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Innovation

Rhone and Arve Rivers, 
Switzerland

Credits: George Varghese. 

A Great Time to Be a Networking Researcher!
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Flexibilities: Along 3 Dimensions 

Enabler: 
SDN

Enabler: 
Virtualization

Enabler: 
Optics



Opportunity: Flexible Routing

5
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Charting the Algorithmic Complexity
of Waypoint Routing. Amiri et al. ACM 
SIGCOMM CCR, 2018.

• Direct control over paths

• Generalized match-action

• Composing innovative services

• Not even simple paths: walks!

Enabler: 
SDN



Opportunity: Flexible Embedding

5

Charting the Complexity Landscape of 
Virtual Network Embeddings. Rost et 
al. IFIP Networking, 2018.

Cost 5 

Guest (e.g., VNet)

Host

• Improved resource allocation

• Minimize communication
paths: lower latency, load, etc.

Enabler: 
Virtualization
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Opportunity: Flexible Topology Programming
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Toward Demand-Aware Networking: A 
Theory for Self-Adjusting Networks. 
Avin et al. ACM SIGCOMM CCR, 2018.

• Reconfigure networks
towards needs

Enabler: Free-
space optics



Opportunity: Flexible Topology Programming
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Toward Demand-Aware Networking: A 
Theory for Self-Adjusting Networks. 
Avin et al. ACM SIGCOMM CCR, 2018.

• Reconfigure networks
towards needs

Enabler: Free-
space optics



Opportunity Challenge

• Additional dimensions for 
optimization: can be
exploited to improve
performance, utilization, …

• New network services (e.g., 
service chaining)

6

• But: optimizations become
harder and are somtimes
not yet well-understood
(e.g., embedding, topology
programming)



Another Challenge: Model vs Reality 

You: I invented a great new algorithm to 

route and embed service chains at low 

resource cost and providing minimal 

bandwidth guarantees! 

Boss: So can I promise our 

customers a predictable 

performance?

You: hmm…
7



vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1
vSDN-1

An Experiment: 2 vSDNs with bw guarantee! 

Assume: perfect 
performance isolation on 

the network! 

Consider: 2 SDN-based 
virtual networks (vSDNs)
sharing physical resources! 

Predictable Performance in SDNs?

8



SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1
vSDN-1

To enable multi-tenancy, 
take existing network

hypervisor (e.g. Flowvisor, 
OpenVirteX): provides

network abstraction and 
control plane translation!

An Experiment: 2 vSDNs with bw guarantee! 

Predictable Performance in SDNs?
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SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

Translation could
include, e.g., switch

DPID, port numbers, …

An Experiment: 2 vSDNs with bw guarantee! 

Interception of
control plane 

messages. 

Predictable Performance in SDNs?
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SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

It turns out: the network hypervisor can 
be source of unpredictable performance!

An Experiment: 2 vSDNs with bw guarantee! 

Predictable Performance in SDNs?
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SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

Experiment: web latency depends

on hypervisor CPU load!

Predictable Performance in SDNs?

8



Performance also depends
on hypervisor type…

(multithreaded or not, which version
of Nagle’s algorithm, etc.)

… number of tenants…

Predictable Performance in SDNs?

On The Impact of the Network Hypervisor on 
Virtual Network Performance. Blenk et al. IFIP 
Networking, 2019.



First Conclusions

• Exploiting network flexibilities is non-trivial, especially if fine-grained 
and fast reactions are desired

• Also modelling such networked systems is challenging: details of
interference, demand, etc. will only be available at runtime

Optimal operation of flexible networks too complex for humans.

10



Let’s give up control: 
self-* networks!

Self-observing, self-adjusting, self-
repairing, self-driving, …

It’s about 
automation!



Roadmap

• Opportunities of self-* networks
– Example 1: Demand-aware, self-adjusting networks

– Example 2: Self-repairing networks

• Challenges of desinging self-* networks

5
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Why Demand-Aware…?

