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ABSTRACT
Reconfigurable optical topologies are a promising new tech-
nology to improve datacenter network performance and
cope with the explosive growth of traffic. In particular, these
networks allow to directly and adaptively connect racks be-
tween which there is currently much traffic, hence making an
optimal use of the bandwidth capacity by avoiding multi-hop
forwarding.

This paper studies the dynamic optimization of such recon-
figurable topologies, by adapting the network to the traffic in
an online manner. The underlying algorithmic problem can
be described as an online maximum weight 𝑏-matching prob-
lem, a generalization of maximum weight matching where
each node has at most 𝑏 ≥ 1 incident matching edges.

We make the case for a randomized approach for matching
optimization. Our main contribution is a𝑂 (log𝑏)-competitive
algorithm and we show that it is asymptotically optimal. This
algorithm is hence exponentially better than the best possible
deterministic online algorithm.

We complement our theoretical results with extensive
trace-driven simulations, based on real-world datacenter
workloads.
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1 INTRODUCTION
Datacenter networks have become a critical infrastructure
of our digital society, and the performance requirements on
these networks are increasingly stringent. Indeed, especially
inside datacenters, traffic is currently growing explosively,
e.g., due to the popularity of data-centric applications related
to AI/ML [65], but also due to the trend of resource disaggre-
gation (e.g., requiring fast access to remote resources such
as GPUs), as well as hardware-driven and distributed train-
ing [46]. Accordingly, over the last years, great efforts have
been made to improve datacenter networks [44].

A particularly innovative approach to improve datacenter
network performance, is to dynamically adjust the datacen-
ter topologies towards the workload they serve, in a dynamic

and demand-aware manner. Such adjustments are enabled by
emerging reconfigurable optical communication technolo-
gies, such as optical circuit switches, which provide dynamic
matchings between racks [6, 75, 41, 55, 54, 27, 35, 17, 48, 16,
30, 70, 62, 69, 64, 67, 15, 36, 24, 34, 32]. Indeed, empirical stud-
ies have shown that datacenter traffic features much spatial
and temporal structure [3, 8, 61], which may be exploited for
optimization.

This paper studies the optimization problem underlying
such reconfigurable datacenter networks. In particular, we
consider a typical leaf-spine datacenter network where a
set of racks are interconnected by 𝑏 optical circuit switches,
each of which provides one matching between top-of-rack
switches, so 𝑏 matchings in total. In a nutshell, the goal is to
optimize these matchings so that the link resources are used
optimally, i.e., the number of hops taken per communicated
bit is minimized (more details will follow).

1.1 The Model
Our problem optimizing an optical reconfigurable datacenter
network can be modeled as an online dynamic version of the
classic 𝑏-matching problem [2]. In this problem, each node
can be connected with at most 𝑏 other nodes (using optical
links), which results in a 𝑏-matching.

Input.We are given an arbitrary (undirected) static weighted
and connected network on the set of nodes 𝑉 (i.e., the top-
of-rack switches) connected by a set of non-configurable
links 𝐹 : the fixed network (based, e.g., on a Clos or fat-tree
topology). Let 𝑉 2 be the set of all possible unordered pairs
of nodes from 𝑉 . For any node pair 𝑒 = {𝑠, 𝑡} ∈ 𝑉 2, we call 𝑠
and 𝑡 the endpoints of 𝑒 , and we let ℓ𝑒 denote the length of
a shortest path between nodes 𝑢 and 𝑣 in graph 𝐺 = (𝑉 , 𝐹 ).
Note that 𝑢 and 𝑣 are not necessarily directly connected in 𝐹 .

The fixed network can be enhanced with reconfigurable
links, providing a matching of degree 𝑏: Any node pair
from 𝑉 2 may become a matching edge (such an edge cor-
responds to a reconfigurable optical link), but the number of
matching edges incident to any node has to be at most 𝑏, for
a given integer 𝑏 ≥ 1.
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The demand is modeled as a sequence of communication
requests1 𝜎 = {𝑠1, 𝑡1}, {𝑠2, 𝑡2}, . . . revealed over time, where
{𝑠𝑖 , 𝑡𝑖 } ∈ 𝑉 2.
Output and objective. The task is to schedule the recon-
figurable links over time, that is, to maintain a dynamically
changing 𝑏-matching 𝑀 ⊆ 𝑉 2. This means that each node
pair from 𝑀 is called a matching edge, and we require that
each node has at most 𝑏 incident matching edges. We aim to
jointly minimize routing and reconfiguration costs, defined
below.
Costs. The cost of serving (i.e., routing cost) a request 𝑒 =

{𝑠, 𝑡} depends on whether 𝑠 and 𝑡 are connected by a match-
ing edge. In our model, a given request can either only take
the fixed network or a direct matching edge (i.e., routing
is segregated [30]). If 𝑒 ∉ 𝑀 , the requests are routed ex-
clusively on the fixed network, and the corresponding cost
is ℓ𝑒 (shorter paths imply smaller resource costs, i.e., lower
“bandwidth tax” [55]). If 𝑒 ∈ 𝑀 , the request is served by the
matching edge, and the routing costs 0.

