
Performance and Security Isolation in
Softwarized Networks: Advances and Challenges

Stefan Schmid
Faculty of Computer Science

University of Vienna

3rd Workshop on Advances in Slicing for
Softwarized Infrastructures (S4SI 2020)

Softwarized Networks:
It’s a great time to be a networking researcher!

Impact Rhone and Arve Rivers,
Switzerland

Credits: George Varghese.

The (At Least) 3 Dimensions of Network Flexibility

SDN
Virtualiz-

ation
Optics

Opportunity: Improved Sharing of
Physical Network Infrastructure

Tenant 1 Tenant 2

Embedding

Challenges: Isolation (and Embedding)

Tenant 1

Embedding

Virtualization and Isolation

Tenant 2

Challenges: Isolation (and Embedding)

Tenant 1

Embedding

Virtualization and Isolation

Tenant 2

Isolation is required on all
involved resources!

Two Flavors of Isolation

❏ Logical isolation
❏ E.g., prevent from communication, no need to coordiante

name/address space, etc.
❏ Relevant for security

❏ Performance isolation
❏ E.g., prevent resource interference, ensure SLAs, make it

appear like a dedicated infrastructure
❏ Relevant for quality-of-service

We’ll consider both in this talk!

Invitation: A Roadtrip Through The Opportunities
and Challenges of Network Isolation

❏ Opportunities
❏ Algorithmic opportunities
❏ Technological opportunities

❏ Challenges
❏ Modelling challenges
❏ Security challenges

❏ A perspective how AI can improve
slicing efficiency and security

Road map 1927: Arizona and New Mexico

Invitation: A Roadtrip Through The Opportunities
and Challenges of Network Isolation

❏ Opportunities
❏ Algorithmic opportunities
❏ Technological opportunities

❏ Challenges
❏ Modelling challenges
❏ Security challenges

❏ A perspective how AI can improve
slicing efficiency and security

Road map 1927: Arizona and New Mexico

s t

s tor

Steer traffic through network
functions to compose

complex service chains

Opportunity: Define and Flexibly Allocate
Complex Services

More complex requests:
allowing for alternatives and

different decompositions

s t

s tor

Steer traffic through network
functions to compose

complex service chains

Opportunity: Define and Flexibly Allocate
Complex Services

More complex requests:
allowing for alternatives and

different decompositions

Known as PR (Processing and Routing)
Graph: allows to model different

choices and implementations!

Source: https://tools.ietf.org/html/draft-ietf-sfc-use-case-mobility-06

IETF Draft: Service chain for mobile operators

Customer LB1 Cache LB2 FW NAT Internet

❏ Load-balancers are used to route (parts of) the traffic through cache

More Complex Service Chains

Algorithmic Challenges:
Admission Control and Embedding

A

A

B

C

D10 Gbps

10 Gbps

5 Gbps

Substrate:

C

Requests:

10 Gbps

B C

5 Gbps

A B
10 Gbps

?

?

?
Which ones can be

admitted and embedded?

A

A

B

C

D10 Gbps

10 Gbps

5 Gbps
C

10 Gbps

B C

5 Gbps

A B
10 Gbps

?

?
Which ones can be

admitted and embedded?

Algorithmic Challenges:
Admission Control and Embedding

Substrate: Requests:

A

A

B

C

D0 Gbps

0 Gbps

5 Gbps
C

10 Gbps

B C

5 Gbps

A B
10 Gbps

?

?

Algorithmic Challenges:
Admission Control and Embedding

Substrate: Requests:

Deduct resources for
performance isolation!

A

A

B

C

D0 Gbps

0 Gbps

5 Gbps
C

10 Gbps

B C

5 Gbps

A B
10 Gbps

?
Which ones can be

admitted and embedded?

Algorithmic Challenges:
Admission Control and Embedding

Substrate: Requests:

A

A

B

C

D0 Gbps

0 Gbps

0 Gbps
C

10 Gbps

A B
10 Gbps

B C

5 Gbps

?

Algorithmic Challenges:
Admission Control and Embedding

Substrate: Requests:

Deduct resources for
performance isolation!

A

A

B

C

D0 Gbps

0 Gbps

0 Gbps
C

10 Gbps

A B
10 Gbps

B C

5 Gbps

Which ones can be
admitted and embedded?

Algorithmic Challenges:
Admission Control and Embedding

Substrate: Requests:

A

A

B

C

D0 Gbps

0 Gbps

0 Gbps
C

10 Gbps

A B
10 Gbps

B C

5 Gbps

Algorithmic Challenges:
Admission Control and Embedding

Substrate: Requests:

Essentially a virtual network
embedding problem!

vm1

vm2

vm3

vm4

❏ A fundamental resource allocation problem
❏ 2 dimensions of flexibility:

❏ Mapping of virtual nodes (to physical nodes)
❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

embedding?

VNet Substrate

❏ A fundamental resource allocation problem
❏ 2 dimensions of flexibility:

❏ Mapping of virtual nodes (to physical nodes)
❏ Mapping of virtual links (to paths)

vm1

vm2

vm3

vm4

The Virtual Network Embedding Problem

embedding?

VNet Substrate

aka “guest
graph”

aka “host
graph”

vm1

vm2

vm3

vm4

❏ A fundamental resource allocation problem
❏ 2 dimensions of flexibility:

❏ Mapping of virtual nodes (to physical nodes)
❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

embedding?

VNet Substrate

aka “guest
graph”

aka “host
graph”

Assume unit demand
and capacity!

vm1

vm2

vm3

vm4

❏ Let’s start simple: assume node mappings are given

The Virtual Network Embedding Problem

embedding?