Case study: data-center networks

13



ProjecToR @ SIGCOMM 2016

Explosive Growth 
of Demand…

Aggregate server traffic in 
Google’s datacenter fleet

Source: Jupiter Rising. SIGCOMM 2015.

… But Much 
Structure!

Spatial (sparse!) and 
temporal locality 

Inside the Social Network’s 
(Datacenter) Network @ 

SIGCOMM 2015

Facebook

Microsoft

Understanding Data Center Traffic 
Characteristics @ WREN 2009

Benson et al.

Batch processing, web services, 
distributed ML, …: data-centric
applications are distributed and 

interconnecting network is critical

14



ProjecToR @ SIGCOMM 2016

Explosive Growth 
of Demand…

Aggregate server traffic in 
Google’s datacenter fleet

Source: Jupiter Rising. SIGCOMM 2015.

… But Much 
Structure!

Spatial (sparse!) and 
temporal locality 

Inside the Social Network’s 
(Datacenter) Network @ 

SIGCOMM 2015

Facebook

Microsoft

Understanding Data Center Traffic 
Characteristics @ WREN 2009

Benson et al.

Batch processing, web services, 
distributed ML, …: data-centric
applications are distributed and 

interconnecting network is critical

Demand-Aware Networks (DANs) can exploit this structure: 
„DANs can provide same performance as demand-oblivious

networks at 25-40% lower costs.“ Firefly, SIGCOMM CCR, 2014.
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Example: Demand-Aware Topology

Traditional datacenter network

TOR switches

Mirrors

Lasers

Reconfiguable datacenter network

• Usually optimized for the “worst-
case” (all-to-all communication)

• Example, fat-tree topologies: 
provide full bisection bandwidth

• Optimized toward the workload it 
serves (e.g., route length)

• Statically or even dynamically

15
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Example: Demand-Aware Topology

Traditional datacenter network

TOR switches

Mirrors

Lasers

Reconfiguable datacenter network

• Usually optimized for the “worst-
case” (all-to-all communication)

• Example, fat-tree topologies: 
provide full bisection bandwidth

• Optimized toward the workload it 
serves (e.g., route length)

• Statically or even dynamically

What can be achieved in 
DANs? Metrics?

Graph theory: logarithmic
route lengths in constant-

degree datacenter
networks. 

15



Demand matrix: joint distribution

So
u

rc
es

Destinations

… of constant degree (scalability)

design

DAN Design: New Types of Problems
Input: Workload Output: DAN

16



So
u

rc
es

Destinations

design

Makes sense to add link!

Demand matrix: joint distribution … of constant degree (scalability)

Much from 4 to 5.

Input: Workload Output: DAN

16

DAN Design: New Types of Problems



Input: Workload Output: DAN

So
u

rc
es

Destinations

design

Demand matrix: joint distribution … of constant degree (scalability)

1 communicates to many.

Bounded degree: route 
to 7 indirectly.

16

DAN Design: New Types of Problems



Demand matrix: joint distribution

So
u

rc
es

Destinations

design

4 and 6 don’t 
communicate…

… but “extra” link still
makes sense: not a 

subgraph.

… of constant degree (scalability)

Input: Workload Output: DAN

16

DAN Design: New Types of Problems



Bounded degree
Δ

D[𝐩 𝐢, 𝐣 ]: joint distribution, Δ N: DAN

Expected Path Length (EPL): 
Demand-weighted route length

EPL D,N =  
(u,v)∈D

p u, v ∙ dN(u, v)

=3X

Y

More Formally: DAN Design Problem
Input: Output:

Path length on DAN N.

Frequency

Objective:

17



Example 2: high-degree but skewed demand

• If sufficiently skewed: constant-degree DAN 
can serve it at cost O(1)

Sometimes, DANs can be much better!

Example 1: low-degree demand

• Already low degree: degree-4 DAN 
can serve this at cost 1 .

18



So on what does it depend?



So on what does it depend?

We argue (but still don‘t know!): on the

“entropy” of the demand!

?