Once the request is served, an algorithm may modify the
set of matching edges: reconfiguration costs 𝛼 per each node
pair added or removed from the matching 𝑀 . (The reconfig-
uration cost and time can be assumed to be independent of
the specific edge.)
Online algorithms. A (randomized) algorithm Onl is on-
line if it has to take decisions without knowing the future
requests (in our case, e.g., which edge to include next in the
matching and which to evict). Such an algorithm is said to be
𝜌-competitive [12] if there exists 𝛽 such that for any input
instance 𝜎 , it holds that

E[Onl(𝜎)] ≤ 𝜌 · Opt(𝜎) + 𝛽 ,

where Opt(𝜎) is the cost of the optimal (offline) solution for𝜎
and E[Onl(𝜎)] is the expected cost of algorithm Onl on 𝜎 .
The expectation is taken over all random choices of Onl,
i.e., the input itself is worst-possible, created adversarially.
It is worth noting that 𝛽 can depend on the parameters of
the network, such as the number of nodes, but has to be
independent of the actual sequence of requests. Hence, in
the long run, this additive term 𝛽 becomes negligible in
comparison to the actual cost of online algorithm Onl.
Generalization to (𝑏,𝑎)-matching problem. The compar-
ison of an online algorithm to the fully clairvoyant offline
solution may seem unfair. Therefore, we consider our 𝑏-
matching problem also in a more generalized setting. We
denote this generalization as (𝑏, 𝑎)-matching, where the re-
strictions imposed on an online algorithm remain unchanged:
the number of matching edges incident to any node has to
1A request could either be an individual packet or a certain amount of bytes
transferred. This model of a request sequence is often considered in the
literature and is more fine-grained than, e.g., a sequence of traffic matrices.

be at most 𝑏. However, the optimal solution is more con-
strained: the number of matching edges has to be at most
𝑎 ≤ 𝑏 for any node. Similar settings are studied frequently
in the literature, as resource augmentation models, e.g., in the
context of paging and caching [19, 72, 73, 7] or scheduling
problems, see, e.g., [14, 39].

1.2 Our Contributions
Motivated by the problem of how to establish topological
shortcuts in datacenter networks supported by 𝑏 optical
switches, we present a randomized online algorithm for the
(𝑏, 𝑎)-matching problem.

Our proposed solution achieves a competitive ratio of
𝑂 ((1+max𝑒 {ℓ𝑒 }/𝛼) ·log(𝑏/(𝑏−𝑎+1)), which almost optimal:
we will also show a lower bound of Ω(log(𝑏/(𝑏 − 𝑎 + 1)).
We note that in all practical applications 𝛼 is by several
orders of magnitude greater than ℓmax, and thus the factor
1 + max𝑒 {ℓ𝑒 }/𝛼 is close to 1.

When our algorithm is compared to an optimal algorithm
that has to maintain 𝑏-matching as well (i.e., when 𝑎 =

𝑏), the competitive ratio of our algorithm becomes 𝑂 ((1 +
max𝑒 {ℓ𝑒 }/𝛼) · log𝑏) and the lower bound becomes Ω(log𝑏).
It is worth noting that the best deterministic online algorithm
for this problem is only Θ(𝑏)-competitive.

Our analysis relies on a reduction to a uniform case (where
𝛼 = 1 and all path lengths are equal to 1), which allows us to
avoid delicate charging arguments and enables a simplified
analytical treatment.

We show that our randomized algorithm is not only bet-
ter with respect to the worst-case competitive ratio than
the deterministic online algorithm in theory, but also attrac-
tive in practice. Our empirical evaluation, based on various
real-world datacenter traces, shows that our algorithm is sig-
nificantly faster while achieving roughly the same matching
quality.

As a contribution to the research community, to facilitate
follow-up work, and to ensure reproducibility, we will open-
source our implementation and all experimental artifacts
together with this paper.

1.3 Organization
The remainder of this paper is organized as follows. We
present our optimization framework together with a formal
analysis in §2. §3 reports on our empirical results. After
reviewing related work in §4, we conclude our contribution
and discuss future work in §5.

2 ALGORITHM AND ANALYSIS
Recall that our goal is to adapt the reconfigurable datacenter
links such that bandwidth resources are used optimally (i.e.,
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bits travel the least number of hops) while accounting for re-
configuration costs, in an online manner. To this end, we aim
to compute heavy matchings between nodes, e.g., the racks
resp. top-of-rack switches in the reconfigurable datacenter.

We first define the uniform variant of the (𝑏, 𝑎)-matching.
There, the distance between each pair of nodes is 1 (i.e., ℓ𝑒 = 1
for any 𝑒 ∈ 𝑉 2) and 𝛼 = 1 (recall that 𝛼 is the cost of adding
or removing a matching edge to/from 𝑀).

In the following, let
ℓmax = max

𝑒
{ℓ𝑒 } and 𝛾 = 1 + ℓmax/𝛼.

We first show that it suffices to solve the uniform variant of
the problem: once we do this, we can get an algorithm for
the general variant, losing an additional factor of 𝑂 (𝛾).