VNet Substrate

vm1

vm2

vm3

vm4

The Virtual Network Embedding Problem

vm1 vm4

vm3
vm2

embedding?

VNet Substrate

Embedding the 2 virtual links
boils down to computation of
2 shortest paths!

❏ Let’s start simple: assume node mappings are given

vm1

vm2

vm3

vm4

The Virtual Network Embedding Problem

vm1 vm4

vm3
vm2

embedding?

VNet Substrate

How to compute 2
shortest paths under
capacity constraints?

Embedding the 2 virtual links
boils down to computation of
2 shortest paths!

❏ Let’s start simple: assume node mappings are given

vm1

vm2

vm3

vm4

The Virtual Network Embedding Problem

vm1 vm4

vm3
vm2

embedding?

VNet Substrate

Let’s try greedy!
First vm1-vm2.

Embedding the 2 virtual links
boils down to computation of
2 shortest paths!

❏ Let’s start simple: assume node mappings are given

vm1

vm2

vm3

vm4

The Virtual Network Embedding Problem

vm1 vm4

vm3
vm2

embedding?

VNet Substrate

Let’s try greedy!
First vm1-vm2.

Then vm3-vm4.
Total cost: 6.

❏ Let’s start simple: assume node mappings are given

vm1

vm2

vm3

vm4

The Virtual Network Embedding Problem

vm1 vm4

vm3
vm2

embedding?

VNet Substrate
A better solution:

cost 5!

Embedding the 2 virtual links
boils down to computation of
2 shortest paths!

❏ Let’s start simple: assume node mappings are given

vm1

vm2

vm3

vm4

The Virtual Network Embedding Problem

vm1 vm4

vm3
vm2

embedding?

VNet Substrate

Joint optimization of 2 flows is already a challenging
combinatorial problem! If demand=capacity=1:
shortest 2-disjoint paths problem.

Embedding the 2 virtual links
boils down to computation of
2 shortest paths!

❏ Let’s start simple: assume node mappings are given

Bad news: The Virtual Network Embedding Problem is hard
even if endpoints are already mapped and given.

Therefore: Mapping Virtual Links is Challenging

s t

Steering traffic through a single network function / middlebox:
a walk

How to compute a
shortest route

through a waypoint?

Remark: Also Hard to Route 1 Waypoint!

2 2

Comuting A Shortest Walk Through A
Single Given Waypoint is Non-Trivial!

s

wt

Assume unit capacity and
demand for simplicity!

s

wt

Greedy fails: choose shortest path from s to w…

Assume unit capacity and
demand for simplicity!

Comuting A Shortest Walk Through A
Single Given Waypoint is Non-Trivial!

s

wt

Greedy fails: … now need long path from w to t

Assume unit capacity and
demand for simplicity!

Comuting A Shortest Walk Through A
Single Given Waypoint is Non-Trivial!

s

wt

Greedy fails: … now need long path from w to t

Total length:
2+6=8

Assume unit capacity and
demand for simplicity!

Comuting A Shortest Walk Through A
Single Given Waypoint is Non-Trivial!

s

wt

A better solution: jointly optimize the two segments!

Total length:
4+2=6

Assume unit capacity and
demand for simplicity!

Comuting A Shortest Walk Through A
Single Given Waypoint is Non-Trivial!

NP-hard on Directed Networks:
Reduction from Disjoint Paths Problem

s1

s2

t1

t2

w

Reduction: From joint shortest paths (s1,t1),(s2,t2)
to shortest walk (s,w,t) problem

Fact: computing 2-
disjoint paths (2DP) is NP-
hard on directed graphs.
We show: If waypoint
routing was in P, we
could solve 2DP fast.
Contradiction!

s1

s2

t1

t2

w

•Reduction: To
find shortest
paths (s1,t1),
(s2,t2), introduce
waypoint w and
connect t1 to s2
via w….

Reduction: From joint shortest paths (s1,t1),(s2,t2)
to shortest walk (s,w,t) problem

NP-hard on Directed Networks:
Reduction from Disjoint Paths Problem

s1

s2

t1

t2

w

•Reduction: To
find shortest
paths (s1,t1),
(s2,t2), introduce
waypoint w and
connect t1 to s2
via w….

Reduction: From joint shortest paths (s1,t1),(s2,t2)
to shortest walk (s,w,t) problem

… and ask for
shortest waypoint
route (s1,w,t2)

NP-hard on Directed Networks:
Reduction from Disjoint Paths Problem

s1

s2

t1

t2

w

Reduction: From joint shortest paths (s1,t1),(s2,t2)
to shortest walk (s,w,t) problem

NP-hard on Directed Networks:
Reduction from Disjoint Paths ProblemThe walk (s1,w,t2) walk defines a (s1,t1)

and a (s2,t2) path pair before/after the
waypoint! Solves original problem:

Contradiction!

•Reduction: To
find shortest
paths (s1,t1),
(s2,t2), introduce
waypoint w and
connect t1 to s2
via w….

… and ask for
shortest waypoint
route (s1,w,t2)

Mapping Virtual Nodes

Routing is hard! Maybe at least
mapping nodes is simple?

❏ Let’s start simple again: assume paths are trivial, e.g., the
physical network (host graph) is a line

Mapping Virtual Nodes

embedding?

Guest

Host

But maybe at least
mapping nodes is

simple?c

❏ Let’s start simple again: assume paths are trivial, e.g., the
physical network (host graph) is a line

Mapping Virtual Nodes

embedding?

Cost 5

Guest

Host

❏ Let’s start simple again: assume paths are trivial, e.g., the
physical network (host graph) is a line

Mapping Virtual Nodes

embedding?

