How to Design Robust Networks? Connect to the Seniors!

Stefan Schmid Christian Scheideler

Popular Networks

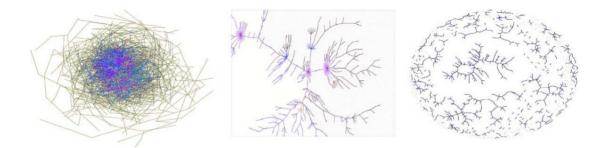
etc.

Interesting Properties

- "Small World Phenomenon"
 - Short chains of "friends" between two people
 - Also neural networks of animals



- Topological properties of Gnutella
 - Tolerates random, but not worst-case failures



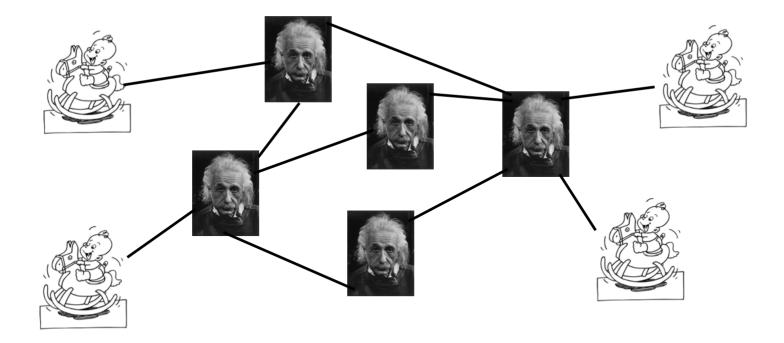
• Often older network participants are more reliable!

- Measurements in p2p networks:
 - Nodes that have been online longer, will typically stay longer
 - Older neighbors often more stable

- E.g. Social networks?
 - Who already wrote many good Wikipedia articles, is likely to do so also in the future?

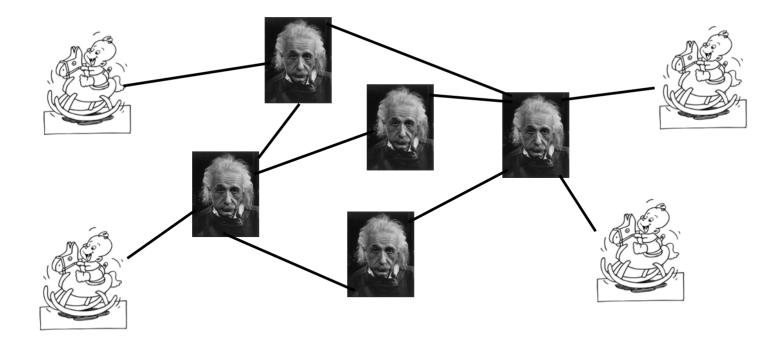
Another Useful Property? (2)

- Idea: if everybody only connects to older network participants...
 - ... nodes would have stable neighborhoods!
 - ... one is resilient against attacks by "young troublemakers"



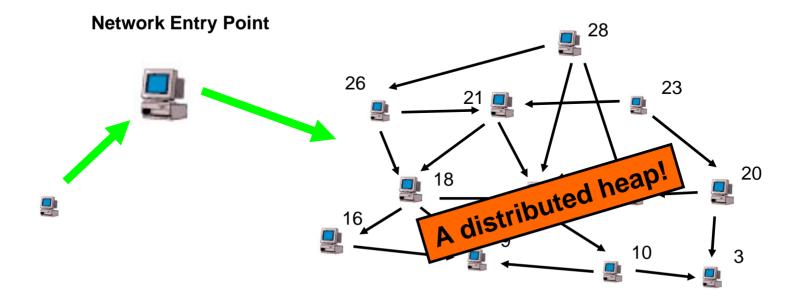
Another Useful Property? (3)

- Implications:
 - Communication paths of the "seniors" never include younger nodes
 - Young nodes cannot overload network (rate control in "core network")

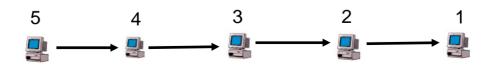


Model

- How to implement such an idea?
- Idea: A central server assigns joining nodes a rank
 - Nodes only connect to nodes that arrived earlier (lower rank)



• Our goal is achieved with:

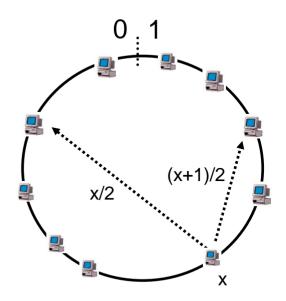


- Problem: Scalability
 - Large diameter, not robust to join/leave, etc.