Afterwards, we show a simple algorithm that uses known
randomized algorithms for the paging problem to solve the
uniform variant of the (𝑏, 𝑎)-matching. This will yield a ran-
domized 𝑂 (𝛾 · log(𝑏/(𝑏 − 𝑎 + 1))-competitive algorithm for
the (𝑏, 𝑎)-matching problem.

2.1 Reduction to uniform case
We now show a reduction to the uniform case.

Theorem 1. Assume there exists a (deterministic or ran-

domized) 𝑐-competitive algorithm Alg1 for the variant of the
(𝑏, 𝑎)-matching problem for the uniform case. Then there exists

a (respectively, deterministic or randomized) 4𝛾 · 𝑐-competitive

algorithm Alg for the (𝑏, 𝑎)-matching problem.

Proof. Let 𝐼 be the input for algorithm Alg. Alg creates
(in an online manner) another input instance 𝐼1. For any node
pair 𝑒 let

𝑘𝑒 = ⌈𝛼/ℓ𝑒⌉ .
For any node pair 𝑒 independently, we call each 𝑘𝑒 -th request
to 𝑒 in 𝐼 special; the remaining ones are called ordinary. Input
𝐼1 contains only special requests from 𝐼 . Furthermore, for 𝐼1,
we assume that 𝛼 = 1 and the distance between each pair
of nodes is 1. Alg simply runs Alg1 on 𝐼1 and repeats its
reconfiguration choices (modifications of the matching 𝑀).
In particular, this means that Alg may performs changes to
𝑀 only upon the 𝑘𝑒 -th occurrence of a given node pair 𝑒 .

To prove the theorem, we will show the following inequal-
ities for some value 𝛽 independent of the input 𝐼 .

(1) Alg(𝐼 ) ≤ 2𝛾 · 𝛼 · Alg1 (𝐼1) + |𝑉 2 | · 𝛾 · 𝛼
(2) Alg1 (𝐼1) ≤ 𝑐 · Opt(𝐼1) + 𝛽
(3) Opt(𝐼1) ≤ (2/𝛼) · Opt(𝐼 )

Showing the first inequality. We fix any node pair 𝑒 and
we analyze the cost pertaining to handling 𝑒 both by Alg and
Alg1. We partition 𝐼 into disjoint intervals, so that the first
interval starts at the beginning of the input sequence, and
each interval except the last one ends at the special request to
𝑒 inclusively. (We note that the partition differs for different

choices of 𝑒 .) We look at any non-last interval 𝑆 and its
counterpart 𝑆1 in the input 𝐼1. Note that except 𝑘𝑒 requests
to 𝑒 and one request to 𝑒 in 𝑆1, these intervals may contain
also requests to other node pairs. We now compare the costs
pertaining to 𝑒 in 𝑆 incurred on Alg (denoted Alg(𝑆, 𝑒)), to
the costs pertaining to 𝑒 in 𝑆1 incurred on Alg1 (denoted
Alg1 (𝑆1, 𝑒)). We consider two cases.

• If Alg1 (𝑆1, 𝑒) = 0, then Alg1 must have 𝑒 in 𝑀 when
it is requested at the end of 𝑆1, and moreover, it can-
not perform any reconfigurations that touch 𝑒 . This
means that it must have 𝑒 in 𝑀 right after the special
request to 𝑒 preceding 𝑆1, and keep 𝑒 in𝑀 throughout
the whole considered interval 𝑆1. As Alg is mimick-
ing the choices of Alg1, it has 𝑒 in 𝑀 during 𝑆 , and
thus all 𝑘𝑒 requests to 𝑒 in 𝑆 are free for Alg and
Alg(𝑆, 𝑒) = 0 as well.

• Otherwise, let 𝑞 = Alg1 (𝑆1, 𝑒) ≥ 1. As Alg1 per-
formed at most 𝑞 reconfigurations concerning 𝑒 in
𝑆1, so does Alg in 𝑆 . Furthermore, Alg pays at most
for 𝑘𝑒 requests to 𝑒 (ℓ𝑒 for each). We note that

𝑘𝑒 · ℓ𝑒 < (𝛼/ℓ𝑒 + 1) · ℓ𝑒 = 𝛼 + ℓ𝑒

≤ 𝛼 + ℓmax = 𝛾 · 𝛼,
and thus Alg(𝑆, 𝑒) ≤ 𝑞 · 𝛼 + 𝑘𝑒 · ℓ𝑒 ≤ (𝑞 + 𝛾) · 𝛼 <

2𝑞𝛾 · 𝛼 = 2𝛾 · 𝛼 · Alg1 (𝑆1, 𝑒).
The first inequality follows by summing over all (non-last)

intervals and all possible choices of 𝑒 . The term |𝑉 2 | · 𝛾 · 𝛼
upper-bounds the total cost in the last intervals: there are
|𝑉 2 | of them, and in each the cost is at most 𝑘𝑒 · ℓ𝑒 < 𝛾 · 𝛼 .
Showing the second inequality. This one follows immedi-
ately as Alg1 is 𝑐-competitive on input 𝐼1.
Showing the third inequality. We again fix any edge 𝑒 and
consider the same partitioning into intervals as above. This
time, however, on the basis of solution Opt(𝐼 ), we construct
an offline solution Off for the input 𝐼1 by mimicking all
reconfiguration choices of Opt on input 𝐼1. Note that 𝐼1 con-
tains only a subset of requests from 𝐼 and thus, in response
to a single request in 𝐼1, Off may react with a sequence of
reconfigurations that are redundant (i.e., remove some edge
from 𝑀 and then fetch it back). However, as the matching 𝑀
that Off maintains is the same as that of Opt, it is feasible.