Cost 2

Guest

Host

❏ Let’s start simple again: assume paths are trivial, e.g., the
physical network (host graph) is a line

Mapping Virtual Nodes

embedding?

Minimizing the sum of virtual link
lengths is a Minimum Linear

Arrangement Problem (MinLA)!
NP-hard.

Therefore: VNEP is Hard “in Both Dimensions”!

Known? Why is SIP NP-hard?

❏ We have seen examples that:
❏ mapping virtual links is hard (even if nodes are given)
❏ mapping virtual nodes is hard (even if links are trivial)

❏ Remark: the VNEP can also be seen as a generalization of the
Subgraph Isomorphism Problem (SIP)

❏ We have seen examples that:
❏ mapping virtual links is hard (even if nodes are given)
❏ mapping virtual nodes is hard (even if links are trivial)

❏ Remark: the VNEP can also be seen as a generalization of the
Subgraph Isomorphism Problem (SIP)
❏ The SIP problem: Given two graphs G,H, determine whether G contains a subgraph that is

isomorphic to H?
❏ NP-hard: “does G contain an n-node cycle?” is a Hamilton cycle problem (each node visited

exactly once), a solution to “does G contain a k-clique?” solves maximum clique problem, etc.

Therefore: VNEP is Hard “in Both Dimensions”!

❏ We have seen examples that:
❏ mapping virtual links is hard (even if nodes are given)
❏ mapping virtual nodes is hard (even if links are trivial)

❏ Remark: the VNEP can also be seen as a generalization of the
Subgraph Isomorphism Problem (SIP)
❏ The SIP problem: Given two graphs G,H, determine whether G contains a subgraph that is

isomorphic to H?
❏ NP-hard: “does G contain an n-node cycle?” is a Hamilton cycle problem (each node visited

exactly once), a solution to “does G contain a k-clique?” solves maximum clique problem, etc.

Therefore: VNEP is Hard “in Both Dimensions”!

So if SIP is hard, why is
VNEP hard?

❏ Observe: VNEP is a generalization of SIP

❏ For example:

Can VNet G=(V,E) be embedded in H at cost |E|?
(I.e., each virtual edge has length 1.)



Is G a subgraph of H?

NP-Hardness: From SIP to VNEP

?

Can we at least formulate a “fast” MIP?

The basis for approximation algorithms
and heuristics! Even online!

E.g., relaxation and rounding.

Can we at least formulate a “fast” MIP?
?

❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)
❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)
❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

One that provides
good relaxations!

❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)
❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Initially: no variables set

subset of variables set

all variables set: infeasible,
feasible, optimal?

Usual
procedure:

❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)
❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Assume: best
feasible so far!

Assume:
best (still
unknown)

Assume:
already

explored

Usual
procedure:

❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)
❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Decide: Is it worth
exploring subtree?!

Usual
procedure:

❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)
❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Usual trick: Relax! Solve LP (fast!),
and if relaxed solution (more
general!) not better then best

solution so far: skip it!

❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)
❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Bottomline: If MIP provides «good
relaxations», large parts of the
search space can be pruned.

Usual trick: Relax! Solve LP (fast!),
and if relaxed solution (more
general!) not better then best

solution so far: skip it!

A typical MIP formulation:

❏ Introduce binary variables
map(v,s) to map virtual nodes v
to substrate node s

❏ Introduce flow variables for paths
(say splittable for now)

❏ Ensure flow conservation: all flow
entering a node must leave the
node, unless it is the source or
the destination

Can we at least formulate a “fast” MIP?

v

s

Σu->v fuv = Σv->w fvw

In Out

Can we at least formulate a “fast” MIP?

v: ∑ u fuv – fvu ≥ map(s,v) *b - map(t,v) * ∞

A

Assume bandwidth b
requested from node s

to node t.

We get constraints like:

What does this
formula do and why is

it correct?

In Out

Can we at least formulate a “fast” MIP?

v: ∑ u fuv – fvu ≥ map(s,v) *b - map(t,v) * ∞

A

Assume bandwidth b
requested from node s

to node t.

We get constraints like:

If map(s,v)=1, i.e., s mapped to v:
so flow starts at v, and hence

outgoing flow must be larger than
incoming flow (plus b).

In Out

Can we at least formulate a “fast” MIP?

v: ∑ u fuv – fvu ≥ map(s,v) *b - map(t,v) * ∞

A

Assume bandwidth b
requested from node s

to node t.

We get constraints like:

If map(s,v)=0 and map(t,v)=0, i.e., v is
along the path from s to t: then we have
flow conservation: outgoing flow must
equal incoming flow (here≥, objective
function will remove unnecessary flow).

In Out

Can we at least formulate a “fast” MIP?

v: ∑ u fuv – fvu ≥ map(s,v) *b - map(t,v) * ∞

A

Assume bandwidth b
requested from node s

to node t.

We get constraints like:

If map(t,v)=1, i.e., t mapped to v: so flow
terminates at node v: so no constraint:

minus infinity (but objective function will
remove unnecessary flow).

In Out

Can we at least formulate a “fast” MIP?

v: ∑ u fuv – fvu ≥ map(s,v) *b - map(t,v) * ∞

A

Assume bandwidth b
requested from node s

to node t.

We get constraints like:

Will such a MIP
provide effective

pruning?

If map(t,v)=1, i.e., t mapped to v: so flow
terminates at node v: so no constraint:

minus infinity (but objective function will
remove unnecessary flow).