• Better topologies: hypercubes, pancake graphs, ...

Simple Approach for "good" Peer-to-Peer Topologies

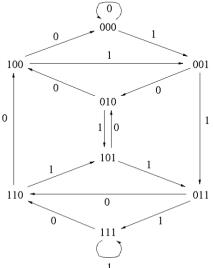
- Naor & Wieder: *The Continuous-Discrete Approach*
- Simplified version:
 - Nodes join at random position in [0,1)
 - Connects to points x/2 and (1+x)/2
 - If there is no node, rounding is necessary ("continuous => discrete")
 - Details less interesting here
- Result: a kind of de Bruijn Graph
 - constant degree
 - logarithmic diameter
 - simple routing



Routing

- Naor & Wieder: *The Continuous-Discrete Approach*
- Node u at binary position (0....) u = 11010111 to node v = 01000101
- Ideal nath over noints
- Ideal path over points:

Assumption: All nodes $k = \log n$ bit positions, correct one bit per step ("next last " of v).

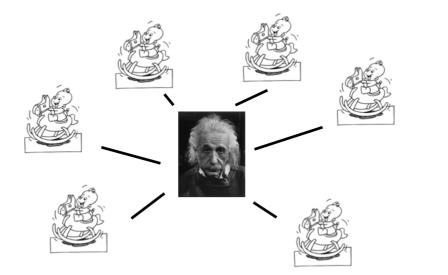


1

- Network Entry Point assigns random position [0,1)...
- ... and then build topology according to Continuous-Discrete Approach!
- Problem?
 0 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1</

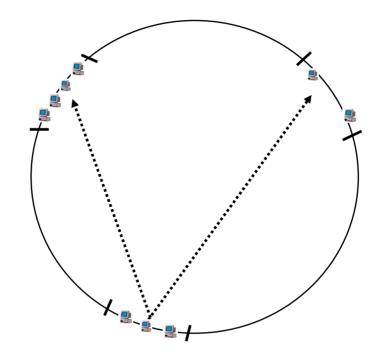
Solution and another Problem

- Connect to corresponding older node close to this position
- Everything solved? Other problems?
- Analysis shows, that older nodes can be congested, as everybody tries to connect to them!



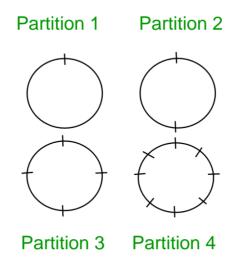
Redundancy

- Solution: we connect to more than one node!
- Allows us to "load-balance"



The Algorithm (1)

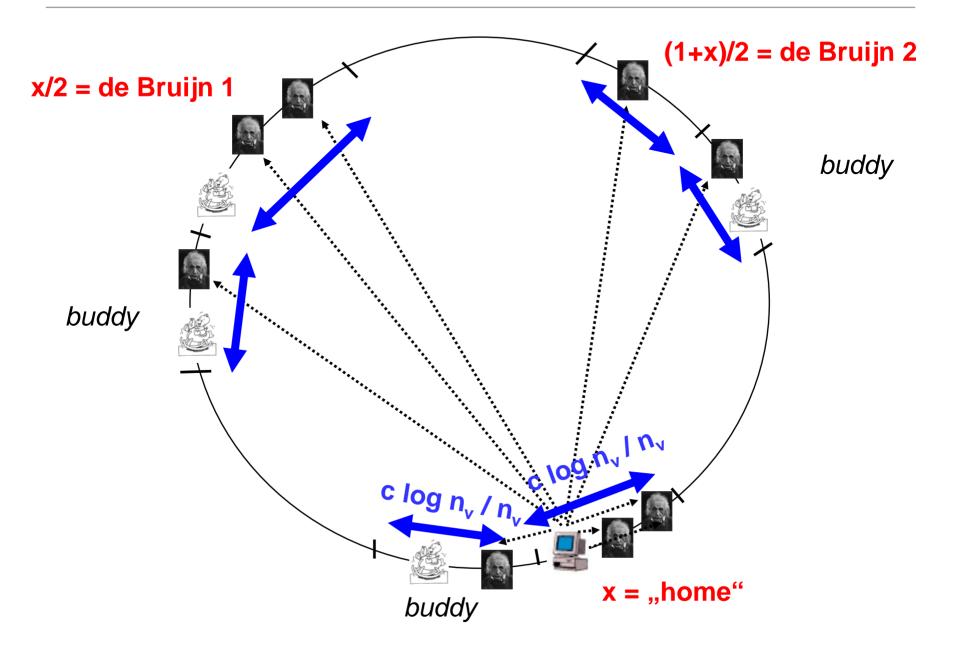
- Assume, each node u knows n_u = # living nodes that are older (can be estimated, see later)
- Divide [0,1) Circle in fixed Intervals / Levels of exponentially decreasing sizes