We now argue that for any interval 𝑆 in 𝐼 and the corre-
sponding interval 𝑆1 in 𝐼1, it holds that Off(𝑆1, 𝑒) ≤ (2/𝛼) ·
Opt(𝑆, 𝑒).

• If Opt(𝑆, 𝑒) < 𝛼 , then Opt performs no reconfigura-
tions concerning 𝑒 . In this case Opt has to pay for all
requests to 𝑒 within 𝑆 or none of them. The first case
would imply that its cost is at least 𝑘𝑒 · ℓ𝑒 ≥ 𝛼 , and
thus the only possibility is that it does not pay for any
request. In this case, Off does not perform any reor-
ganizations pertaining to 𝑒 either and does not pay
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for the only request to 𝑒 in 𝑆1. Hence, Off(𝑆1, 𝑒) =
0 = Opt(𝑆, 𝑒).

• Otherwise, let 𝑞 = Opt(𝑆, 𝑒) ≥ 𝛼 . Opt performs
at most ⌊𝑞/𝛼⌋ reconfigurations pertaining to 𝑒 . Off
executes the same reconfigurations, and hence it pays
at most ⌊𝑞/𝛼⌋ for reconfigurations in 𝑆1 pertaining
to 𝑒 and at most 1 for the only request to 𝑒 in 𝑆1. Thus,
Off(𝑆1, 𝑒) ≤ ⌊𝑞/𝛼⌋+1 ≤ 2 · (𝑞/𝛼) = (2/𝛼) ·Opt(𝑆, 𝑒).

The third inequality now follows by summing the relation
Off(𝑆1, 𝑒) ≤ (2/𝛼) · Opt(𝑆, 𝑒) over all intervals (including
the last ones) and node pairs 𝑒 , and observing that the optimal
cost for 𝐼1 can be only smaller than the cost of Off on 𝐼1.
Combining all three inequalities. By combining all three
inequalities, we obtain that

Alg(𝐼 ) ≤ 2𝛾 · 𝛼 · Alg1 (𝐼1) + |𝑉 2 | · 𝛾 · 𝛼
≤ 2𝛾 · 𝛼 · 𝑐 · Opt(𝐼1) + 2𝛾 · 𝛼 · 𝛽 + |𝑉 2 | · 𝛾 · 𝛼
≤ 4𝛾 · 𝑐 · Opt(𝐼 ) + (|𝑉 2 | + 2𝛽) · 𝛾 · 𝛼,

which concludes the proof. □

2.2 Algorithm for uniform case
Below we present a randomized algorithm Alg1, which solves
the uniform variant of the problem (where ℓ𝑒 = 1 for all
𝑒 ∈ 𝑉 2 and 𝛼 = 1).

Let the (𝑏, 𝑎)-paging problem be a resource-augmented
variant of the paging problem [19] where an online algorithm
has cache of size𝑏 and optimal algorithm has a cache of size 𝑎.

Theorem 2. Assume there exists a (deterministic or ran-

domized) 𝑓 (𝑏, 𝑎)-competitive algorithm for the (𝑏, 𝑎)-paging
problem for some function 𝑓 : N≥0 × N≥0 → R≥0. Then,
there exists an (also deterministic or randomized) 𝑂 (𝑓 (𝑏, 𝑎))-
competitive algorithm for the uniform variant of the (𝑏, 𝑎)-
matching problem.

We note that the cost model in the paging problem as
defined in many papers (see, e.g., [19, 28, 72]) differs slightly
from ours in two aspects:

• In the paging problem, whenever a page is requested,
it must be fetched to the cache if it is not yet there
(bypassing is not allowed). In contrast, in the (𝑏, 𝑎)-
matching problem an algorithm does not have to
include the requested node pair in the matching.

• In the paging problem, an algorithm pays only for in-
cluding page in the cache (there is no cost for eviction
as in our model). Because bypassing is not allowed,
the paging problem does not include the cost of serv-
ing a request either.

We will handle these differences in our proof.
Algorithm definition. Our algorithm Alg1 for the (𝑏, 𝑎)-
matching problem runs separate (𝑏, 𝑎)-paging algorithms for

each node; initially the caches corresponding to all vertices
are empty. Alg1 dynamically creates input sequences for the
paging algorithms running at particular vertices. An input
sequence for the algorithm running at node 𝑤 is a sequence
of node pairs having 𝑤 as one of their endpoints. At all
times, the paging algorithm keeps a subset of at most 𝑏 such
node pairs in its cache. On the basis of the (possibly random)
decisions at each node, Alg1 constructs its own solution,
choosing which node pairs are kept as matching edges in 𝑀 .