„Coming to Wroclaw?“

00110101…

20

if demand arbitrary and unknown

log diameter

log # bits / symbol

An Analogy to Coding



01011…

„Coming to Wroclaw?“

if demand arbitrary and unknown

log diameter

log # bits / symbol

entropy / symbol

entropy?

DAN!

An Analogy to Coding

if demand known and fixed
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011…

„Coming to Wroclaw?“

if demand arbitrary and unknown

log diameter

log # bits / symbol

if demand known and fixed

entropy / symbol

entropy?

DAN! SAN!

Dynamic DANs: 
Aka. Self-Adjusting 
Networks (SANs)! 

An Analogy to Coding

if demand unknown but reconfigurable

20
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Analogous to Datastructures: Oblivious…

• Traditional, fixed BSTs do not rely on any
assumptions on the demand

• Optimize for the worst-case

• Example demand: 

1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

• Items stored at O(log n) from the root, 
uniformly and independently of their
frequency

many many many many
Many requests 

for leaf 1…
… then for 

leaf 3…

many

21

Corresponds to 
max possible demand!



• Demand-aware fixed BSTs can take
advantage of spatial locality of the
demand

• E.g.: place frequently accessed elements
close to the root

• E.g., Knuth/Mehlhorn/Tarjan trees

• Recall example demand:       
1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)
– Amortized cost O(loglog n)

Amortized cost corresponds 
to empirical entropy of demand!

loglog n

… Demand-Aware …

22



• Demand-aware reconfigurable BSTs 
can additionally take advantage of
temporal locality

• By moving accessed element to the
root: amortized cost is constant, i.e., 
O(1)
– Recall example demand:       

1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

… Self-Adjusting!

23



Datastructures

Oblivious Demand-Aware Self-Adjusting

Lookup 

O(log n)

Exploit spatial locality: 
empirical entropy O(loglog n)

Exploit temporal locality as well:

O(1)

24



Analogously for Networks

Oblivious DAN SAN

Const degree

(e.g., expander): 

route lengths O(log n)

Exploit spatial locality Exploit temporal locality as well

000
Avin, S.: Toward Demand-Aware Networking: A Theory 

for Self-Adjusting Networks. SIGCOMM CCR 2018.



Intuition: Entropy Lower Bound
?



Lower Bound Idea: 
Leverage Coding or Datastructure

So
u

rc
es

Destinations

• DAN just for a single (source) node 1: 
cannot do better than Δ-ary Huffman 
tree for its destinations

• How good can this tree be?

• Entropy lower bound on EPL known for 
binary trees, e.g. Mehlhorn 1975 for BST

26



Lower Bound Idea: 
Leverage Coding or Datastructure

So
u

rc
es

Destinations

• DAN just for a single (source) node 1: 
cannot do better than Δ-ary Huffman 
tree for its destinations

• How good can this tree be?

• Entropy lower bound on EPL known for 
binary trees, e.g. Mehlhorn 1975 for BST

26

An optimal “ego-tree“ 
for this source!



So: Entropy of the Entire Demand

• Proof  idea (EPL=Ω(HΔ(Y|X))): 

• Compute ego-tree for each source 
node

• Take union of all ego-trees

• Violates degree restriction but valid 
lower bound

sources destinations

27

entropy



Do this in both dimensions:

Ω(HΔ(X|Y)) 

D

EPL ≥ Ω(max{HΔ(Y|X), HΔ(X|Y)}) 

Ω(HΔ(Y|X)) 

Entropy of the Entire Demand: 
Sources and Destinations

28



Intuition: Reaching Entropy Limit in Datacenters



Ego-Trees Revisited

• ego-tree: optimal tree for 
a row (= given source)

D[i]
TiΔ

30



Ego-Trees Revisited

D[i]
TiΔ

Can we merge the trees without
distortion and keep degree low?

30

• ego-tree: optimal tree for 
a row (= given source)



Ego-Trees Revisited

D[i]
TiΔ

Can we merge the trees without
distortion and keep degree low?

For sparse demands yes: 
enough low-degree nodes which can 

serve as “helper nodes“!