In Out

What will happen in this example?

em
be

dd
in

g?

v1

v2

s1

s2

What will happen in this example?

v1

v2

s1

s2

map(v1, s1)=.5

map(v2, s2)=.5

What will happen in this example?

v1

v2

map(v1, s1)=.5

map(v2, s2)=.5

v1

v1

v2

v2

flow = 0

Minimal flow = 0: fulfills flow conservation! Relaxation useless: does not
provide any lower bound or indication of good mapping!

flow = 0

Thank you for your attention!

Wait a minute!
These problems need to be solved!

And they often can, even with guarantees.

A C
B C

In practice, requests may have
more structure:

Theory vs Practice:
In Practice There is Hope!

Customer LB1 Cache LB2 FW NAT Internet

Even this beast:

A

fw gw

x86

Substrate:

D

B
C

Product graph:

B

D
CA

B

D
CA

B

D
CA

B

D
CA

B

D
CA

fw gw

x86

si ti

si
Si ti

or

ti

C

B C

A Dith request ri:

Copy substrate graph for
each edge of chain

Placement
constraint

But In Theory There is Hope Too: Approximations!
Product graphs and randomized rounding

A

fw gw

x86

Substrate:

D

B
C

Product graph:

B

D
CA

B

D
CA

B

D
CA

B

D
CA

B

D
CA

fw gw

x86

si ti

si
Si ti

or

ti

C

B C

A D

Processing edge: processing happens on C:
connect C to C in next layer!

ith request ri:

Routing edge: graph edge
on same layer

with 2 types of edges

But In Theory There is Hope Too: Approximations!
Product graphs and randomized rounding

A

fw gw

x86

Substrate:

D

B
C

Product graph:

B

D
CA

B

D
CA

B

D
CA

B

D
CA

B

D
CA

fw gw

x86

si ti

si
Si ti

or

ti

C

B C

A D

Super-
source

ith request ri:

Super-
sink

But In Theory There is Hope Too: Approximations!
Product graphs and randomized rounding

A

ith request ri:

fw gw

x86

Substrate:

D

B
C

Product graph:

B

D
CA

B

D
CA

B

D
CA

B

D
CA

B

D
CA

fw gw

x86

si ti

si
Si ti

or

ti

C

B C

A D

Any (si,ti) flow presents a route of the request ri!

But In Theory There is Hope Too: Approximations!
Product graphs and randomized rounding

ith request ri:

fw gw

x86

Substrate:

D

B

Product graph:
D

C

B

D
CA

C
B

A

B

D
CA

fw gw

x86

si ti

si
Si ti

or

ti

C

B C

A D

B

D

B
A A

D
C

A C

process@A!
process@D!

route!

route!

route!

Any (si,ti) flow presents a route of the request ri!

But In Theory There is Hope Too: Approximations!
Product graphs and randomized rounding

route!

A

ith request ri:

fw gw

x86

Substrate:

D
C

Product graph:

B

D
CA

D
A

B

D
CA

B

D
CA

D
A

fw gw

x86

si ti

si
Si ti

or

ti

C

B C

A D

B

B
C

B
C

process@C!

Any (si,ti) flow presents a route of the request ri!

But In Theory There is Hope Too: Approximations!
Product graphs and randomized rounding

But In Theory There is Hope Too: Approximations!
Product graphs and randomized rounding

A

ith request ri:

fw gw

x86

Substrate:

D
C

Product graph:

B

D
CA

D
A

B

D
CA

B

D
CA

D
A

fw gw

x86

si ti

si
Si ti

or

ti

C

B C

A D

B

B
C

B
C

This problem can be solved using
mincost unsplittable multi-commodity
flow (approximation) algorithms (e.g.,

randomized rounding).

Any (si,ti) flow presents a route of the request ri!

Invitation: A Roadtrip Through The Opportunities
and Challenges of Network Isolation

❏ Opportunities
❏ Algorithmic opportunities
❏ Technological opportunities

❏ Challenges
❏ Modelling challenges
❏ Security challenges

❏ A perspective how AI can improve
slicing efficiency and security

Road map 1927: Arizona and New Mexico

Racks of Servers

Internet Router or
switch?

Example: Isolation in Datacenter
Tradeoff, traditionally:

Internet

Router

LAN
Switch

Architecture #1

Last-hop
router

Internet

Virtual Machine
with IP address

Router

Switch
LAN =
broadcast
domain!

A large LAN: High mobility…
… but high overhead due to learning

and broadcasting.No need to change IP!

Last-hop
router

Architecture #1

Racks of Servers

Internet

Virtual Machine
with IP address

Router

Last-hop
router

Switch

Architecture #2

Racks of Servers

Internet

Virtual Machine
with IP address

Router

SwitchLAN

Last-hop
router

Architecture #2

LAN

Mobility

A small LAN: A different
mobility – overhead (scalability) tradeoff!

Racks of Servers

Internet

Virtual Machine
with IP address

Router

SwitchLAN

Last-hop
router

Architecture #2

Racks of Servers

Internet

Router

Switch

Virtualization Technologies: Isolation of Tenants

Racks of Servers

Internet

Router

Switchencapsulate

Network virtualization: VLANs, VxLANs, tunneling, … or SDN!

Virtualization Technologies: Isolation of Tenants

Network
Equipment

Vendor

Network
Owner

ASIC
Team

Software
Team

Feature

Years

Example: VxLAN

© Nick McKeown

In the Past, Introducing Virtualization
Technologies Took Years

In the Past: Slow Innovation

I need extended VTP
(VLAN Trunking
Protocol) / a 3rd
spanport etc. !

Buy one of these!

Operator says: Vendor's answer:

I need
something

better than STP
for my data-

center...

We don't
have that!