More precisely, whenever Alg1 handles a request 𝑒 =

(𝑢, 𝑣), it passes query 𝑒 to the paging algorithms running
at its endpoints: separately to node 𝑢 and to node 𝑣 . By the
definition of the paging problem, both these vertices may
reorganize their caches, removing an arbitrary number of
elements (node pairs) from their caches, and afterwards they
need to fetch 𝑒 to their caches (if it is not already there).

On this basis, Alg1 reorganizes the matching maintaining
the following invariant:

Any node pair 𝑞 is kept in the matching if and

only if 𝑞 is in the caches of both its endpoints.

Therefore, when 𝑒 = (𝑢, 𝑣) is requested, the actions of Alg1
are limited to the following: (i) some node pairs having one
of𝑢 or 𝑣 as endpoints may be removed from𝑀 , (ii) 𝑒 becomes
a matching edge in 𝑀 (if it was not already there).2 We note
that our reduction itself is purely deterministic, but results
in a randomized algorithm if we use randomized algorithms
for solving paging sub-problems at vertices.
Bounding competitive ratio. Now we proceed with show-
ing the desired competitive ratio of Alg1.

Proof of Theorem 2. Fix any input instance 𝐼 for the
(𝑏, 𝑎)-matching problem. It induces |𝑉 | paging instances for
each node: we denote the instance at node 𝑣 by 𝐼𝑣 . Let 𝐴𝑣

be the instance of online paging algorithm run at 𝑣 . By the
theorem assumptions, for any node 𝑣 it holds that

𝐴𝑣 (𝐼𝑣) ≤ 𝑓 (𝑏, 𝑎) · Opt(𝐼𝑣) + 𝛽𝑏,𝑎 (1)

where 𝛽𝑏,𝑎 is a constant independent of the input sequence
and Opt(𝐼𝑣) denotes the optimal 𝑎-paging solution for in-
put 𝐼𝑣 .

We will show the following relations.
• Alg1 (𝐼 ) ≤ 4 ·∑𝑣∈𝑉 𝐴𝑣 (𝐼𝑣).
• ∑

𝑣∈𝑉 Opt(𝐼𝑣) ≤ 14 · Opt(𝐼 )
We note that we do not aim at optimizing the constants
here, but rather at the simplicity of the description. Clearly,

2Note that there are cases where algorithm Alg1 has less matching edges
than allowed by the threshold 𝑏. While this does not hinder theoretical
analysis, it is worth noting that having an edge in the matching can only
help us. Thus, in our experiments the removals are lazy, i.e., an edge is
marked for removal and then some marked edges are pruned whenever
their number incident to a node exceeds 𝑏.
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combining these two inequalities with (1) immediately yields
the theorem.

We start with proving the second inequality. On the basis
of the optimal solution for the 𝑎-matching problem Opt(𝐼 ),
we first create an online solution Off(𝐼 ) for the same prob-
lem, but having the property that right after a node pair is
requested it is included in the matching. We call this forcing
property. This can be achieved by changing Opt decisions
in the following way: whenever we have a request 𝑒 = (𝑢, 𝑣)
such that 𝑒 is not in the matching neither directly before
or after serving the request, we modify the solution in the
following way: after executing Opt reorganizations (if any),
we include 𝑒 in the matching. If such a modification causes
the degree of matching at𝑢 to exceed 𝑏, we evict an arbitrary
edge 𝑒𝑢 ≠ 𝑒 incident to𝑢. We perform an analogous action for
𝑣 , evicting edge 𝑒𝑣 if necessary. Afterwards, right after serv-
ing the next request, but before implementing reorganiza-
tions of Opt, we revert these changes: remove 𝑒 from 𝑀 and
include 𝑒𝑢 and 𝑒𝑣 back into 𝑀 . Note that Off(𝐼 ) ≤ 7 ·Opt(𝐼 )
as for a request to 𝑒 for which Opt paid 1, the solution of
Off adds at most 3+3 updates of the matching 𝑀 at the total
cost of 6 · 𝛼 = 6.

Now, we observe that for any node 𝑣 , the solution Off(𝐼 )
naturally induces feasible solutions Off𝑣 (𝐼𝑣) for paging prob-
lem inputs 𝐼𝑣 : these solutions simply repeat all actions of Off
pertaining to edges whose one endpoint is equal to 𝑣 . By the
forcing property of Off, the solutions Off𝑣 are feasible: upon
request to node pair 𝑒 = (𝑢, 𝑣), it is fetched to the cache of
𝑣 . Furthermore,

∑
𝑣∈𝑉 Off𝑣 (𝐼𝑣) ≤ 2 · Off(𝐼 ), as inclusion of

𝑒 = (𝑢, 𝑣) to 𝑀 in the solution of Off leads to two fetches
in the solutions of Off𝑢 and Off𝑣 . (A more careful analy-
sis including the evictions costs that are not present in the
paging problem would show that

∑
𝑣∈𝑉 Off𝑣 (𝐼𝑣) and Off(𝐼 )

can differ at most by an additive constant independent of the
input).

