks

Reliability Challenge 1: Lack of Good Debugging Tools

The compute team: quickly
came armed with reams of
logs, showing how and
when the applications
failed, and had already
written experiments to
reproduce and isolate the
error, along with candidate
prototype programs to
workaround the failure.

The storage team:
similarly equipped,
showing which file
system logs were
affected, and already
progressing with
workaround
programs.

The networking team: All the
networking team had were two
tools invented over twenty
years ago [ping and traceroute]
to merely test end-to-end
connectivity. Neither tool could
reveal problems with the
switches, the congestion
experienced by individual
packets, or provide any means
to create experiments to
identify, quarantine and
resolve the problem.

The Wall Street Bank Anecdote

❏ Outage of a data center of a Wall Street investment bank: lost
revenue measured in USD 106 / min!

❏ Quickly, assembled emergency team:

Source: «The world’s fastest and most programmable networks»
White Paper Barefoot Networks

The compute team: quickly
came armed with reams of
logs, showing how and
when the applications
failed, and had already
written experiments to
reproduce and isolate the
error, along with candidate
prototype programs to
workaround the failure.

The storage team:
similarly equipped,
showing which file
system logs were
affected, and already
progressing with
workaround
programs.

The networking team: All the
networking team had were two
tools invented over twenty
years ago [ping and traceroute]
to merely test end-to-end
connectivity. Neither tool could
reveal problems with the
switches, the congestion
experienced by individual
packets, or provide any means
to create experiments to
identify, quarantine and
resolve the problem.

Guess who gets
blamed?

Reliability Challenge 1: Lack of Good Debugging Tools

Have a good idea for a new reliable network protocol? Forget it!

Reliability Challenge 2: Lack of Innovations

In
n

o
va

ti
o

n
!

Innovation?!

In
n

o
va

ti
o

n
!

Reliability Challenge 3: Security

Source: Slide by Adrian Perrig

The Internet on first sight:
- Monumental
- Passed the “Test-of-Time”
- Should not and cannot be changed

Source: Slide by Adrian Perrig

The Internet on first sight:
- Monumental
- Passed the “Test-of-Time”
- Should not and cannot be changed

The Internet on second sight:
- Antique
- Britle
- Successful attacks more and more

frequent (e.g., based on IoT)

Reliability Challenge 3: Security

Recent “Attack of the (Internet-)Things”
(aka babyphone attack)

Reliability Challenge 3: Security

Remark: Assumptions have changed!

Reliability Challenge 3: Security

Danny Hillis, TED* talk, Feb. 2013, about trust in

the Internet in the 80s: “There were two Dannys. I

knew both. Not everyone knew everyone, but

there was an atmosphere of trust.”

The paper by David Clark about “The Design

Philosophy of the DARPA Internet Protocols”

does not even contain the term security.

A Promising Trend:
Programmable Networks

aka Software-Defined Networks (SDNs)

SDN: What is it about?

Traditional networks:
standardized and fixed
distributed algorithms

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

SDN: What is it about?

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Blackbox, complex
distributed configuration.

Traditional networks:
standardized and fixed
distributed algorithms

Drawbacks, e.g.:

• fixed algorithms

• blackbox devices

• slow reconvergence after failures
(«bad news slow»)

• complex and hard to debug

Traditional networks:
standardized and fixed
distributed algorithms

Drawbacks, e.g.:

• fixed algorithms

• blackbox devices

• slow reconvergence after failures
(«bad news slow»)

• complex and hard to debug

SDN: What is it about?

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Key reasons for Google’s move to SDN: more
predictable and faster failure recovery (and more

fine-grained traffic engineering)

Ctrl

Control

Programs

Control

Programs

SDN = Logical Centralization

In a nutshell:

SDN outsources and
consolidates control
over multiple
devices to (logically)
centralized software
controller

Ctrl

Control

Programs

Control

Programs

SDN = Logical Centralization

In a nutshell:

SDN outsources and
consolidates control
over multiple
devices to (logically)
centralized software
controller

Algorithms run on
server in software here:
Your RNDM Algorithm!

Ctrl

Control

Programs

Control

Programs

SDN = Logical Centralization

In a nutshell:

SDN outsources and
consolidates control
over multiple
devices to (logically)
centralized software
controller

Simple switches with open
interface (no blackbox!): «the

Linux of networking»!

Ctrl

Control

Programs

Control

Programs

SDN = Logical Centralization

In a nutshell:

SDN outsources and
consolidates control
over multiple
devices to (logically)
centralized software
controllerConcretely: set of match-action

rules installed by controller:

match packet header

=> forward/drop/change…

Ctrl

Control

Programs

Control

Programs

SDN = Logical Centralization

In a nutshell:

SDN outsources and
consolidates control
over multiple
devices to (logically)
centralized software
controller

In
n

o
va

ti
o

n
!

Fa
st

 a
n

d
 in

d
ep

en
d

en
t

ev
o

lu
ti

o
n

 in
 s

o
ft

w
ar

e.

Ctrl

Control

Programs

Control

Programs

SDN = Logical Centralization

In a nutshell:

SDN outsources and
consolidates control
over multiple
devices to (logically)
centralized software
controller

Si
m

p
le

 d
at

a
p

la
n

e:
 a

llo
w

s
fo

r
fo

rm
al

ve

ri
fi

ca
ti

o
n

!