The Algorithm (2)

- Node v connects to three Intervals
 - $I_{v,0}$ & buddy: Home-interval with position x plus other half of the (i-1)-interval
 - $I_{v,1}$ & buddy: Interval with position x/2, plus buddy
 - $I_{v,2}$ & buddy: Interval with position (1+x)/2, plus buddy
- Interval is chosen such that it includes at least c log n_v older nodes (c = const.)! (If not possible, set level to 0.)
- Establish forward edges to these nodes. Store all incoming edges as backward edges!

Overview "Forward Edges"



Note:

Our distributed heap structure is oblivious

- Node positions independent of join/leave history
- This is an advantage for dynamic systems: allows for efficient joins/leaves!

... how efficient is the system?!?!

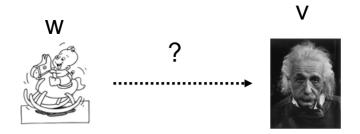
Forward Edge Degree

- Number of forward edges?
- Interval chosen s.t. at least c log n_v older nodes contained
- Number of nodes in interval binomially distributed
- In total there are <u>3 intervals with 3 buddies</u>, so 6 intervals
- Chernoff: O(log n_v) older nodes, w.h.p.

Forward Degree is logarithmic in number of older nodes currently alive, w.h.p.!

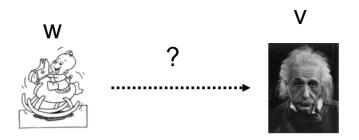
Backward Node Degree (1)

- Nodes also store incoming edges...
- Number of backward edges?
- Which node is expected to have highest in-degree?
- Alive node v with smallest rank (oldest)...
 How to compute?
- Prob that a node w has a connection to v?



Backward Node Degree (2)

• Probability that w has a connection to v?



• Node w connects to intervals of size at most

2 c log n_w / n_w

w.h.p.

As w connects to 6 intervals (incl. buddies) of this size, the probability is

```
P[w connects to v] \leq 12 c log n_w / n_w
```


• So in total?

$$\begin{split} \textbf{E[In-degree of w]} &= \sum_{w \in V} 12 \text{ c } \log n_w / n_w \\ &\leq \sum_{i=1}^n 12 \text{ c } \log n / i \\ &\in \textbf{O(c } \log^2 n) \end{split}$$

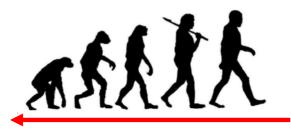
Backward degree / in-degree is in O(log² n) w.h.p.!

Routing

- Goal: Routing "as usual" in de Bruijn graphs (fixing bits)
- "Slogan": Use forward edges as long as possible: Thus independent of younger nodes!

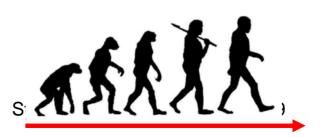
Idea

Phase 1: Along "Forward Edges" to olders

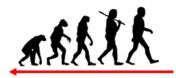


Phase 2 (if destination not reached yet):

"Descent" to younger nodes

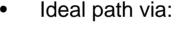


Routing: Phase 1 (1)

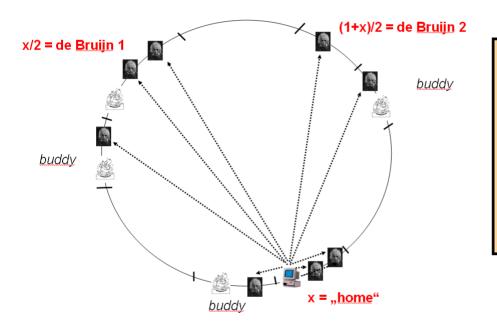


- Recall: de Bruijn Routing
- Node u at binary position (0....)
 u = 11010111
 to node