30

• ego-tree: optimal tree for 
a row (= given source)



• ego-tree: optimal tree for 
a row (= given source)

Ego-Trees Revisited

D[i]
TiΔ

Can we merge the trees without
distortion and keep degree low?

Ego-tree can also be dynamic, 
i.e. self-adjusting!

30



Roadmap

• Opportunities of self-* networks
– Example 1: Demand-aware, self-adjusting networks

– Example 2: Self-repairing networks

• Challenges of desinging self-* networks

5
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D

B

X Y

P1 P2

G

E

H

F

Internet

D
at
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e

n
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r

Reasoning About Failures is Hard 

Example: BGP in 
Datacenter (!)

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 31
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Internet

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Cluster with services that 
should be globally reachable.

Cluster with services that should
be accessible only internally.

Reasoning About Failures is Hard 

3

Example: BGP in 
Datacenter (!)



Reasoning About Failures is Hard 

Example: BGP in 
Datacenter

D
at

ac
e

n
te

r

Internet
X and Y announce to 
Internet what is from 

G* (prefix).

X and Y block what is 
from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F
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Reasoning About Failures is Hard 

Example: BGP in 
Datacenter

D
at

ac
e
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Internet
X and Y announce to 
Internet what is from 

G* (prefix).

X and Y block what is 
from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

What can go wrong?

31



Reasoning About Failures is Hard 

Example: BGP in 
Datacenter

D
at

ac
e

n
te

r

Internet
X and Y announce to 
Internet what is from 

G* (prefix).

X and Y block what is 
from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

FIf link (G,X) fails and traffic from G is rerouted via Y 
and C to X: X announces (does not block) G and H 

as it comes from C. (Note: BGP.)

31



Another Case for Automation!

Managing Complex Networks is 
Hard for Humans



Example: Self-Repairing MPLS Networks

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

32



Default routing of
two flows

• MPLS: forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

flow 1

flow 2

Example: Self-Repairing MPLS Networks

32



v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21

Default routing of
two flows

• MPLS: forwarding based on top label of label stack
push swap swap pop

pop

Example: Self-Repairing MPLS Networks
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v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30: 
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

• For failover: push and pop label

12

22

10
20

11
21

31|11
31|21

10
20
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v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30: 
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

12

22

10
20

11
21

Pop

Normal 
swap

• For failover: push and pop label

If (v2,v3) failed, 
push 30 and 

forward to v6.

31|11
31|21 32



v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30: 
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

12

22

10
20

11
21

Pop

Normal 
swap

• For failover: push and pop label

If (v2,v3) failed, 
push 30 and 

forward to v6.

31|11
31|21

What about multiple link failures?

32



2 Failures: Push Recursively

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30: 
route around (v2,v3)

Two failures: 
first push 30: route 

around (v2,v3)

Push recursively 40: 
route around (v2,v6)

Push 30

Push 40

10
20

11
21

pop pop 33



v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2
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out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1
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22
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11
21 12

22
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20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30: 
route around (v2,v3)

10
20

11
21

2 Failures: Push Recursively

Two failures: 
first push 30: route 

around (v2,v3)

Push recursively 40: 
route around (v2,v6)

But masking links one-by-
one can be inefficient: 

(v7,v3,v8) could be shortcut 
to (v7,v8). 
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v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1
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v1 v2 v3 v4

v5 v6 v7 v8
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v5 v6 v7 v8
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11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30: 
route around (v2,v3)

10
20

11
21

2 Failures: Push Recursively

Two failures: 
first push 30: route 

around (v2,v3)

Push recursively 40: 
route around (v2,v6)

But masking links one-by-
one can be inefficient: 

(v7,v3,v8) could be shortcut 
to (v7,v8). 

More efficient but also more complex:
Cisco does not recommend using this option!

Also note: due to push, header size 
may grow arbitrarily!
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Failover Tables

Flow Table

Protected 
link Alternative 

link
Label

Forwarding Tables for Our Example

Version which does not 
mask links individually!