Ctrl

Control

Programs

Control

Programs

SDN = Logical Centralization

In a nutshell:

SDN outsources and
consolidates control
over multiple
devices to (logically)
centralized software
controller

Si
m

p
le

 d
at

a
p

la
n

e:
 a

llo
w

s
fo

r
fo

rm
al

ve

ri
fi

ca
ti

o
n

!

… but also here: L2-L4
header fields, granularity

of rules, etc.

Many
flexibilities here
(algorithms)…

”We are at an interesting
inflection point!”
Keynote by George Varghese
at SIGCOMM 2014

A rehash: It’s a great time to be a scientist!

Opportunities
and

innovation!

”We are at an interesting
inflection point!”
Keynote by George Varghese
at SIGCOMM 2014

A rehash: It’s a great time to be a scientist!

But how to exploit
these flexiblities?
How not to shoot

in our feet?
New RNDM
challenges!

Opportunities
and

innovation!

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

New RNDM Challenges on Several Fronts

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

New RNDM Challenges on Several Fronts

Challenge 1:
distributed

control plane
(only logically
centralized!)

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

New RNDM Challenges on Several Fronts

But let’s first talk
about the

challenges from
decoupling!

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

New RNDM Challenges on Several Fronts

It remains a
distributed system!

He et al., ACM SOSR 2015:

without network latency

Asynchronous!

Controller Platform

What can possibly go wrong?

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

insecure

Internet
secure

zone

Problem 1: Bypassed Waypoint

insecure

Internet
secure

zone

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

Problem 2: Transient Loop

insecure

Internet
secure

zone

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally

❏ Flip tag at ingress
ports

old route

tag red

Reitblatt et al. Abstractions for Network
Update, ACM SIGCOMM 2012.

Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally

❏ Flip tag at ingress
ports

old route

tag red

Where to tag?
Header space?
Overhead!

Time till new link
becomes available!

Reitblatt et al. Abstractions for Network
Update, ACM SIGCOMM 2012.

Cost of extra rules!

Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally

❏ Flip tag at ingress
ports

old route

tag red

Cost of extra rules!

Where to tag?
Header space?
Overhead!

Time till new link
becomes available!

Reitblatt et al. Abstractions for Network
Update, ACM SIGCOMM 2012.

Possible solution without tagging, and at least
preserve weaker consistency properties?

Idea: Schedule Subsets of Nodes!

Idea: Schedule safe update subsets in multiple rounds!

Packet may take a mix of old and new path, as long as,
e.g., Loop-Freedom (LF) and Waypoint Enforcement
(WPE) are fulfilled

Controller Platform

Controller Platform

Round 1

Round 2

…

Idea: Schedule Subsets of Nodes!

Idea: Schedule safe update subsets in multiple rounds!

Packet may take a mix of old and new path, as long as,
e.g., Loop-Freedom (LF) and Waypoint Enforcement
(WPE) are fulfilled

Controller Platform

Controller Platform

Round 1

Round 2

…

How to be sure?

Going Back to Our Examples: LF Update

insecure

Internet

secure

zone

Going Back to Our Examples: LF Update

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Going Back to Our Examples: LF Update

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Forward edges
(wrt old policy)!
Always safe.

Backward
edge: risky!

Going Back to Our Examples: LF Update

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:
LF ok! But: WPE violated in Round 1!

Forward edges
(wrt old policy)!
Always safe.

Backward
edge: risky!

Going Back to Our Examples: WPE Update

insecure

Internet

secure

zone

Going Back to Our Examples: WPE Update

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Don’t cross the
waypoint: safe!

Going Back to Our Examples: WPE Update

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:
… ok but may violate LF in Round 1!

Don’t cross the
waypoint: safe!

Going Back to Our Examples: Both WPE+LF?

insecure

Internet

secure

zone

Going Back to Our Examples: WPE+LF!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

insecure

Internet

secure

zoneR3:

Going Back to Our Examples: WPE+LF!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

insecure

Internet

secure

zoneR3:
Is there always a WPE+LF schedule?

What about this one?

LF and WPE may conflict!

❏ Cannot update any forward edge in R1: WP

❏ Cannot update any backward edge in R1: LF

No schedule exists!

Resort to tagging…

What about this one?

NP-Hard!

1

1

Bad news: Even decidability hard: cannot quickly test feasibility and if
infeasible resort to say, tagging solution!

Open question: very artificial? Under which circumstances poly-time?

To update or not to update in the first round?

That is the question… leading to NP-hardness!

Also an example that greedy can be bad.

We don’t know!

Let us focus on loop-freedom only:
always possible in n rounds! How?

Let us focus on loop-freedom only:
always possible in n rounds! How?

1

From the destination! Invariant: path suffix updated!

Let us focus on loop-freedom only:
always possible in n rounds! How?

12

From the destination! Invariant: path suffix updated!

Let us focus on loop-freedom only:
always possible in n rounds! How?

12

3

From the destination! Invariant: path suffix updated!

Let us focus on loop-freedom only:
always possible in n rounds! How?

1

From the destination! Invariant: path suffix updated!

2

3
4

5

6

Let us focus on loop-freedom only:
always possible in n rounds! How?

1

From the destination! Invariant: path suffix updated!

2

3
4

5

6

But how to minimize # rounds?

But how to minimize # rounds?

2 rounds easy, 3 rounds NP-
hard. Let’s take it offline!

What about capacity constraints?

1

2

2

1 1

1

1

w

s t

u v

capacity

What about capacity constraints?

1

2

2

1 1

1

1

Flow 1

w

s t

u v

What about capacity constraints?