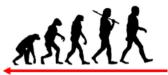
v = **01000101**



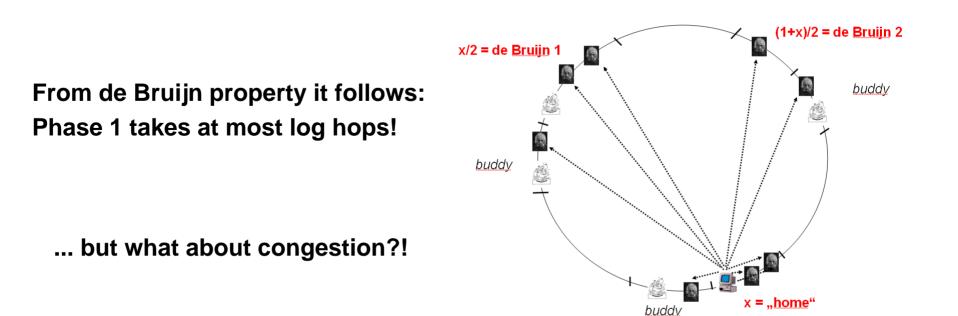
z_1 = 111010111 z_2 = 011101011 z_3 = 101110101 ... z_t = 01000101

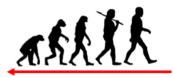


We have connections to entire intervals! For load balancing, apply the following strategy in step i: Forward Message to youngest node reachable with forward edges, Whose home interval contains z_i.



In other words, a node sends a message to its youngest older neighbor whose interval contains the theoretic de Bruijn position ("emulation"). Thus, older nodes are not overloaded!!





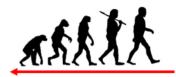
From this, it follows that the congestion is small...

Let δ_i be the difference of the order of node u and of the node reached after the i-th hop.

What is the probability, that the first node has order $n_u - \delta_1$?

Probability that all younger older nodes are not in the

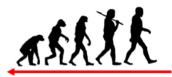




For general i?

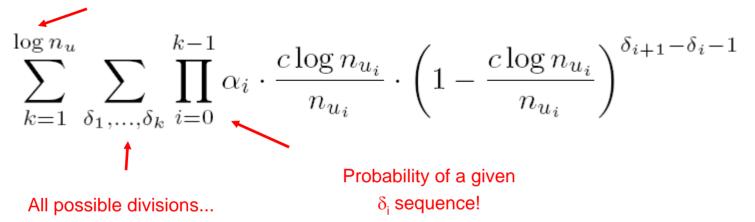
$$\alpha_i \cdot \frac{c \log n_{u_i}}{n_{u_i}} \cdot \left(1 - \frac{c \log n_{u_i}}{n_{u_i}}\right)^{\delta_{i+1} - \delta_i - 1}$$

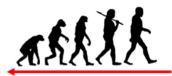
Analoguous....



We know that phase 1 requires at most log many steps. What is the probability, that there is a $\delta_k > n_u/2$? (This would constitute a contradiction to the claim.) Let δ_k be the first δ_i , with this property.

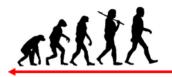
Path has at most log n_u many hops.





How many ways are there to select the δ_i 's? (The first k-1 are hence smaller than $n_u/2...$)

 $\left(n_u/2\right)\binom{n_u/2}{k-1}$ A larger one... k-1 smaller ones...

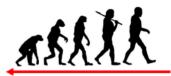


Long calculations show.....