Finally, we observe that an optimal solution for 𝐼𝑣 can
only be cheaper than Off(𝐼 ), and therefore

∑
𝑣∈𝑉 Opt(𝐼𝑣) ≤∑

𝑣∈𝑉 Off(𝐼𝑣) ≤ 2 · Off(𝐼 ) ≤ 2 · 7 · Opt(𝐼 ).
We now proceed to prove the first inequality. When a

requested node pair 𝑒 = (𝑢, 𝑣) is in matching 𝑀 , then Alg1
does nothing and no cost is incurred on Alg1 or on any of
algorithms 𝐴𝑣 ; hence, we may assume that 𝑒 ∉ 𝑀 . In such
a case, either 𝑒 is not in the cache of 𝑢, or 𝑒 is not in the
cache of 𝑣 , or 𝑒 is in neither of these two caches. That is,
either 𝑢 or 𝑣 , or both must fetch 𝑒 to their caches, which
causes 𝐴𝑢 (𝐼𝑢) +𝐴𝑣 (𝐼𝑣) to grow by 1 or 2. Moreover, paging
algorithms running at 𝑢 and 𝑣 may evict some number of
node pairs from their caches (these actions are free in the
paging problem). In effect, Alg1 pays for the request 𝑒 (at
cost 1), includes 𝑒 in the matching 𝑀 (at cost 1) and removes
some number of edges from 𝑀 .

Let Alg+
1 (𝐼 ) be the cost of Alg1 on 𝐼 neglecting the cost of

removals of edges from 𝑀 . The analysis above showed that
increases of Alg+

1 (𝐼 ) by 2 can be charged to the increases of∑
𝑣∈𝑉 𝐴𝑣 (𝐼𝑣) by at least 1, and thus Alg+

1 (𝐼 ) ≤ 2·∑𝑣∈𝑉 𝐴𝑣 (𝐼𝑣).
The proof of the first inequality follows by noting that the
total number of removals from 𝑀 is at most the total number
of inclusions to 𝑀 , and thus Alg1 (𝐼 ) ≤ 2 · Alg+

1 (𝐼 ) ≤ 4 ·∑
𝑣∈𝑉 𝐴𝑣 (𝐼𝑣). □

2.3 Competitive ratio
Corollary 3. There exists an 𝑂 (𝛾 · log(𝑏/(𝑏 − 𝑎 + 1))-

competitive randomized algorithmR-BMA for the (𝑏, 𝑎)-matching

problem, for an arbitrary 𝛼 ≥ 1 and arbitrary path lengths ℓ𝑒 .

Proof. Applying a 2·ln(𝑏/(𝑏−𝑎+1))-competitive random-
ized algorithm for the paging problem [72] (better constant
factors were achieved when 𝑎 = 𝑏 [28, 50, 1]) to Theorem 2
yields an𝑂 (log(𝑏/(𝑏 −𝑎 + 1))-competitive randomized algo-
rithm for the uniform variant of the (𝑏, 𝑎)-matching problem.

Next, Theorem 1 shows how to create an𝑂 (𝛾 ·log(𝑏/(𝑏−𝑎+
1))-competitive randomized algorithm R-BMA for arbitrary
𝛼 ≥ 1 and arbitrary path lengths ℓ𝑒 . □

2.4 Lower bound
We now show that our algorithm is asymptotically optimal
by proving that the (𝑏, 𝑎)-matching problem contains the
(𝑏, 𝑎)-paging problem with bypassing as a special case. In the
bypassing variant of the (𝑏, 𝑎)-paging problem, an algorithm
does not have to fetch the requested item to the cache.

Lemma 1. Assume that there exists a (deterministic or ran-

domized) 𝑓 (𝑏, 𝑎)-competitive algorithm for the (𝑏, 𝑎)-matching

problem for some function 𝑓 : N≥0 × N≥0 → R≥0. Then,
there exists an (also deterministic or randomized) 4 · 𝑓 (𝑏, 𝑎)-
competitive algorithm for the (𝑏, 𝑎)-paging with bypassing.

Proof. Let AlgM be an algorithm for the (𝑏, 𝑎)-matching
problem. Assume that an algorithm for (𝑏, 𝑎)-paging with
bypassing has to operate in a universe of 𝑛 > 𝑏 items. To
construct an algorithm for the paging problem, we thus cre-
ate a star graph of 𝑛 + 1 nodes {𝑣0, 𝑣1, . . . , 𝑣𝑛} and set of 𝑛
non-configurable links 𝐹 connecting 𝑣0 with all remaining
nodes, each of length 1. Nodes 𝑣1, . . . , 𝑣𝑛 correspond to the
universe of 𝑛 items. For any paging request to an item 𝑣𝑖 ,
AlgP generates a block of 𝛼 requests to node pair {𝑣0, 𝑣𝑖 }.
AlgP internally runs AlgM on the star graph and repeats its
choices: AlgP always caches the items that are connected by
the matching edges to 𝑣0 in the solution of AlgM.