34



MPLS Tunnels in 
Today‘s ISP Networks

35



Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Non-reachability: Is it ensured that
traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Routers and switches store
list of forwarding rules, and 

conditional failover rules.
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Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Non-reachability: Is it ensured that
traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

Reachability?

A

B

C
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Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Non-reachability: Is it ensured that
traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

No loops?
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Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Policy: Is it ensured that traffic from A 
to B never goes via C?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Policy ok?

E.g. NORDUnet: no traffic via 
Iceland (expensive!).
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Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Policy: Is it ensured that traffic from A 
to B never goes via C?

• Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C

Waypoint?

E.g. IDS
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Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Policy: Is it ensured that traffic from A 
to B never goes via C?

• Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C

E.g. IDS

… and everything even under multiple failures?!

k failures = 

(
𝑛
𝑘
) possibilities
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Can we automate such tests 
or even self-repair?



Can we automate such tests 
or even self-repair?

Yes! Automated What-if Analysis Tool for 
MPLS and SR in polynomial time.

(INFOCOM 2018, CoNEXT 2018, IFIP Networking 2019)



MPLS configurations, 
Segment Routing etc.

Pushdown Automaton
and Prefix Rewriting 

Systems Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Leveraging Automata-Theoretic Approach
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Leveraging Automata-Theoretic Approach

MPLS configurations, 
Segment Routing etc.

Pushdown Automaton
and Prefix Rewriting 

Systems Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Use cases: Sysadmin issues queries 
to test certain properties, or do it 
on a regular basis automatically!
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• Network: a 7-tuple

Mini-Tutorial: A Network Model

Nodes

Links

Incoming 
interfaces

Outgoing 
interfaces

Set of labels in 
packet header

39



Interface function: maps outgoing interface to next hop
node and incoming interface to previous hop node

That is:                               and

Interface 
function

• Network: a 7-tuple

Mini-Tutorial: A Network Model

39



• Network: a 7-tuple

Routing function: for each set of failed links , the
routing function

defines, for all incoming interfaces and packet headers, 
outgoing interfaces together with modified headers. 

Routing 
function

Mini-Tutorial: A Network Model
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out2out1

Packet routing sequence can be represented using sequence of tuples:

Routing in Network

• Example: routing (in)finite sequence of tuples

Node 
receives…

… on interface…

… packet with
header…

… forwards it to
live next hop…

… with new header..

… given that these 
links are down.

v1

h1

v2

h2 h3

in1 in2
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Pop:

Push:

Swap:

Example Rules: 
Regular Forwarding on Top-Most Label

Push label on 
stack

Swap top of 
stack

Pop top of 
stack

41



Failover-Push:

Example Failover Rules 

Emumerate all 
rerouting options

Failover-Swap:

Failover-Pop:

Example rewriting sequence:

Try default Try first backup Try second backup



A Complex and Big Formal Language! 
Why Polynomial Time?!

• Arbitrary number k of failures: How can I avoid
checking all (𝑛

𝑘
)many options?!  

• Even if we reduce to push-down automaton: 
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!

k failures = 

(
𝑛
𝑘
) possibilities
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This is not how we will 
use the PDA!

• Arbitrary number k of failures: How can I avoid
checking all (𝑛

𝑘
)many options?!  

• Even if we reduce to push-down automaton: 
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!

k failures = 

(
𝑛
𝑘
) possibilities

A Complex and Big Formal Language! 
Why Polynomial Time?!
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This is not how we will 
use the PDA!

• Arbitrary number k of failures: How can I avoid
checking all (𝑛

𝑘
)many options?!  

• Even if we reduce to push-down automaton: 
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!

The words in our language are sequences of pushdown 
stack symbols, not the labels of transitions.

k failures = 

(
𝑛
𝑘
) possibilities

A Complex and Big Formal Language! 
Why Polynomial Time?!

43



Time for Automata Theory
(from Switzerland)!