1

2

2

1 1

1

1

Flow 1

Flow 2Can you find an update schedule?

w

s t

u v

e.g., cannot update
red: congestion!

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

Round 1: prepare

No flow! No flow!

No flow!

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

Round 2

flow! No flow!

No flow!

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

3. red@sRound 3

Capacity 2: ok!

3

No flow!

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

3. red@sRound 4

Capacity 2: ok!

3

4

4. blue@w

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

3. red@sRound 4

3

4

4. blue@w

Note: this (non-trivial)
example was just a DAG,

without loops!

Block Decomposition of DAGs

1

2

2

1 1

1

1

Flow 1

Flow 2

Block for a given flow:
subgraph between two

consecutive nodes where
old and new route meet. w

s t

u v

Block Decomposition of DAGs

1

2

2

1 1

1

1

Block for a given flow:
subgraph between two

consecutive nodes where
old and new route meet. w

s t

u v

Just one red block: r1

r1

Block Decomposition of DAGs

1

2

2

1 1

1

1

Block for a given flow:
subgraph between two

consecutive nodes where
old and new route meet. w

s t

u v

Two blue blocks: b1 and b2

b1 b2

Block Decomposition of DAGs

1

2

2

1 1

1

1

Block for a given flow:
subgraph between two

consecutive nodes where
old and new route meet. w

s t

u v

Dependencies: update b2 after r1 after b1.

b1 b2
r1

Algorithms and Properties

❏ For k=2 flows
❏ Using dependency graph of DAG block decomposition:

feasible update exists if and only if cycle-free dependency

❏ Also directly yields optimal number of rounds!

❏ For general k flows
❏ Harder: We need a weaker notion of dependency graph

❏ Only feasibility for constant k in polynomial-time

❏ For general k, NP-hard

❏ Not much more is known so far
❏ NP-hard on general networks already for 2 flows

Algorithms and Properties

❏ For k=2 flows
❏ Using dependency graph of DAG block decomposition:

feasible update exists if and only if cycle-free dependency

❏ Also directly yields optimal number of rounds!

❏ For general k flows
❏ Harder: We need a weaker notion of dependency graph

❏ Only feasibility for constant k in polynomial-time

❏ For general k, NP-hard

❏ Not much more is known so far
❏ NP-hard on general networks already for 2 flows

Essentially a combinatorial
reconfiguration problem!

Many Open Algorithmic Problems

❏ Complexity of scheduling (weak) loop-free
updates? What about approximations?

❏ Congestion-free update algorithms beyond
DAGs?

❏What about multiple waypoints?

❏ Related to Reconfiguration Graph Theory!

Further Reading

Scheduling Loop-free Network Updates: It's Good to Relax!
Arne Ludwig, Jan Marcinkowski, and Stefan Schmid.
ACM Symposium on Principles of Distributed Computing (PODC),
Donostia-San Sebastian, Spain, July 2015.

Transiently Secure Network Updates
Arne Ludwig, Szymon Dudycz, Matthias Rost, and Stefan Schmid.
42nd ACM SIGMETRICS, Antibes Juan-les-Pins, France, June 2016.

Can't Touch This: Consistent Network Updates for Multiple Policies
Szymon Dudycz, Arne Ludwig, and Stefan Schmid.
46th IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), Toulouse, France, June 2016.

Congestion-Free Rerouting of Flows on DAGs
Saeed Akhoondian Amiri, Szymon Dudycz, Stefan Schmid, and
Sebastian Wiederrecht. ArXiv Technical Report, November 2016.

https://net.t-labs.tu-berlin.de/~stefan/podc15.pdf
https://net.t-labs.tu-berlin.de/~stefan/sigmetrics16.pdf
https://net.t-labs.tu-berlin.de/~stefan/dsn16.pdf
https://net.t-labs.tu-berlin.de/~stefan/netup-dag-arxiv.pdf

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

Let’s next talk
about the

challenges in the
dataplane!

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

Which challenges? Data
plane is very simple?!

Let’s next talk
about the

challenges in the
dataplane!

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

Which challenges? Data
plane is very simple?!

Even in SDNs, some functionality should
stay in data plane. For example?

Let’s next talk
about the

challenges in the
dataplane!

Should Stay in Data Plane: Local Fast Failover

Ctrl

OpenFlow supports
preconfigured

failover rules: First
line of defense.

Via controller
too slow.

Should Stay in Data Plane: Local Fast Failover

Ctrl

The Crux: How to define conditional rules which
have local failure knowledge only?

OpenFlow supports
preconfigured

failover rules: First
line of defense.

Via controller
too slow.

Efficient Local Fast Failover:
Non-Trivial Already in the Clique!

1

2

3

4

6

5

The network:

Local Fast Failover

1

2

3

4

6

5

Without failures!

Traffic demand:
{1,2,3}->6

Local Fast Failover

1

2

3

4

6

5

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…

Preinstalled
failover rules
for red flow

Traffic demand:
{1,2,3}->6

1

2

3

4

6

5

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…
flow 2->6: 3,4,5,…

Preinstalled
failover rules
for blue flow

Traffic demand:
{1,2,3}->6

1

2

3

4

6

5

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

Preinstalled
failover rules
for green flow

Traffic demand:
{1,2,3}->6

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Local failover @1:
Does not know failures

downstream!

Local Fast Failover

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Local failover @1:
Does not know failures

downstream!

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Local failover @1:
Reroute to 2!