For now, we ignore the costs of removing edges from the
matching. It is easy to observe that the cost of AlgP is at most
2/𝛼 times larger than that of AlgM. Furthermore, without
loss of generality, for a block of requests to node pair {𝑣0, 𝑣𝑖 }
an optimal algorithm for the (𝑏, 𝑎)-matching either includes
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{𝑣0, 𝑣𝑖 } in the matching right before the block or it does not
change its matching at all. Thus the optimal solutions for the
(𝑏, 𝑎)-matching problem and (𝑏, 𝑎)-paging problem coincide
and their costs differ exactly by the factor of 1/𝛼 . Putting
these bounds together, we obtain that AlgP is 2 · 𝑓 (𝑏, 𝑎)-
competitive for the (𝑏, 𝑎)-paging problem with bypassing,
ignoring the costs of matching removals, and thus at most
4 · 𝑓 (𝑏, 𝑎)-competitive when matching removals are taken
into account. □

As noted by Epstein et al. [25] the bypassing variant is
asymptotically equivalent to the non-bypassing one. Using
the known lower bound for the (𝑏, 𝑎)-paging problem [72]
along with Lemma 1, we immediately obtain the following
corollary.

Theorem 4. The competitive ratio of any randomized algo-

rithm for the (𝑏, 𝑎)-matching problem is at least Ω(log(𝑏/(𝑏−
𝑎 + 1))). The results hold for an arbitrary 𝛼 .

3 EMPIRICAL EVALUATION
To complement our formal evaluation, and in particular the
worst-case analysis above, we also performed an empirically
study of the performance of our algorithm under real-world
workloads from various datacenter operators. In particular,
we benchmark our randomized algorithm against a state-of-
the-art (deterministic) online b-matching algorithm [9] and
against a maximum weight matching algorithm [29].

3.1 Methodology
Setup. We implemented all algorithms in Python leveraging
the NetworkX library. For the implementation of the Max-

imum Weight Matching algorithm we used the algorithm
provided by NetworkX, which is based on Edmond’s Blos-
som algorithm [29]. Our experiments were run on a machine
with two Intel Xeons E5-2697V3 SR1XF with 2.6 GHz, 14
cores each and 128 GB RAM. The host machine was running
Ubuntu 20.04 LTS.
Simulation Workloads. Real-world datacenter traffic can
vary significantly with respect to the spatial and temporal
structure they feature, which depends on the application run-
ning [3]. Hence, our simulations are based on the following
real-world datacenter traffic workloads from Facebook and
Microsoft, which cover a spectrum of application domains.

• Facebook [61]: We use three different workloads,
each from a different Facebook cluster. We use a batch
processing trace from one of Facebook’s Hadoop clus-
ters, as well as traces from one of Facebook’s database
clusters, which serves SQL requests. Furthermore, we
use traces from one of Facebook’s Web-Service clus-
ter.

• Microsoft [30]: This data set is simply a probability
distribution, describing the rack-to-rack communica-
tion (a traffic matrix). In order to generate a trace, we
sample from this distribution i.i.d. Hence, this trace
does not contain any temporal structure by design
(e.g., is not bursty) [3]. However, it is known that it
contains significant spatial structure (i.e., is skewed).

In all our simulations, we consider a typical fat-tree based
datacenter topology, with 100 nodes in the case of the Face-
book clusters, and with 50 nodes in the case of the Microsoft
cluster. The cost of each request is calculated as the shortest
path length between source and destination. Hence, if source
and destination are connected by a reconfigurable link the
cost equals 1. Otherwise, the routing cost is computed as
the number of hops from source to destination. In general,
each simulation is repeated five times and then the results
are averaged.

3.2 Results and discussion
We discuss the main results of our simulations based on the
traces introduced above. For each traffic trace we evaluate
the routing cost and execution performance of our random-
ized 𝑏-matching algorithm. In particular, we evaluate the
impact of different 𝑏 (henceforth called cache size due to
how these links are managed in our algorithm) and compare
our randomized algorithm (R-BMA) to the performance of
BMA [9] (BMA) and a MaximumWeight Matching algorithm
(SO-BMA).
Routing Cost. We first discuss the observed routing cost.
Fig. 1a shows the results of the Facebook database cluster.
The violet line denotes the oblivious case, where each request
is solely routed over the static network and no matching
edges are present, e.g., a network without any reconfigurable
switch. The results show that R-BMA achieves a significant
routing cost reduction of up to 35% with a cache size of 18.
In comparison to BMA, R-BMA performs almost identical
to BMA on smaller cache sizes of 6. Fig. 1c shows that R-
BMA routing cost reduction is not more than 5% higher on
smaller numbers of requests, e.g., up to 200,000 requests. Still,
in comparison to the SO-BMA, the gap with respect to the
routing cost reduction widens as the number of requests
grows. In contrast to the results achieved on Facebook’s
database cluster, Figs. 2c and 3c show that R-BMA achieves
similar routing cost reductions compared to BMA and SO-
BMA.

Regarding the Microsoft traces, we can observe that R-
BMA achieves a similar routing cost reduction compared to
BMA. Furthermore, as the cache size grows, R-BMA achieves
the same routing cost reduction as BMA, as shown in Fig. 4a.
Fig. 4c shows that SO-BMA performs significantly better
than R-BMA. However, Microsoft’s traces do not feature
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Figure 1: Facebook Database cluster.
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Figure 2: Facebook Web Service cluster.

temporal structure and therefore offline algorithms such as
SO-BMA have a significant advantage.
Execution Time. All our simulations on all different traces
show that our R-BMA algorithm outperforms BMA [9] with
respect to run-time efficiency. Furthermore, the size of the
cache has a smaller impact on the execution time as for BMA.
In particular, Figs. 1b, 2b, 3b show that a larger cache size
can lead to a decrease in execution performance of up to 20%
in the case of the BMA algorithm, whereas our randomized
algorithm is comparatively more robust to a change in the
size of the cache. The results of the Microsoft cluster in Fig. 4b
also show that the run-time of our randomized algorithm
grows slower than for BMA.