$$\begin{split} & \log n_{u} \sum_{k=1} \sum_{\delta_{1},...,\delta_{k}} \prod_{i=0}^{k-1} \alpha_{i} \cdot \frac{c \log n_{u_{i}}}{n_{u_{i}}} \cdot \left(1 - \frac{c \log n_{u_{i}}}{n_{u_{i}}}\right)^{\delta_{i+1} - \delta_{i} - 1} \\ & \leq \sum_{k=1}^{\log n_{u}} \sum_{\delta_{1},...,\delta_{k}} 2^{\log n_{u}} \prod_{i=0}^{k-1} \frac{c \log n_{u_{i}}}{n_{u_{i}}} \cdot \exp\left[-\left(\delta_{i+1} - \delta_{i} - 1\right) \frac{c \log n_{u_{i}}}{n_{u_{i}}}\right] \\ & \leq \sum_{k=1}^{\log n_{u}} \sum_{\delta_{1},...,\delta_{k}} n_{u} \prod_{i=0}^{k-1} \frac{c \log n_{u}}{n_{u}/2} \cdot \exp\left[-\left(\delta_{i+1} - \delta_{i} - 1\right) \frac{c \log n_{u}}{n_{u_{i}}}\right] \\ & \leq \sum_{k=1}^{\log n_{u}} \sum_{\delta_{1},...,\delta_{k}} 2n_{u} \prod_{i=0}^{k-1} \frac{c \log n_{u}}{n_{u}/2} \cdot \exp\left[-\left(\delta_{i+1} - \delta_{i}\right) \frac{c \log n_{u}}{n_{u}}\right] \\ & \leq \sum_{k=1}^{\log n_{u}} \sum_{\delta_{1},...,\delta_{k}} 2n_{u} \left[\frac{c \log n_{u}}{n_{u}/2}\right]^{k} \cdot \exp\left[-\left(\delta_{i+1} - \delta_{i}\right) \frac{c \log n_{u}}{n_{u}}\right] \\ & \leq \sum_{k=1}^{\log n_{u}} \sum_{\delta_{1},...,\delta_{k}} 2n_{u} \left[\frac{c \log n_{u}}{n_{u}/2}\right]^{k} \cdot \exp\left[-\left(\delta_{i+1} - \delta_{i}\right) \frac{c \log n_{u}}{n_{u}}\right] \\ & \leq 2n_{u} \sum_{k=1}^{\log n_{u}} \left(n_{u}/2\right) \binom{n_{u}/2}{k-1} \left[\frac{c \log n_{u}}{n_{u}/2}\right]^{k} \cdot \exp\left[-\delta_{k} \frac{c \log n_{u}}{n_{u}}\right] \\ & \leq n_{u}^{2} c \log n_{u} \sum_{k=1}^{\log n_{u}} \left(\frac{n_{u}/2}{k-1}\right)^{k-1} \left[\frac{c \log n_{u}}{n_{u}/2}\right]^{k-1} \cdot \exp\left[-\frac{n_{u}}{2} \cdot \frac{c \log n_{u}}{n_{u}}\right] \\ & \leq n_{u}^{2} c \log n_{u} \sum_{k=1}^{\log n_{u}} \left(\frac{e c \log n_{u}}{k-1}\right)^{k-1} e^{-c \log n_{u}/2} \\ & \leq n_{u}^{2} c \log n_{u} \sum_{k=1}^{\log n_{u}} (ec)^{\log n_{u}} \cdot e^{-c \log n_{u}/2} \\ & \leq n_{u}^{2} c \log^{2} n_{u} \cdot e^{-c \log n_{u}/4} \in O(n_{u}^{-c/8}). \end{split}$$

With high probability this is not the case. So the claim is true!

Stefan Schmid @ Wroclaw, 2009

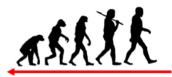


Why is this good for congestion?

How to measure the congestion?

Let's define a **Random Routing Problem**:

Each node wants to send a message to *one random other node*. Congestion = Number of messages pass a given node? (in expectation or w.h.p.)



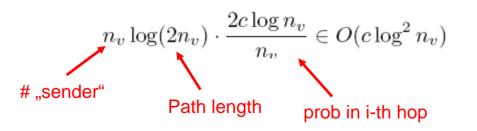
Why is this good for congestion?

More interesting: Number of messages through v *w.h.p.*? Which nodes send a message over node v?

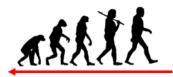
We know: w.h.p. only those, whose order is between 2 n_v and n_v ! How long are these paths?

Due to de Bruijn strategy: $log(2 n_v)$, over intervalls of size at most 2 c log n_v / n_v , w.h.p.

Probability that in the i-th hop, one comes across an interval of v is at most $2 c \log n_v / n_v$. So the expected number is:

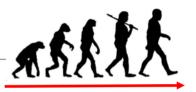


All holds also w.h.p.!

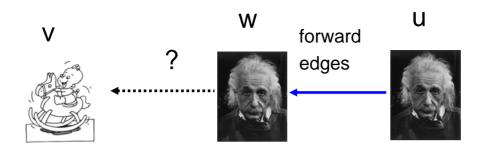


Congestion in phase 1 is thus at most O(log² n)!