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

But also from 2:
6 not reachable.

Next: 3.

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Finally, 6 can be reached!

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Similarly for the other
two flows.

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Max load:
3 

Local Fast Failover

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2 

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2 

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

Tables statically defined,
without global failure

knowledge: a local algorithm
without communication!

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2 

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

In order to load balance:
prefixes of rows should be

different!

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2 

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

Bad news (intriguing!): High load unavoidable even in
well-connected residual networks: a price of locality.

Given L failures, load at least √L, although network still
highly connected (n-L connected). E.g., L=n/2, load

could be 2 still, but due to locality at least √n.

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2 

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

Good news: Theory of local algorithms without
communication: symmetric block design theory.

Bad news (intriguing!): High load unavoidable even in
well-connected residual networks: a price of locality.

Given L failures, load at least √L, although network still
highly connected (n-L connected). E.g., L=n/2, load

could be 2 still, but due to locality at least √n.

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2 

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

Good news: Theory of local algorithms without
communication: symmetric block design theory.

Bad news (intriguing!): High load unavoidable even in
well-connected residual networks: a price of locality.

Given L failures, load at least √L, although network still
highly connected (n-L connected). E.g., L=n/2, load

could be 2 still, but due to locality at least √n.

What about multihop networks?
See Chiesa et al.

What About Failover
in Multi-Hop Networks?

Solution: Use Arborescences (Chiesa et al.)

❏ Let us focus on resiliency only and ignore load

❏ Assume:

❏ single destination d and k-connected network G

❏ G decomposed into k d-rooted arc-disjoint spanning
arborescences

Basic principle:

❏ Route along fixed arborescence towards the destination d

❏ If packet hits a failed edge at vertex v, reroute along a
different arborescence

always exist in k-connected
graphs (efficient)

Solution: Use Arborescences (Chiesa et al.)

❏ Let us focus on resiliency only and ignore load

❏ Assume:

❏ single destination d and k-connected network G

❏ G decomposed into k d-rooted arc-disjoint spanning
arborescences

Basic principle:

❏ Route along fixed arborescence towards the destination d

❏ If packet hits a failed edge at vertex v, reroute along a
different arborescence

always exist in k-connected
graphs (efficient)

The crux: To which one?
Random? Influences

resilience.

Simple Example: Hamilton Cycle

Chiesa et al.: if k-connected graph has k arc
disjoint Hamilton Cycles, k-1 resilient routing can

be constructed!

Example: 3-Resilient Routing Function for 2d-Torus

Example: 3-Resilient Routing Function for 2d-Torus

A
rb

o
re

sc
e

n
ce

 1
:

H
am

ilt
o

n
 C

yc
le

Example: 3-Resilient Routing Function for 2d-Torus

A
rb

o
re

sc
e

n
ce

 1
:

H
am

ilt
o

n
 C

yc
le

spans all nodes: each
node visited exactly once!

Example: 3-Resilient Routing Function for 2d-Torus

A
rb

o
re

sc
e

n
ce

 2
:

H
am

ilt
o

n
 C

yc
le

Example: 3-Resilient Routing Function for 2d-Torus

A
rb

o
re

sc
e

n
ce

 2
:

H
am

ilt
o

n
 C

yc
le

Edge disjoint: Together
span all edges!

Example: 3-Resilient Routing Function for 2d-Torus

A
rb

o
re

sc
e

n
ce

 2
:

H
am

ilt
o

n
 C

yc
le

Make Hamilton cycles
directed: each direction

on each edge!

Example: 3-Resilient Routing Function for 2d-Torus

A
rb

o
re

sc
e

n
ce

 2
:

H
am

ilt
o

n
 C

yc
le

In order to reach destination d:
go along 1st directed HC, if hit

failure, reverse direction, if again
failure switch to 2nd HC, if again

failure reverse direction: no
more failures possible!

d

Example: 3-Resilient Routing Function for 2d-Torus

A
rb

o
re

sc
e

n
ce

 2
:

H
am

ilt
o

n
 C

yc
le

In order to reach destination d:
go along 1st directed HC, if hit

failure, reverse direction, if again
failure switch to 2nd HC, if again

failure reverse direction: no
more failures possible!

d
Torus 4-connected, has 2 edge disjoint

Hamilton cycles, so can construct
optimal 3-resilient routing!

Many Open Problems

For example:

❏ Optimal robustness: given a k-connected
graph, can we always find a failover scheme
which is k-resilient?

❏ If not, what is the «local failover robustness»
of a given graph?

Further Reading

How (Not) to Shoot in Your Foot with SDN Local Fast Failover: A
Load-Connectivity Tradeoff
Michael Borokhovich and Stefan Schmid.
17th International Conference on Principles of Distributed Systems
(OPODIS), Nice, France, Springer LNCS, December 2013.

Load-Optimal Local Fast Rerouting for Dependable Networks
Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
47th IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), Denver, Colorado, USA, June 2017.

Exploring the Limits of Static Resilient Routing
Marco Chiesa et al. arXiv Report, ICALP 2016, INFOCOM 2016.

https://net.t-labs.tu-berlin.de/~stefan/opodis13shoot.pdf
https://net.t-labs.tu-berlin.de/~stefan/dsn17failover.pdf
https://net.t-labs.tu-berlin.de/~stefan/opodis13shoot.pdf

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

How to manage
robustly?

A Self-Stabilization Problem!

Ctrl
Ctrl

Ctrl
Ctrl

Ctrl
Ctrl

1. 2.