Operator says: Vendor's answer:

In the Past: Slow Innovation

Opportunity: Softwarization, e.g., Programmable Dataplanes
Innovation at the Speed of Software Development

https://www.youtube.com/watch?v=zR88Nlg3n3g

https://www.youtube.com/watch?v=zR88Nlg3n3g

Invitation: A Roadtrip Through The Opportunities
and Challenges of Network Isolation

❏ Opportunities
❏ Algorithmic opportunities
❏ Technological opportunities

❏ Challenges
❏ Modelling challenges
❏ Security challenges

❏ A perspective how AI can improve
slicing efficiency and security

Road map 1927: Arizona and New Mexico

Models: Mind the Gap!

VNet 2

VNet 1

In theory land: bandwidth reservation for virtual
networks = predictable performance

Models: Mind the Gap!

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1 vSDN-1

Realization: Virtual networks based on SDN

Assume: perfect
performance isolation on

the network!

Consider: 2 SDN-based
virtual networks (vSDNs)

sharing physical resources!

SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1 vSDN-1
To enable multi-tenancy,

take existing network
hypervisor (e.g. Flowvisor,

OpenVirteX): provides
network abstraction and
control plane translation!

Models: Mind the Gap!

Realization: Virtual networks based on SDN

SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1 vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod 7 flow-mod

Translation
could include,

e.g., switch
DPID, port

numbers, …Intercepts control
plane messages.

Models: Mind the Gap!

Realization: Virtual networks based on SDN

SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1 vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod 7 flow-mod

It turns out: the network hypervisor can
be source of unpredictable performance!

Models: Mind the Gap!

Realization: Virtual networks based on SDN

SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1 vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod 7 flow-mod

Experiment: web latency depends
on hypervisor CPU load!

Models: Mind the Gap!

Performance also depends
on hypervisor type…

(multithreaded or not, which version
of Nagle’s algorithm, etc.)

… number of tenants…

The Many Faces of Performance Interference

It‘s complex!

Invitation: A Roadtrip Through The Opportunities
and Challenges of Network Isolation

❏ Opportunities
❏ Algorithmic opportunities
❏ Technological opportunities

❏ Challenges
❏ Algorithmic challenges
❏ Modelling challenges
❏ Security challenges

❏ A perspective how AI can improve
slicing efficiency and security

Road map 1927: Arizona and New Mexico

Ctrl

Control
Programs

Control
Programs

Programmable and Virtualized Networks

Increasingly
virtualized

Challenge: security!

Increasingly
centralized

Networked systems:

Virtualization
Layer

User

Kernel

VM VM VM

Potential New Attack Surface: Virtual Switches

N
I
C

Virtual Switch

Virtual switches reside in the server’s virtualization layer
(e.g., Xen’s Dom0). Goal: provide connectivity and isolation.

Increasing Complexity:
Parsed Protocols

Number of parsed high-level protocols constantly increases:

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Increasing workloads and advancements in network virtualization
drive virtual switches to implement middlebox functions such as

load-balancing, DPI, firewalls, etc.

Increasing Complexity:
Introduction of middlebox functionality

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Increasing Complexity:
Unified Packet Parsing

Ethernet
LLC
VLAN
MPLS
IPv4
ICMPv4
TCP
UDP
ARP
SCTP
IPv6
ICMPv6
IPv6 ND
GRE
LISP
VXLAN
PBB
IPv6 EXT HDR
TUNNEL-ID
IPv6 ND
IPv6 EXT HDR
IPv6HOPOPTS
IPv6ROUTING
IPv6Fragment
IPv6DESTOPT
IPv6ESP
IPv6 AH
RARP
IGMP

L2,L2.5,
L3,L4

How to parse all these
protocols without lowering
forwarding performance?!

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Unified packet parsing allows parse more and
more protocols efficiently: in a single pass!

Increasing Complexity:
Unified Packet Parsing

Ethernet
LLC
VLAN
MPLS
IPv4
ICMPv4
TCP
UDP
ARP
SCTP
IPv6
ICMPv6
IPv6 ND
GRE
LISP
VXLAN
PBB
IPv6 EXT HDR
TUNNEL-ID
IPv6 ND
IPv6 EXT HDR
IPv6HOPOPTS
IPv6ROUTING
IPv6Fragment
IPv6DESTOPT
IPv6ESP
IPv6 AH
RARP
IGMP

L2,L2.5,
L3,L4

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Unified packet parsing allows parse more and
more protocols efficiently: in a single pass!

Increasing Complexity:
Unified Packet Parsing

Ethernet
LLC
VLAN
MPLS
IPv4
ICMPv4
TCP
UDP
ARP
SCTP
IPv6
ICMPv6
IPv6 ND
GRE
LISP
VXLAN
PBB
IPv6 EXT HDR
TUNNEL-ID
IPv6 ND
IPv6 EXT HDR
IPv6HOPOPTS
IPv6ROUTING
IPv6Fragment
IPv6DESTOPT
IPv6ESP
IPv6 AH
RARP
IGMP

L2,L2.5,
L3,L4

This centralization is fast! But
more complex to get it right.

Complexity: The Enemy of Security!

❏ Data plane security not
well-explored (in general,
not only virtualized): most
security research on
control plane

❏ Two conjectures:

Ctrl

1. Virtual switches increase
the attack surface.

2. Impact of attack larger than
with traditional data planes.

The Attack Surface: Closer…

Attack surface becomes closer:

❏ Packet parser typically
integrated into the code base of
virtual switch

❏ First component of the virtual
switch to process network
packets it receives from the
network interface

❏ May process attacker-controlled
packets!

