
How to Design Robust Networks?
Connect to the Seniors!

Stefan Schmid
Christian Scheideler

Stefan Schmid @ Wroclaw, 2009 2

DISTRIBUTED COMPUTING

Social networks...

Popular Networks

... peer-to-peer networks ...

etc.

Stefan Schmid @ Wroclaw, 2009 3

DISTRIBUTED COMPUTING

Interesting Properties

• „Small World Phenomenon“
- Short chains of „friends“ between two people
- Also neural networks of animals

• Topological properties of Gnutella
- Tolerates random, but not worst-case failures

Stefan Schmid @ Wroclaw, 2009 4

Another Useful Property? (1)

• Often older network participants are more reliable!

• Measurements in p2p networks:
- Nodes that have been online longer, will typically stay longer
- Older neighbors often more stable

• E.g. Social networks?
- Who already wrote many good Wikipedia articles, is likely to do so also
in the future?

Stefan Schmid @ Wroclaw, 2009 5

Another Useful Property? (2)

• Idea: if everybody only connects to older network participants...
- ... nodes would have stable neighborhoods!
- ... one is resilient against attacks by „young troublemakers“

Stefan Schmid @ Wroclaw, 2009 6

Another Useful Property? (3)

• Implications:
- Communication paths of the „seniors“ never include younger nodes -
- Young nodes cannot overload network (rate control in „core network“)

Stefan Schmid @ Wroclaw, 2009 7

Model

• How to implement such an idea?

• Idea: A central server assigns joining nodes a rank
- Nodes only connect to nodes that arrived earlier (lower rank)

28

2321
26

18 17 2019

16
9 10 3

Network Entry Point

A distributed heap!

Stefan Schmid @ Wroclaw, 2009 8

A naive Solution

• Our goal is achieved with:

• Problem: Scalability
- Large diameter, not robust to join/leave, etc.

145 3 2

• Better topologies: hypercubes, pancake graphs, ...

Stefan Schmid @ Wroclaw, 2009 9

Simple Approach for „good“ Peer-to-Peer Topologies

• Naor & Wieder: The Continuous-Discrete Approach

• Simplified version:
- Nodes join at random position in [0,1)
- Connects to points x/2 and (1+x)/2
- If there is no node, rounding is necessary
(„continuous => discrete“)

- Details less interesting here

• Result: a kind of de Bruijn Graph
- constant degree
- logarithmic diameter
- simple routing

0 1

x/2
(x+1)/2

x

Stefan Schmid @ Wroclaw, 2009 10

Routing

• Naor & Wieder: The Continuous-Discrete Approach

• Node u at binary position (0....)
u = 11010111

to node
v = 01000101

• Ideal path over points:

111010111
011101011
101110101

...
01000101

Assumption: All nodes k = log n bit
positions, correct one bit per step
(„next last “ of v).

Stefan Schmid @ Wroclaw, 2009 11

Idea and Problem

• Network Entry Point assigns random position [0,1)...

• ... and then build topology according to Continuous-Discrete
Approach!

• Problem? 0 1

x/2
(x+1)/2

x There could be a younger
node there!
Solution?

Stefan Schmid @ Wroclaw, 2009 12

Solution and another Problem

• Connect to corresponding older node close to this position

• Everything solved? Other problems?

• Analysis shows, that older nodes can be congested,
as everybody tries to connect to them!

Idea?

Stefan Schmid @ Wroclaw, 2009 13

Redundancy

• Solution: we connect to more than one node!

• Allows us to „load-balance“

Stefan Schmid @ Wroclaw, 2009 14

The Algorithm (1)

• Assume, each node u knows n_u = # living nodes that are older
(can be estimated, see later)

• Divide [0,1) Circle in fixed Intervals / Levels of exponentially
decreasing sizes

Partition 1 Partition 2

Partition 3 Partition 4

Stefan Schmid @ Wroclaw, 2009 15

The Algorithm (2)

• Node v connects to three Intervals
- lv,0 & buddy: Home-interval with position x

plus other half of the (i-1)-interval
- lv,1 & buddy: Interval with position x/2, plus buddy
- lv,2 & buddy: Interval with position (1+x)/2, plus buddy

• Interval is chosen such that it includes at least c log nv older nodes (c
= const.)! (If not possible, set level to 0.)

• Establish forward edges to these nodes. Store all incoming edges as
backward edges!