3.

Further Reading

A Self-Organizing Distributed and In-Band SDN
Control Plane (Poster Paper)
Marco Canini, Iosif Salem, Liron Schiff, Elad M.
Schiller, and Stefan Schmid.
37th IEEE International Conference on
Distributed Computing Systems (ICDCS), Atlanta,
Georgia, USA, June 2017.

https://net.t-labs.tu-berlin.de/~stefan/icdcs17poster.pdf

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

Another challenge
in the data plane:

efficient
verification!

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

Another challenge
in the data plane:

efficient
verification!

Promise of SDN: The simple and static
match-action rules in data plane enable

automated configuration and verifiability!

Questions Operators May Have:

❏ Reachability: «Is it possible / not possible to
reach, from ingress port x, egress port y?»
❏ To ensure connectivity

❏ But also policies: professor network not reachable
from student dorms (logical isolation)

❏ What-if analysis: «How can the forwarding
behavior look like if there are up to k
concurrent link failures?»

Policy-compliance under
failures is difficult!

What-if Analysis Matters

Example: Datacenter (BGP!)*

PG1 PG2

C

A

D

B

X Y

PL1 PL2

G

E

H

F

* Example taken from Beckett et al. (SIGCOMM 2016): Don’t Mind the Gap: Bridging
Network-wide Objectives and Device-level Configurations.

Internet

D
at

ac
e

n
te

r

D
at

ac
e

n
te

r

What-if Analysis Matters

Example: Datacenter (BGP!)*

PG1 PG2

C

A

D

B

X Y

PL1 PL2

G

E

H

F

* Example taken from Beckett et al. (SIGCOMM 2016): Don’t Mind the Gap: Bridging
Network-wide Objectives and Device-level Configurations.

InternetCluster with
services that

should be globally
reachable.

Cluster with services
that should be
accessible only

internally.

D
at

ac
e

n
te

r

What-if Analysis Matters

Example: Datacenter (BGP!)*

PG1 PG2

C

A

D

B

X Y

PL1 PL2

G

E

H

F

* Example taken from Beckett et al. (SIGCOMM 2016): Don’t Mind the Gap: Bridging
Network-wide Objectives and Device-level Configurations.

Internet
X and Y announce to

Internet what is from PG
(prefix).

X and Y block what is
from PL.

D
at

ac
e

n
te

r

What-if Analysis Matters

Example: Datacenter (BGP!)*

PG1 PG2

C

A

D

B

X Y

PL1 PL2

G

E

H

F

* Example taken from Beckett et al. (SIGCOMM 2016): Don’t Mind the Gap: Bridging
Network-wide Objectives and Device-level Configurations.

Internet

What can go wrong?

X and Y announce to
Internet what is from PG

(prefix).

X and Y block what is
from PL.

D
at

ac
e

n
te

r

What-if Analysis Matters

Example: Datacenter (BGP!)*

PG1 PG2

C

A

D

B

X Y

PL1 PL2

G

E

H

F

* Example taken from Beckett et al. (SIGCOMM 2016): Don’t Mind the Gap: Bridging
Network-wide Objectives and Device-level Configurations.

Internet

If link (G,X) fails and traffic from G is rerouted
via Y and C to X: X announces (does not block)

G and H as it comes from C. (Note: BGP.)

X and Y announce to
Internet what is from PG

(prefix).

X and Y block what is
from PL.

Multiple Link Failures: Push Recursively!

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

10
20

11
21 12

22

10
20 11

21
12

22

10
20

11
21

12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30:
route around (v2,v3)

Two failures:
first push 30: route

around (v2,v3)

Recursively push 40:
route around (v2,v6)

Push 30

Push 40

Tractability of Verification

Even without failures: reachability test is undecidable in SDN!

Proof: Can emulate a Turing machine.

?!
in out

in’ out’

Further Reading

WNetKAT: A Weighted SDN Programming and
Verification Language
Kim G. Larsen, Stefan Schmid, and Bingtian Xue.
20th International Conference on Principles of
Distributed Systems (OPODIS), Madrid, Spain, December
2016.

https://net.t-labs.tu-berlin.de/~stefan/opodis16.pdf

Another Emerging Flexibility:
Reconfigurable Topologies

The Fat-Tree Topology: Theory

Edge

Aggregation

Core

Edge

Aggregation

Core

The Fat-Tree Topology: Theory

Edge

Aggregation

Core

1 Gig

10 Gig

The Fat-Tree Topology: Theory

100 Gig

Edge

Core

Aggregation

Pod 0 Pod 1 Pod 2 Pod 3

The Fat-Tree Topology: Practice

Edge

Core

Aggregation

//

ProjecToR: direct ToR-ToR
connectivity!

The Fat-Tree Topology: Future?

Reconfigurable Networks

❏ Reconfigurable interconnects, e.g., based on optical circuit switches, 60
GHz wireless, and free-space optics, allow to directly connect frequently
communicating pairs of racks (e.g., using digital micromirror devices)

❏ Emerging technologies: ProjecToR, REACToR, Flyways, Mirror, Firefly, etc.
allow to reconfigure the (physical) topology of communication networks
at runtime

❏ Attractive: real communication patterns are far from “all-to-all”, but
usually feature much structure and are sparse

Robustness aspects not studied yet!

First Insights: Model 1 «Bounded Network Design»

Given a demand matrix…

… find a network of max degree

which minimizes the expected path
length!

Ideas?
Subgraph?