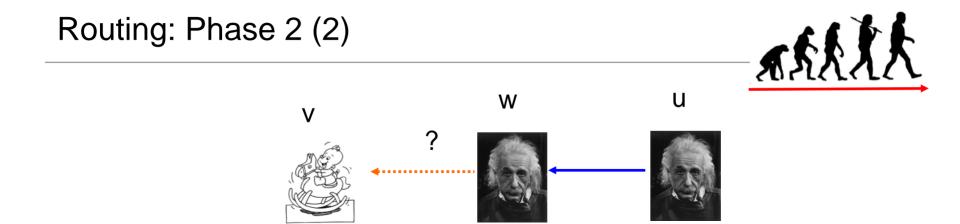
Routing: Phase 2 (1)



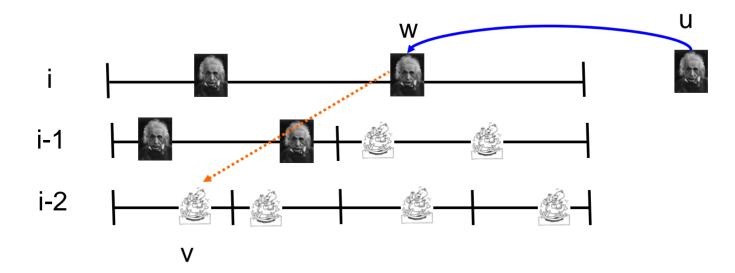
• But what if an old node wants to send something to a young one?!



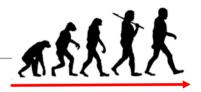
- Second Routing Phase
 - Phase 1: as long along Forward Edges until a node is reached whose interval includes v.
 - Then Phase 2: Backward Edges are allowed (give up invariant)!

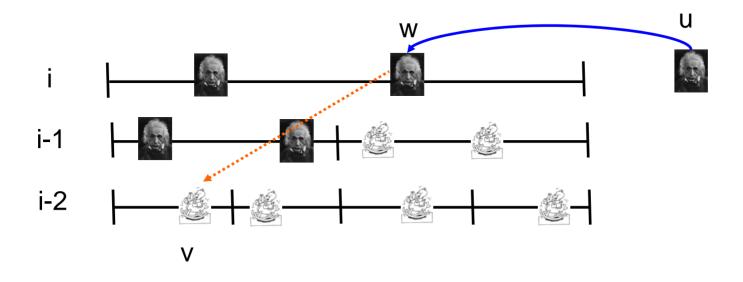


• Goal: Send down the right level of v, the node there must know v!



Routing: Phase 2 (3)





 One can show: w always has an edge to a node in an interval closer to v. By this <u>"binary search</u>" v can be reached in logarithmic time (and low congestion).

Join / Leave

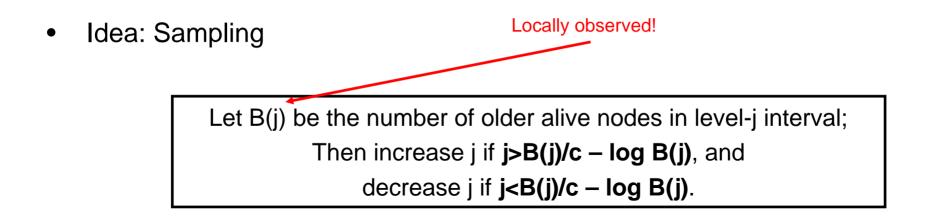
- Another feature: efficient Join and Leave
- If many nodes leave, some intervals need to be merged
- Result (w/o proof):

Join in time O(log n) and affects at most O(log² n) edges.

Leave in time O(1) and with O(log² n) many edge changes.

Estimation of $n_v(1)$

- Nodes must estimate n_v locally, to find level
 - Recall: We want at least c log n_v alive older nodes in an interval
 - Problem: n_v is a global variable!



• The level with $i = B(i)/c - \log B(i)$ is "good", almost as if one knew n_v!

Let B(j) be the number of older alive nodes in level-j interval; Then increase j if **j>B(j)/c – log B(j)**, and decrease j if **j<B(j)/c – log B(j)**.

- Why is **i** = **B**(**i**)/**c log B**(**i**) good?
- In "the ideal case" each level j contains the same number of nodes (assumption uniform failures!): B(j) = n_v/2^j => n_v = B(j) 2^j
- Let $B(j) = \alpha c \log n_v$ for a α .
- Then also B(j)/α = c log n_v = c log(2^j B(j)) and hence:

$$j = B(j)/(\alpha c) - \log B(j)$$

This function has a unique extremal value => search possible!