Ctrl

VM

Ctrl

The Attack Surface: … More Complex …

Ctrl

VM

Ctrl
Ethernet
LLC
VLAN
MPLS
IPv4
ICMPv4
TCP
UDP
ARP
SCTP
IPv6
ICMPv6
IPv6 ND
GRE
LISP
VXLAN

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

PBB
IPv6 EXT HDR
TUNNEL-ID
IPv6 ND
IPv6 EXT HDR
IPv6HOPOPTS
IPv6ROUTING
IPv6Fragment
IPv6DESTOPT
IPv6ESP
IPv6 AH
RARP
IGMP

… Elevated Priviledges and Collocation …

Ctrl

VM

Ctrl

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

❏ Collocated (at least partially)
with hypervisor’s Dom0 kernel
space, guest VMs, image
management, block storage,
identity management, …

User

Kernel

VM VM VM

NIC

Virtual Switch

VM

Ctrl

❏ Collocated (at least partially)
with hypervisor’s Dom0 kernel
space, guest VMs, image
management, block storage,
identity management, …

❏ … the controller itself.

… Elevated Priviledges and Collocation …

User

Kernel

VM VM VM

NIC

Virtual Switch

VM

Ctrl

❏ Collocated (at least partially)
with hypervisor’s (Dom0 kernel
space), guest VMs, image
management, block storage,
identity management, …

❏ … the controller itself.

… Centralization …

User

Kernel

VM VM VM

NIC

Virtual Switch

Available communication channels
to (SDN/Openstack) controller!

Controller needs to be reachable
from all servers.

Larger Impact: Case Study OVS

1. Rent a VM in the cloud (cheap)

User

Kernel

VM VM VM

Virtual Switch

Larger Impact: Case Study OVS

2. Send malformed MPLS packet to virtual switch (unified parser
parses label stack packet beyond the threshold)

User

Kernel

VM VM VM

Virtual Switch

Larger Impact: Case Study OVS

3. Stack buffer overflow in (unified) MPLS parsing code:
enables remote code execution

User

Kernel

VM VM VM

Virtual Switch

Larger Impact: Case Study OVS

4. Send malformed packet to server (virtual switch) where controller
is located (use existing communication channel)

User

Kernel

Ctrl

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch

Larger Impact: Case Study OVS

5. Spread

User

Kernel

Ctrl

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch
User

Kernel

VM VM VM

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch

A New Threat Model

❏ Limited skills required
❏ Use standard fuzzer to find crashes
❏ Construct malformed packet
❏ Build ROP chain

❏ Limited resources
❏ rent a VM in the cloud

❏ No physical access needed

User

Kernel

VM VM VM

Virtual Switch

No need to be a state-level attacker to compromise the
dataplane (and beyond)!

Similar problems in NFV: need even more complex
parsing/processing. And are often built on top of OvS.

Invitation: A Roadtrip Through The Opportunities
and Challenges of Network Isolation

❏ Opportunities
❏ Algorithmic opportunities
❏ Technological opportunities

❏ Challenges
❏ Modelling challenges
❏ Security challenges

❏ A perspective how AI can improve
slicing efficiency and security

Road map 1927: Arizona and New Mexico

A Case for AI?

1. Modelling virtualized and softwarized systems is
complex

❏ E.g., recall our SDN setup
❏ Often, many algorithms and parameters involved
❏ Wireless/radio components likely to increase complexity

2. In practice, `optimal’ resource sharing typically
achieved with statistical multiplexing

❏ Requires data: the more the better the statistics and hence
the efficiency

3. Resource allocation algorithms are often executed
repeatedly

❏ E.g., routing, embedding, switching...

A Case for AI?

1. Modelling virtualized and softwarized systems is
complex

❏ E.g., recall our SDN setup
❏ Often, many algorithms and parameters involved
❏ Wireless/radio components likely to increase complexity

2. In practice, `optimal’ resource sharing typically
achieved with statistical multiplexing

❏ Requires data: the more the better the statistics and hence
the efficiency

3. Resource allocation algorithms are often executed
repeatedly

❏ E.g., routing, embedding, switching...

A case
for AI?

A case
for AI?

A case
for AI?

A Case for AI?

1. Modelling virtualized and softwarized systems is
complex

❏ E.g., recall our SDN setup
❏ Often, many algorithms and parameters involved
❏ Wireless/radio components likely to increase complexity

2. In practice, `optimal’ resource sharing typically
achieved with statistical multiplexing

❏ Requires data: the more the better the statistics and hence
the efficiency

3. Resource allocation algorithms are often executed
repeatedly

❏ E.g., routing, embedding, switching...

A case
for AI?

A case
for AI?

A case
for AI?

Monitors Network
Problem

Optimizes Solution

Performance
EvaluationDesigns

With more complex networks: need for automation!

Today’s Approach to Operate Networks

Self-Monitoring Network
Problem

Self-Optimizing Solution

Performance
EvaluationSelf-Benchmarking

E.g. O’zapf (BIGDAMA’17)

E.g, NetBOA (NetAI’19)

What Self-Driving Networks Could Do?

Self-Monitoring Network
Problem

Self-Optimizing Solution

Performance
EvaluationSelf-Benchmarking

E.g. O’zapf (BIGDAMA’17)

E.g, NetBOA (NetAI’19)

What Self-Driving Networks Could Do?

Example: Data-Driven Algorithms

Can we learn from past solutions?
❏ E.g., to speed up future solutions?