Julius Richard Büchi

1924-1984

Swiss logician

• Classic result by Büchi 1964: the set of all reachable
configurations of a pushdown automaton a is regular set

• Hence, we can operate only on Nondeterministic Finite 
Automata (NFAs) when reasoning about the pushdown 
automata

• The resulting regular operations are all polynomial time

• Important result of model checking
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Tool and Query Language

Part 1: Parses query
and constructs Push-
Down System (PDS)

• In Python 3

query processing flow

Part 2: Reachability 
analysis of 
constructed PDS

• Using Moped tool

Regular query language

k <a> b <c>
# failures

header
header

path
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YES!
(Gives witness!)

2 failures

Example: Traversal Testing With 2 Failures

Traversal test with k=2: Can traffic starting with [] go through s5, under up to k=2 failures?

push

push

stack
size!

pop

pop

Query: k=2 [] s1 >> s5 >> s7 []

46



Formal methods are nice (give 
guarantees!)… But what about ML…?!



Speed Up Further and Synthesize:
Deep Learning

• Yes sometimes without losing guarantees

• Extend graph-based neural networks

• Predict counter-examples and fixes
Network topologies and MPLS rules

Network topologies and query 47



Roadmap

• Opportunities of self-* networks
– Example 1: Demand-aware, self-adjusting networks

– Example 2: Self-repairing networks

• Challenges of desinging self-* networks

5



Challenge 1: Hard Problems

• Optimization problems are often NP-hard: hard even for computers!

Waypoint routing: 
disjoint paths

Embedding: 

Minimum Lin. Arrangment

Topology design: 

Graph spanners

49



It can get worse…: intractable!

vs

(Simplified) MPLS rules: 

prefix rewriting

in x L → out x OP

in out

h h’

where OP = {swap,push,pop}

Rules match the header h 
of packets arriving at in,

and define to which port out to 
forward as well as new header h’. 

Rules of general networks (e.g., SDN): 

arbitrary header rewriting

in x L* → out x L*

50
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It can get worse…: intractable!

vs

(Simplified) MPLS rules: 

prefix rewriting

in x L → out x OP

in out

h h’

where OP = {swap,push,pop}

Rules match the header h 
of packets arriving at in,

and define to which port out to 
forward as well as new header h’. 

Rules of general networks (e.g., SDN): 

arbitrary header rewriting

in x L* → out x L*

50

What is a good tradeoff between 

generality and performance?



Challenge 2: Realizing Limits?

• Can a self-* network realize its limits? 

• E.g., when quality of input data is not good enough? 

• When to hand over to human? Or fall back to „safe/oblivious mode“?

• Can we learn from self-driving cars?

51



Challenge 3: Self-Stabilization

A self-stabilizing system guarantees that it reconverges to a desirable 
configuration or state, from any initial state. 

• Could be an attractive property of self-* network!

52„Stehaufmännchen“



Self-Stabilization

Self-stabilizing algorithms pioneered 
by Dijkstra (1973): for example self-
stabilizing mutual exclusion. 

“I regard this as Dijkstra’s most 
brilliant work. Self-stabilization is a 
very important concept in fault 
tolerance.”

Leslie Lamport (PODC 1983)

Some notable works by Perlman toward 
self-stabilizing Internet, e.g., self-
stabilizing spanning trees.

Yet, many protocols in the Internet 
are not self-stabilizing. Much need

for future work. 



E.g., Self-Stabilizing SDN Control?

• Distributed SDN control
plane which self-
organizes management 
of switches?

• Especially challenging: 
inband control (how to
distinguish traffic?)

54



Challenge 4: Uncertainties

• How to deal with uncertainties?

• How to maintain flexibilities?

• Use of principles from robotics? E.g., empowerment?
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Conclusion
• Flexibilities in networks: great opportunities for optimization and 

automation

• Demand-aware and self-adjusting networks: beating the routing lower
bounds of oblivious networks, reaching entropy bounds

• Potential of self-repairing networks, self-stabilizing networks, etc.

• Much work ahead: tradeoff generality vs efficiency? How to self-
monitor and fall-back if needed? Use of formal methods and ML?
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