Summary. Our R-BMA algorithm achieves almost the same
routing cost reduction as BMA, while also achieving com-
petitive cost reductions compared to an optimal offline al-
gorithm. With respect to the run-time efficiency of our ran-
domized algorithm, we find that our algorithm significantly
outperforms BMA on all workloads. We conclude that our
algorithm, R-BMA, provides an attractive trade-off between
routing cost reduction and run-time efficiency.

4 RELATEDWORK
The design of datacenter topologies has received much at-
tention in the networking community already. The most
widely deployed networks are based on Clos topologies and
multi-rooted fat-trees [26, 65, 47], and there are also inter-
esting designs based on hypercubes [33, 71] and expander
graphs [43, 66].
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Figure 3: Facebook Hadoop cluster.
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Figure 4: Microsoft cluster.

Existing dynamic and demand-aware datacenter networks
can be classified according to the granularity of reconfigura-
tions. Solutions such as Proteus [67], OSA [15], Cerberus [32],
or DANs [4], among other, are more coarse-granular and e.g.,
rely on a (predicted) traffic matrix. Solutions such as Pro-
jecToR [30, 45], MegaSwitch [17], Eclipse [69], Helios [27],
Mordia [60], C-Through [70], ReNet [5] or SplayNets [62]
are more fine-granular and support per-flow reconfiguration
and decentralized reconfigurations. Reconfigurable demand-
aware networks may also rely on expander graphs, e.g., Flexs-
pander [68] and Kevin [74], and are currently also considered
as a promising solution to speed up data transfers in super-
computers [36, 24]. The notion of demand-aware networks
raise novel optimization problems related to switch schedul-
ing [51], and recently interesting first insights have been ob-
tained both for offline [69] and for online scheduling [64, 23,

45, 9]. Due to the increased reconfiguration time experienced
in demand-aware networks, many existing demand-aware
architectures additionally rely on a fixed network. For exam-
ple, ProjecToR always maintains a “base mesh” of connected
links that can handle low-latency traffic while it opportunis-
tically reconfigures free-space links in response to changes
in traffic patterns.

This paper primarily focuses on the algorithmic problems
of demand-aware datacenter architectures. Our optimiza-
tion problem is related to graph augmentation models, which
consider the problem of adding edges to a given graph, so
that path lengths are reduced. For example, Meyerson and
Tagiku [56] study how to add “shortcut edges” to minimize
the average shortest path distances, Bilò et al. [10] and De-
maine and Zadimoghaddam [20] study how to augment a
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network to reduce its diameter, and there are several interest-
ing results on how to add “ghost edges” to a graph such that
it becomes (more) “small world” [58, 59, 31]. However, these
edge additions can be optimized globally and in a biased
manner, and hence do not form a matching; we are also not
aware of any online versions of this problem. The dynamic
setting is related to classic switch scheduling problems [51,
18].

Regarding the specific 𝑏-matching problem considered in
this paper, a polynomial-time algorithm for the static version
of this problem is known for several decades [63, 2]. Recently,
Hanauer et al. [38, 37] presented several efficient algorithms
for the static [38] and dynamic (but offline) [37] problem
variant for application in the context of reconfigurable data-
centers. Bienkowski et al. [9] initiated the study of an online
version of this problem and presented a𝑂 (𝑏)-competitive de-
terministic algorithm and showed that this is asymptotically
optimal. In this paper, we have shown that a randomized
approach can provide a significantly lower competitive ratio
as well as faster runtimes.

Finally, we note that there is a line of papers studying
(bipartite) online matching variants [42, 11, 13, 21, 22, 49, 53,
57]. This problem attracted significant attention in the last
decade because of its connection to online auctions and the
AdWords problem [52]. Despite similarity in names (e.g., the
bipartite (static) 𝑏-matching variant was considered in [40]),
this model is fundamentally different from ours.

5 CONCLUSION
We revisited the problem of how to schedule reconfigurable
links in a datacenter (based on optical circuit switches or sim-
ilar technologies), in order to maximize network utilization.
To this end, we presented a randomized online algorithm
which computes heavy matchings between, e.g., datacenter
racks, guaranteeing a significantly lower competitive ratio
and faster running time compared to the state-of-the-art
(and asymptotically optimal) deterministic algorithm. Our
algorithm and its analysis are simple, and easy to implement
(and teach).

That said, our work leaves open several interesting av-
enues for future research. In particular, we still lack a non-
asymptotic and tight bound on the achievable competitive
ratio both in the deterministic and in the randomized case.
Furthermore, we so far assumed a conservative online per-
spective, where the algorithm does not have any information
about future requests. In practice, traffic often features tem-
poral structure, and it would be interesting to explore algo-
rithms which can leverage certain predictions about future
demands, without losing the worst-case guarantees.
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