Example: NetBOA
Automated Learning of “Bad Inputs”

NetBOA

Bayesian Optimization

E.g. Open
vSwitch

Traffic
Generator

CPU

N
um

be
r o

f p
ac

ke
ts

Inter arrival times [milliseconds]

Update Posterior
Fit Gaussian Process

Acquisition Function
Maximize Expected Improvement

(1) Set configuration

(2) Measure until confidence
is reached

(3) New measurement points

(4) Machine learn
performance model

C
PU

 [%
]

NetBOA vs Random Search

B
etter

Faster

NetBOA Random Search

24 % higher CPU utilization

May Also Be Exploited:
Algorithmic Complexity Attacks

E.g., automated learning of bad inputs to packet classifier
❏ E.g., difficult regular expressions
❏ Severely affects performance of OvS
❏ Can result in denial-of-service

• How much control are we willing to give away?

• Can a self-* network realize its limits?

• E.g., when quality of input data is not good enough?

• When to hand over to human? Or fall back to „safe/oblivious
mode“?

• Can we learn from self-driving cars?

Challenges of AI-Based and Self-Driving Networks

Conclusion

❏ Programmability and virtualization: algorithmic opportunities but
also challenges
❏ E.g.,: faster innovation, flexibilities in resource allocation, etc.
❏ But, e.g.: performance isolation needs to be ensured across all involved

resources, resulting resource allocation problems hard (open: good LP
formulations, accounting for latencies, derandomization, special graphs, etc.)

❏ Security: more opportunities and challenges
❏ Also faster innovation, but also new attack surface and potentially high impact

❏ AI opens interesting new opportunities
❏ To deal with algorithmic complexities
❏ To deal with modelling complexities
❏ To find performance weaknesses
❏ But also new challenges: how much control can we give away?

Re
fe

re
nc

es

On The Impact of the Network Hypervisor on Virtual Network Performance
Andreas Blenk, Arsany Basta, Wolfgang Kellerer, and Stefan Schmid.
IFIP Networking, Warsaw, Poland, May 2019.

Waypoint Routing in Special Networks
Saeed Akhoondian Amiri, Klaus-Tycho Foerster, Riko Jacob, Mahmoud Parham, and Stefan Schmid.
IFIP Networking, Zurich, Switzerland, May 2018.

Walking Through Waypoints
Saeed Akhoondian Amiri, Klaus-Tycho Foerster, and Stefan Schmid.
13th Latin American Theoretical Informatics Symposium (LATIN), Buenos Aires, Argentina, April 2018.

Charting the Algorithmic Complexity of Waypoint Routing
Saeed Akhoondian Amiri, Klaus-Tycho Foerster, Riko Jacob, and Stefan Schmid.
ACM SIGCOMM Computer Communication Review (CCR), 2018.

Virtual Network Embedding Approximations: Leveraging Randomized Rounding
Matthias Rost and Stefan Schmid.
IEEE/ACM Transactions on Networking (TON), 2019.

Parametrized Complexity of Virtual Network Embeddings: Dynamic & Linear Programming Approximations
Matthias Rost, Elias Döhne, and Stefan Schmid.
ACM SIGCOMM Computer Communication Review (CCR), January 2019.

Charting the Complexity Landscape of Virtual Network Embeddings (Best Paper Award)
Matthias Rost and Stefan Schmid.
IFIP Networking, Zurich, Switzerland, May 2018.

Competitive and Deterministic Embeddings of Virtual Networks
Guy Even, Moti Medina, Gregor Schaffrath, and Stefan Schmid.
Journal Theoretical Computer Science (TCS), Elsevier, 2013.

MTS: Bringing Multi-Tenancy to Virtual Switches
Kashyap Thimmaraju, Saad Hermak, Gabor Retvari, and Stefan Schmid.
USENIX Annual Technical Conference (ATC), Renton, Washington, USA, July 2019.

Taking Control of SDN-based Cloud Systems via the Data Plane
Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-Pierre Seifert, Anja Feldmann, and Stefan
Schmid.
ACM Symposium on SDN Research (SOSR), Los Angeles, California, USA, March 2018.

NetBOA: Self-Driving Network Benchmarking
Johannes Zerwas, Patrick Kalmbach, Laurenz Henkel, Gabor Retvari, Wolfgang Kellerer, Andreas Blenk, and Stefan
Schmid.
ACM SIGCOMM Workshop on Network Meets AI & ML (NetAI), Beijing, China, August 2019.

o'zapft is: Tap Your Network Algorithm's Big Data!
Andreas Blenk, Patrick Kalmbach, Stefan Schmid, and Wolfgang Kellerer.
ACM SIGCOMM 2017 Workshop on Big Data Analytics and Machine Learning for Data Communication Networks (Big-
DAMA), Los Angeles, California, USA, August 2017.

Tuple Space Explosion: A Denial-of-Service Attack Against a Software Packet Classifier
Levente Csikor, Dinil Mon Divakaran, Min Suk Kang, Attila Korosi, Balazs Sonkoly, David Haja, Dimitrios Pezaros, Stefan
Schmid, and Gabor Retvari.
ACM CoNEXT, Orlando, Florida, USA, December 2019.

Pr
ed

ic
ta

bl
e

pe
rf

or
m

an
ce

W
ay

po
in

t
Ro

ut
in

g
Vi

rt
ua

l N
et

w
or

k
Em

be
dd

in
g

Se
cu

rit
y

of
Da

ta
 P

la
ne

AI
 A

pp
ro

ac
he

s

https://www.univie.ac.at/ct/stefan/ifip19hypervisor.pdf
https://www.univie.ac.at/ct/stefan/ifip18waypoints.pdf
https://www.univie.ac.at/ct/stefan/latin18.pdf
https://www.univie.ac.at/ct/stefan/ccr18waypoint.pdf
https://www.univie.ac.at/ct/stefan/ton19vnep.pdf
https://www.univie.ac.at/ct/stefan/vnep-tw.pdf
https://www.univie.ac.at/ct/stefan/ifip18landscape.pdf
http://www.sciencedirect.com/science/article/pii/S0304397512009577?v=s5
https://www.univie.ac.at/ct/stefan/atc19mswitch.pdf
https://www.univie.ac.at/ct/stefan/sosr18.pdf
https://www.univie.ac.at/ct/stefan/netai19netboa.pdf
https://www.univie.ac.at/ct/stefan/bigdama17.pdf
https://www.univie.ac.at/ct/stefan/conext19tuple.pdf