Given a demand matrix…

… find a network of max degree

which minimizes the expected path
length!

Can first build
subgraph and then

“rewire edges”, make
it connected and low

degree!

First Insights: Model 1 «Bounded Network Design»

Distributed generalization of self-adjusting data structures,
e.g., splay tree binary search trees:

First Insights: Model 2 «SplayNets»

Splay Tree
Move-to-front
(Move-to-root)

SplayNet
Move-to-LCA

Open Questions

❏ Bounded degree network design for arbitrary demand
matrices?

❏ Robust bounded degree network design?

❏ Static optimality, dynamic optimality, static finger, dynamic
finger for SplayNets?

❏ Robust SplayNets?

❏ From Clos to WAN?

Further Reading

Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
31st International Symposium on Distributed Computing
(DISC), Vienna, Austria, October 2017.

SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael
Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (ToN), Volume 24,
Issue 3, 2016.

https://net.t-labs.tu-berlin.de/~stefan/disc17.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7066977&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber%3D7066977

Conclusion

❏ SDN introduces many flexibilities

❏ But also new challenges

❏ How to exploit flexibilities algorithmically?

❏ How to deal with remote controller(s)?

❏ Another grand challenge: reconfigurable topologies
for datacenter and WAN (amortized and competitive
analysis!)

Algorithms for flow rerouting:

Can't Touch This: Consistent Network Updates for Multiple Policies

Szymon Dudycz, Arne Ludwig, and Stefan Schmid.

46th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Toulouse, France, June 2016.

Transiently Secure Network Updates

Arne Ludwig, Szymon Dudycz, Matthias Rost, and Stefan Schmid.

42nd ACM SIGMETRICS, Antibes Juan-les-Pins, France, June 2016.

Scheduling Loop-free Network Updates: It's Good to Relax!

Arne Ludwig, Jan Marcinkowski, and Stefan Schmid.

ACM Symposium on Principles of Distributed Computing (PODC), Donostia-San Sebastian, Spain, July 2015.

Good Network Updates for Bad Packets: Waypoint Enforcement Beyond Destination-Based Routing Policies

Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid.

13th ACM Workshop on Hot Topics in Networks (HotNets), Los Angeles, California, USA, October 2014.

Congestion-Free Rerouting of Flows on DAGs

Saeed Akhoondian Amiri, Szymon Dudycz, Stefan Schmid, and Sebastian Wiederrecht.

ArXiv Technical Report, November 2016.

Survey of Consistent Network Updates

Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio.

ArXiv Technical Report, September 2016.

Security of the data plane:

Outsmarting Network Security with SDN Teleportation

Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.

2nd IEEE European Symposium on Security and Privacy (EuroS&P), Paris, France, April 2017.

See also CVE-2015-7516.

Reigns to the Cloud: Compromising Cloud Systems via the Data Plane

Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-Pierre Seifert, Anja Feldmann, and Stefan Schmid.

ArXiv Technical Report, October 2016.

teleportation

attacking the cloud

survey

loop-freedom

multiple policies

waypointing

loop-freedom

waypointing

capacity constraints

https://net.t-labs.tu-berlin.de/~stefan/dsn16.pdf
https://net.t-labs.tu-berlin.de/~stefan/sigmetrics16.pdf
http://net.t-labs.tu-berlin.de/~stefan/podc15.pdf
http://net.t-labs.tu-berlin.de/~stefan/hotnets14update.pdf
https://net.t-labs.tu-berlin.de/~stefan/netup-dag-arxiv.pdf
https://net.t-labs.tu-berlin.de/~stefan/survey-network-update-sdn.pdf
https://net.t-labs.tu-berlin.de/~stefan/eurosp16.pdf
https://wiki.onosproject.org/display/ONOS/Security+advisories
https://net.t-labs.tu-berlin.de/~stefan/vswitch-security-implications.pdf

Backup Slides

Ctrl

Control

Programs

Control

Programs

Let’s talk about security!

Ctrl

Control

Programs

Control

Programs

Let’s talk about security!

In particular:
malicious switches

(less studied).

Ctrl

Control

Programs

Control

Programs

Let’s talk about security!

In particular:
malicious switches

(less studied).

Note: Governments etc. don’t have resources
to build their own trusted hardware.

Ctrl

Control

Programs

Control

Programs

Let’s talk about security!

The case for insecure data
planes: many incidents

❏ Attackers have compromised
routers

❏ Compromised routers are
traded underground

❏ Vendors have left backdoors
open

❏ National security agencies
can bug network equipment

❏ …

What a malicious switch could do:

1 drop/reroute/exfiltrate 2 mirror

3 modify 4 inject

New attack vector:

❏ DoS on controller

❏ Harms availability

❏ E.g., force other
switches into default
behavior

Ctrl

Control

Programs

Control

Programs

More and New Attacks in SDN

Ctrl

Control

Programs

Control

Programs

❏ Idea: exploit controller to
communicate information:
«Teleportation»

Another New SDN Attack: Teleportation

Ctrl

Control

Programs

Control

Programs

❏ Idea: exploit controller to
communicate information:
«Teleportation»

❏ Controller reacts to switch
events (packet-ins) by sending
flowmods/packet-outs/… etc.:
can be exploited to transmit
information

❏ E.g., in MAC learning: src MAC
0xBADDAD

❏ Can also modulate information
implicitly (e.g., frequency of
packetins)

❏ E.g.: covert communication,
bypass firewall, coordinate
attack

Another New SDN Attack: Teleportation

Ctrl

Control

Programs

Control

Programs

❏ Idea: exploit controller to
communicate information:
«Teleportation»

❏ Controller reacts to switch
events (packet-ins) by sending
flowmods/packet-outs/… etc.:
can be exploited to transmit
information

❏ E.g., in MAC learning: src MAC
0xBADDAD

❏ Can also modulate information
implicitly (e.g., frequency of
packetins)

❏ E.g.: covert communication,
bypass firewall, coordinate
attack

Another New SDN Attack: Teleportation
Difficult to detect: (1) The teleported information follows

the normal traffic pattern of control communication,
indirectly between any switch and the controller. (2)

Teleportation channel is inside the typically encrypted
OpenFlow channel. Cannot easily be detected with

modern IDS, even if they operate in the control plane.