Stefan Schmid @ Wroclaw, 2009 16

Overview „Forward Edges“

x = „home“

x/2 = de Bruijn 1
(1+x)/2 = de Bruijn 2

buddy

buddy

buddy

c log nv / nv

c log nv
/ nv

Stefan Schmid @ Wroclaw, 2009 17

Oblivious Structure

Note:

Our distributed heap structure is oblivious
- Node positions independent of join/leave history
- This is an advantage for dynamic systems: allows for
efficient joins/leaves!

Stefan Schmid @ Wroclaw, 2009 18

... how efficient is the system?!?!

Stefan Schmid @ Wroclaw, 2009 19

Forward Edge Degree

• Number of forward edges?

• Interval chosen s.t. at least c log nv older nodes contained

• Number of nodes in interval binomially distributed

• In total there are 3 intervals with 3 buddies, so 6 intervals

• Chernoff: O(log nv) older nodes, w.h.p.

Forward Degree is logarithmic in number of older nodes
currently alive, w.h.p.!

Stefan Schmid @ Wroclaw, 2009 20

Backward Node Degree (1)

• Nodes also store incoming edges...
• Number of backward edges?

• Which node is expected to have highest in-degree?

• Alive node v with smallest rank (oldest)...
How to compute?

• Prob that a node w has a connection to v?

w v
?

Stefan Schmid @ Wroclaw, 2009 21

Backward Node Degree (2)

• Probability that w has a connection to v?

w v
?

• Node w connects to intervals of size at most
2 c log nw / nw

w.h.p.
As w connects to 6 intervals (incl. buddies) of this size, the
probability is

P[w connects to v] ·

12 c log nw / nw

Stefan Schmid @ Wroclaw, 2009 22

Backward Node Degree (3)

E[In-degree of w] = ∑w ∈

V 12 c log nw / nw

·

∑i=1
n 12 c log n / i

∈

O(c log2 n)

• So in total?

Backward degree / in-degree is in O(log2 n) w.h.p.!

Stefan Schmid @ Wroclaw, 2009 23

Routing

Idea
Phase 1: Along „Forward Edges“ to olders

Phase 2 (if destination not reached yet):
„Descent“ to younger nodes

• Goal: Routing „as usual“ in de Bruijn graphs (fixing bits)
• „Slogan“: Use forward edges as long as possible:

Thus independent of younger nodes!

Stefan Schmid @ Wroclaw, 2009 24

Routing: Phase 1 (1)

• Recall: de Bruijn Routing

• Node u at binary position (0....)
u = 11010111

to node
v = 01000101

• Ideal path via:

z_1 = 111010111
z_2 = 011101011
z_3 = 101110101

...
z_t = 01000101

We have connections to entire
intervals! For load balancing, apply
the following strategy in step i:
Forward Message to youngest
node reachable with forward edges,
Whose home interval contains z_i.

Stefan Schmid @ Wroclaw, 2009 25

Routing: Phase 1 (2)

In other words, a node sends a message to its youngest older
neighbor whose interval contains the theoretic de Bruijn position
(„emulation“). Thus, older nodes are not overloaded!!

From de Bruijn property it follows:
Phase 1 takes at most log hops!

... but what about congestion?!

Stefan Schmid @ Wroclaw, 2009 26

Routing: Phase 1 (3)

From this, it follows that the congestion is small...

Let δi be the difference of the order of node u and of the node reached
after the i-th hop.
What is the probability, that the first node has order nu - δ1 ?

Constant factor as interval sizes can

differ (random process)!

Probability that all younger older nodes are not in the

corresponding interval!

Probability that node of corresponding
order is in this interval!

Claim: In Phase 1, a packet of a node u ends at a node
whose order is not larger than nu /2!

Stefan Schmid @ Wroclaw, 2009 27

Routing: Phase 1 (4)

Claim: In Phase 1, a packet of a node u ends at a node
whose order is not larger than nu /2!

For general i?

Analoguous....

Stefan Schmid @ Wroclaw, 2009 28

Routing: Phase 1 (4)

We know that phase 1 requires at most log many steps.
What is the probability, that there is a δk > nu /2?
(This would constitute a contradiction to the claim.)
Let δk be the first δi , with this property.

Probability of a given
δi sequence!All possible divisions...

Path has at most log nu many hops.

Claim: In Phase 1, a packet of a node u ends at a node
whose order is not larger than nu /2!