Let B(j) be the number of older alive nodes in level-j interval; Then increase j if **j>B(j)/c – log B(j)**, and decrease j if **j<B(j)/c – log B(j)**.

- But: World not ideal!
 - Intervals have not the same number of nodes
 - Variations in binomial distributed random variables:

B(j) = (1 $\pm \delta$) α c log n_v

• Thus:

$$n_v = \frac{B(j)}{1 \pm \delta} \cdot 2^j$$

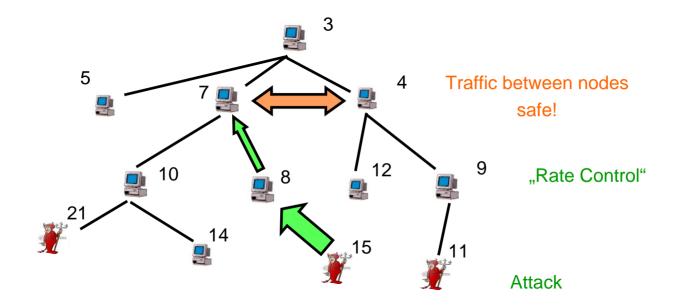
Let B(j) be the number of older alive nodes in level-j interval; Then increase j if **j>B(j)/c – log B(j)**, and decrease j if **j<B(j)/c – log B(j)**.

• Thus
$$\frac{1}{\alpha(1\pm\delta)}B(j) = c\log n_v = c(j+\log(B(j)/(1\pm\delta))$$

- And hence
$$j = \frac{B(j)}{(1\pm\delta)\alpha c} - \log(B(j)/(1\pm\delta))$$

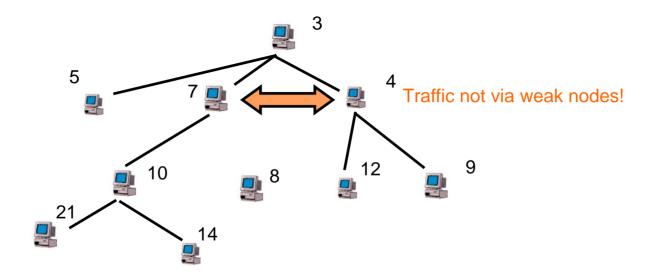
- Since δ is an arbitrarily small constant according to Chernoff, level j is at most by 1 away from the ideal level!
- Details: see paper!

Applications: Sybil Attacks



Applications: Heterogeneous Systems

Idea: Order = Inverse of quality of Internet connection



More Literature about the SHELL System

TUM

INSTITUT FÜR INFORMATIK

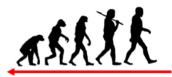
A Distributed and Oblivious Heap

Christian Scheideler, Stefan Schmid

TUM-I0908 April 09

http://www.cs.uni-paderborn.de/fachgebiete/fg-ti/personen/schmiste.html

Extra Slides



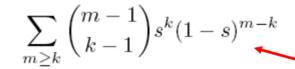
Why is this good for congestion?

Expected number of messages through v?

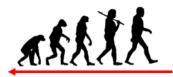
Let $s = c \log n / n be the size of the home interval. On a given de Bruijn path$ of length k intervals $I_0, I_1, ..., I_k$ are visited. For how many nodes u does this path lead through v?

When is the path $u = u_0, u_1, ..., u_k = v$ valid?

If in an interval I_i there is no node between order u_{i-1} and u_i! Let $m = n_u - n_v$, then how many paths go through v?



Over all order differences. $\sum_{m>k} \binom{m-1}{k-1} s^k (1-s)^{m-k}$ Over all order differences, count the number of possibilities that the k (hop-)nodes are in the right Interval and the "unwanted nodes" not!



Why is this good for congestion?

Expected number of messages through v?

One can show:

$$\sum_{m \ge k} \binom{m-1}{k-1} s^k (1-s)^{m-k} = O\left(\frac{s^k}{(1-s)^k (k-1)!} \cdot \frac{(k-1)!}{s^k} e^{-s(k-1)}\right) = O(1)$$

Thus: for a constant number only! ©

From this, we can show that the expected number is at most logarithmic: A random de Brujin path has probability **WSK 1/2^k**, and is used by a constant number of nodes (see above); a path has a **logarithmic** number of hopes.