Ctrl

Control

Programs

Control

Programs

❏ Idea: exploit controller to
communicate information:
«Teleportation»

❏ Controller reacts to switch
events (packet-ins) by sending
flowmods/packet-outs/… etc.:
can be exploited to transmit
information

❏ E.g., in MAC learning: src MAC
0xBADDAD

❏ Can also modulate information
implicitly (e.g., frequency of
packetins)

❏ E.g.: covert communication,
bypass firewall, coordinate
attack

Another New SDN Attack: Teleportation

E.g., 2 switches try to use
the same DPID, exploit pave

path technique, etc.

Ctrl

Control

Programs

Control

Programs

Another Front: Virtualized Switches

Attack vector:

❏ The virtualized data plane

Further Reading

Outsmarting Network Security with SDN Teleportation
Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.
2nd IEEE European Symposium on Security and Privacy (EuroS&P),
Paris, France, April 2017.

https://net.t-labs.tu-berlin.de/~stefan/eurosp17.pdf

Ctrl

Control

Programs

Control

Programs

Another Front: Virtualized Switches

Attack vector:

❏ The virtualized data plane

Background:

❏ Packet processing and
other network functions
are more and more
virtualized

❏ E.g., runing on servers at
the edge of the datacenter

❏ Example: OVS

Advantage:

❏ Cheap and
performance ok!

❏ Fast and easy
deployment

Attack vector:

❏ The virtualized data plane

Background:

❏ Packet processing and
other network functions
are more and more
virtualized

❏ E.g., runing on servers at
the edge of the datacenter

❏ Example: OVS

Advantage:

❏ Cheap and
performance ok!

❏ Fast and easy
deployment

Ctrl

Control

Programs

Control

Programs

Security Challenges: Insecure Dataplane

New vulnerability:
collocation. Switches

run with evelated (root)
priviledges.

Attack vector:

❏ The virtualized data plane

Background:

❏ Packet processing and
other network functions
are more and more
virtualized

❏ E.g., runing on servers at
the edge of the datacenter

❏ Example: OVS

Advantage:

❏ Cheap and
performance ok!

❏ Fast and easy
deployment

Ctrl

Control

Programs

Control

Programs

Security Challenges: Insecure Dataplane

New vulnerability:
collocation. Switches

run with evelated (root)
priviledges.

Collocated with e.g., controllers,
hypervisors, guest VMs, VM
image and network management,
identity management (of admins
and tenants), etc.

A Case Study: OVS

❏ OVS: a production quality switch, widely deployed in the Cloud

❏ After fuzzing just 2% of the code, found major vulnerabilities:

❏ E.g., two stack overflows when malformed MPLS packets are parsed

❏ These vulnerabilities can easily be weaponized:

❏ Can be exploited for arbitrary remote code execution

❏ E.g., our «reign worm» compromised cloud setups within 100s

❏ Significance

❏ It is often believed that only state-level attackers (with, e.g., control over
the vendor’s supply chain) can compromise the data plane

❏ Virtualized data planes can be exploited by very simple, low-budget
attackers: e.g., by renting a VM in the cloud and sending a single
malformed MPLS packet

The Reign Worm

Exploits 4 problems:

1. Security assumptions: Virtual switches often run with elevated
(root) priviledges by design.

2. Collocation: virtual switchs reside in virtualized servers (Dom0), and
are hence collocated with other and possibly critical cloud software,
including controller software

3. Logical centralization: the control of data plane elements is often
outsourced to a centralized software. The corresponding
bidirectional communication channels can be exploited to spread
the worm further.

4. Support for extended protocol parsers: Virtual switches provide
functionality which goes beyond basic protocol locations of normal
switches (e.g., handling MPLS in non-standard manner)

The Reign Worm: Step 1

Attacker VM sends a malicious packet that compromises its
server, giving the remote attacker control of the server.

The Reign Worm: Step 2

Attacker controlled server compromises the controllers’
server, giving the remote attacker control of the controllers’ server.

Bidirectional
communication channel

The Reign Worm: Step 3

The compromised controllers’ server propagates
the worm to the remaining uncompromised server.

The Reign Worm: Step 4

All the servers are controlled by the remote attacker.

Further Reading

Reigns to the Cloud: Compromising Cloud Systems via the Data
Plane
Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas
Hetzelt, Jean-Pierre Seifert, Anja Feldmann, and Stefan Schmid.
ArXiv Technical Report, October 2016.

https://net.t-labs.tu-berlin.de/~stefan/vswitch-security-implications.pdf

Ctrl

Control

Programs

Control

Programs

Let’s talk about security!

Challenge: how to build secure
networks if hardware untrusted?