	Performance and Security Isolation in Softwarized Networks: Advances and Challenges
	Slide Number 2
	Slide Number 3
	Opportunity: Improved Sharing of Physical Network Infrastructure
	Challenges: Isolation (and Embedding)
	Challenges: Isolation (and Embedding)
	Two Flavors of Isolation
	Invitation: A Roadtrip Through The Opportunities and Challenges of Network Isolation
	Invitation: A Roadtrip Through The Opportunities and Challenges of Network Isolation
	Opportunity: Define and Flexibly Allocate Complex Services
	Opportunity: Define and Flexibly Allocate Complex Services
	More Complex Service Chains
	Algorithmic Challenges: �Admission Control and Embedding
	Algorithmic Challenges: �Admission Control and Embedding
	Algorithmic Challenges: �Admission Control and Embedding
	Algorithmic Challenges: �Admission Control and Embedding
	Algorithmic Challenges: �Admission Control and Embedding
	Algorithmic Challenges: �Admission Control and Embedding
	Algorithmic Challenges: �Admission Control and Embedding
	The Virtual Network Embedding Problem
	The Virtual Network Embedding Problem
	The Virtual Network Embedding Problem
	The Virtual Network Embedding Problem
	The Virtual Network Embedding Problem
	The Virtual Network Embedding Problem
	The Virtual Network Embedding Problem
	The Virtual Network Embedding Problem
	The Virtual Network Embedding Problem
	The Virtual Network Embedding Problem
	Therefore: Mapping Virtual Links is Challenging
	Remark: Also Hard to Route 1 Waypoint!
	Comuting A Shortest Walk Through A Single Given Waypoint is Non-Trivial!
	Comuting A Shortest Walk Through A Single Given Waypoint is Non-Trivial!
	Comuting A Shortest Walk Through A Single Given Waypoint is Non-Trivial!
	Comuting A Shortest Walk Through A Single Given Waypoint is Non-Trivial!
	Comuting A Shortest Walk Through A Single Given Waypoint is Non-Trivial!
	NP-hard on Directed Networks:�Reduction from Disjoint Paths Problem
	Slide Number 40
	NP-hard on Directed Networks:�Reduction from Disjoint Paths Problem
	Slide Number 42
	Mapping Virtual Nodes
	Mapping Virtual Nodes
	Mapping Virtual Nodes
	Mapping Virtual Nodes
	Mapping Virtual Nodes
	Therefore: VNEP is Hard “in Both Dimensions”!
	Therefore: VNEP is Hard “in Both Dimensions”!
	Therefore: VNEP is Hard “in Both Dimensions”!
	NP-Hardness: From SIP to VNEP
	Can we at least formulate a “fast” MIP?
	Can we at least formulate a “fast” MIP?
	Can we at least formulate a “fast” MIP?
	Can we at least formulate a “fast” MIP?
	Can we at least formulate a “fast” MIP?
	Can we at least formulate a “fast” MIP?
	Can we at least formulate a “fast” MIP?
	Can we at least formulate a “fast” MIP?
	Can we at least formulate a “fast” MIP?
	Can we at least formulate a “fast” MIP?
	Can we at least formulate a “fast” MIP?
	Can we at least formulate a “fast” MIP?
	Can we at least formulate a “fast” MIP?
	Can we at least formulate a “fast” MIP?
	Can we at least formulate a “fast” MIP?
	What will happen in this example?
	What will happen in this example?
	What will happen in this example?
	Thank you for your attention!
	Theory vs Practice:�In Practice There is Hope!
	But In Theory There is Hope Too: Approximations!�Product graphs and randomized rounding
	But In Theory There is Hope Too: Approximations!�Product graphs and randomized rounding
	But In Theory There is Hope Too: Approximations!�Product graphs and randomized rounding
	But In Theory There is Hope Too: Approximations!�Product graphs and randomized rounding
	But In Theory There is Hope Too: Approximations!�Product graphs and randomized rounding
	But In Theory There is Hope Too: Approximations!�Product graphs and randomized rounding
	But In Theory There is Hope Too: Approximations!�Product graphs and randomized rounding
	Invitation: A Roadtrip Through The Opportunities and Challenges of Network Isolation
	Example: Isolation in Datacenter
	Architecture #1
	Architecture #1
	Architecture #2
	Architecture #2
	Architecture #2
	Virtualization Technologies: Isolation of Tenants
	Virtualization Technologies: Isolation of Tenants
	Example: VxLAN
	In the Past: Slow Innovation
	Slide Number 92
	Opportunity: Softwarization, e.g., Programmable Dataplanes�Innovation at the Speed of Software Development
	Invitation: A Roadtrip Through The Opportunities and Challenges of Network Isolation
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Invitation: A Roadtrip Through The Opportunities and Challenges of Network Isolation
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Invitation: A Roadtrip Through The Opportunities and Challenges of Network Isolation
	A Case for AI?
	A Case for AI?
	A Case for AI?
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Example: Data-Driven Algorithms
	Example: NetBOA�Automated Learning of “Bad Inputs”
	NetBOA vs Random Search
	May Also Be Exploited:�Algorithmic Complexity Attacks
	Challenges of AI-Based and Self-Driving Networks
	Conclusion
	References