Opportunity: Adversarial Trajectory Sampling

Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

Principle:

❏ Sample subset of
packets (based on
hash value) anytime

❏ Get complete route
for sampled packets

❏ Efficient: sampling

Principle:

❏ Sample subset of
packets (based on
hash value) anytime

❏ Get complete route
for sampled packets

❏ Efficient: sampling

Opportunity: Adversarial Trajectory Sampling

Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

Not sampled!

Sampled!

Principle:

❏ Sample subset of
packets (based on
hash value) anytime

❏ Get complete route
for sampled packets

❏ Efficient: sampling

Opportunity: Adversarial Trajectory Sampling

Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

Problem: knows which
packets are sampled and

which not! Can manipulate
others without risk!

Principle:

❏ Sample subset of
packets (based on
hash value) anytime

❏ Get complete route
for sampled packets

❏ Efficient: sampling

Opportunity: Adversarial Trajectory Sampling

Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

Problem: knows which
packets are sampled and

which not! Can manipulate
others without risk!

How to make trajectory sampling secure to malicious switches?

Opportunity: Adversarial Trajectory Sampling

Adversarial Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

Opportunity: Adversarial Trajectory Sampling

Adversarial Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

Idea: leverage SDN!

Secure communication
channels: can

distributed sampling
values in a secure and

redundant way!

Opportunity: Adversarial Trajectory Sampling

Adversarial Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

Different switches sample
different packets!

Idea: leverage SDN!

Secure communication
channels: can

distributed sampling
values in a secure and

redundant way!

Opportunity: Adversarial Trajectory Sampling

Adversarial Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

e.g., injects packet
(e.g., for exfiltration)

Opportunity: Adversarial Trajectory Sampling

Adversarial Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

Does not report
packet!

Reports packet!

e.g., injects packet
(e.g., for exfiltration)

Opportunity: Adversarial Trajectory Sampling

Adversarial Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

Does not report
packet!

Reports packet!

e.g., injects packet
(e.g., for exfiltration)

If sampled before
and after:

Inconsistency
detected!

Further Reading

Software-Defined Adversarial Trajectory Sampling
Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.
ArXiv Technical Report, May 2017.

https://net.t-labs.tu-berlin.de/~stefan/adv-traj-sampling.pdf

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

One word
about control

plane…

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

Claim: SDN introduces many
flexibilities in how control planes

can be designed.

Ctrl Ctrl Ctrl

Ctrl

One for all…

Ctrl

Ctrl

Ctrl
Ctrl

Ctrl

… one for each…

… anything between.

Ctrl Ctrl Ctrl

Ctrl

One for all…

Ctrl

Ctrl

Ctrl
Ctrl

Ctrl

… one for each…

… anything between.

What can be
computed locally?

E.g., to prolong lifetime
of routers with restricted

memory: cache only
heavy hitters!

E.g., shortest paths:
global problem

❏ Some insights from distributed computing are handy: but come in a
new light!

❏ But finding right level of locality is non-trivial: tradeoff between inter-
controller communication and quality of solution

❏ E.g., in load balancing

Challenge: Right Level of Locality?

Points of
presence

Customer
sites

Primary links

Further Reading

A Distributed and Robust SDN Control Plane for Transactional
Network Updates
Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid.
34th IEEE Conference on Computer Communications (INFOCOM),
Hong Kong, April 2015.

Exploiting Locality in Distributed SDN Control
Stefan Schmid and Jukka Suomela.
ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking (HotSDN), Hong Kong, China, August 2013.

https://net.t-labs.tu-berlin.de/~stefan/infocom15.pdf
https://net.t-labs.tu-berlin.de/~stefan/hotsdn13loc.pdf

Jennifer Rexford’s Example:
SDN MAC Learning Done Wrong

❏ MAC learning: The «Hello World»

❏ a bug in early controller versions

h1

h2
h3

1

2
3

Controller

❏ In legacy networks simple

❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets (source address!)

❏ Pitfalls in SDN: learn sender => miss response

❏ Assume: low priority rule * (no match): send to controller

❏ h1->h2: Add rule h1@port1 (location learned)

❏ Controller misses h2->h1 (as h1 known, h2 stay unknown!)

❏ When h3->h2: flooding forever (learns h3, never learns h2)

OpenFlow

switch

Thanks to Jen Rexford for example!

Jennifer Rexford’s Example:
SDN MAC Learning Done Wrong

❏ MAC learning: The «Hello World»

❏ a bug in early controller versions

h1

h2
h3

1

2
3

Controller

❏ In legacy networks simple

❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets (source address!)

❏ Pitfalls in SDN: learn sender => miss response

❏ Assume: low priority rule * (no match): send to controller

❏ h1->h2: Add rule h1@port1 (location learned)

❏ Controller misses h2->h1 (as h1 known, h2 stay unknown!)

❏ When h3->h2: flooding forever (learns h3, never learns h2)

OpenFlow

switch

Thanks to Jen Rexford for example!

Controller never sees source h2:
switch already knows all
destinations h1 and h3, so for h2
it keeps flooding.

Software-Defined Wifi

Further Reading

OpenSDWN: Programmatic Control over Home and
Enterprise WiFi
Julius Schulz-Zander, Carlos Mayer, Bogdan Ciobotaru,
Stefan Schmid, and Anja Feldmann.
ACM Sigcomm Symposium on SDN Research (SOSR),
Santa Clara, California, USA, June 2015.

https://net.t-labs.tu-berlin.de/~stefan/sosr15.pdf