Stefan Schmid @ Wroclaw, 2009 29

Routing: Phase 1 (5)

How many ways are there to select the δi ‘s?
(The first k-1 are hence smaller than nu /2...)

k-1 smaller ones...A larger one...

Claim: In Phase 1, a packet of a node u ends at a node
whose order is not larger than nu /2!

Stefan Schmid @ Wroclaw, 2009 30

Routing: Phase 1 (6)

Long calculations show.....

With high probability this is not
the case. So the claim is true!

Claim: In Phase 1, a packet of a node u ends at a node
whose order is not larger than nu /2!

Stefan Schmid @ Wroclaw, 2009 31

Routing: Phase 1 (7)

Why is this good for congestion?

How to measure the congestion?

Let‘s define a Random Routing Problem:
Each node wants to send a message to one random other node.
Congestion = Number of messages pass a given node?
(in expectation or w.h.p.)

Stefan Schmid @ Wroclaw, 2009 32

Routing: Phase 1 (8)

Why is this good for congestion?

More interesting: Number of messages through v w.h.p.?
Which nodes send a message over node v?

We know: w.h.p. only those, whose order is between 2 nv and nv !
How long are these paths?

Due to de Bruijn strategy: log(2 nv), over intervalls of size at most
2 c log nv / nv , w.h.p.
Probability that in the i-th hop, one comes across an intervall of v is at most
2 c log nv / nv . So the expected number is:

All holds also w.h.p.!

„sender“
Path length prob in i-th hop

Stefan Schmid @ Wroclaw, 2009 33

Routing: Phase 1 (9)

Congestion in phase 1 is
thus at most O(log2 n)!

Stefan Schmid @ Wroclaw, 2009 34

Routing: Phase 2 (1)

• But what if an old node wants to send something to a young one?!

• Second Routing Phase
- Phase 1: as long along Forward Edges until a node is reached whose
interval includes v.

- Then Phase 2: Backward Edges are allowed (give up invariant)!

v u
?

w
forward
edges

Stefan Schmid @ Wroclaw, 2009 35

Routing: Phase 2 (2)

• Goal: Send down the right level of v, the node there must know v!

v u
?

w

i

i-1

i-2

w

v

u

Stefan Schmid @ Wroclaw, 2009 36

Routing: Phase 2 (3)

• One can show: w always has an edge to a node in an interval closer
to v. By this „binary search“ v can be reached in logarithmic time
(and low congestion).

i

i-1

i-2

w

v

u

Stefan Schmid @ Wroclaw, 2009 37

Join / Leave

• Another feature: efficient Join and Leave

• If many nodes leave, some intervals need to be merged

Join in time O(log n) and affects at most
O(log2 n) edges.

Leave in time O(1) and with O(log2 n)
many edge changes.

• Result (w/o proof):

Stefan Schmid @ Wroclaw, 2009 38

Estimation of nv (1)

• Nodes must estimate nv locally, to find level
- Recall: We want at least c log nv alive older nodes in an interval
- Problem: nv is a global variable!

Let B(j) be the number of older alive nodes in level-j interval;
Then increase j if j>B(j)/c – log B(j), and

decrease j if j<B(j)/c – log B(j).

• Idea: Sampling Locally observed!

• The level with i = B(i)/c – log B(i) is „good“, almost as if one knew nv !

Stefan Schmid @ Wroclaw, 2009 39

Estimation of nv (2)

• Why is i = B(i)/c – log B(i) good?

• In „the ideal case“ each level j contains the same number of nodes
(assumption uniform failures!): B(j) = nv /2j => nv = B(j) 2j

• Let B(j) = α

c log nv for a α.

• Then also B(j)/α

= c log nv = c log(2j B(j))
and hence:

j = B(j)/(α

c) – log B(j)

This function has a unique extremal value => search possible!

Let B(j) be the number of older alive nodes in level-j interval;
Then increase j if j>B(j)/c – log B(j), and

decrease j if j<B(j)/c – log B(j).

Stefan Schmid @ Wroclaw, 2009 40

Schätzung von nv (3)

• But: World not ideal!
- Intervals have not the same number of nodes
- Variations in binomial distributed random variables:

B(j) = (1 ±

δ) α

c log nv

• Thus:

Let B(j) be the number of older alive nodes in level-j interval;
Then increase j if j>B(j)/c – log B(j), and

decrease j if j<B(j)/c – log B(j).

Stefan Schmid @ Wroclaw, 2009 41

Schätzung von nv (3)

• Thus

• And hence

• Since δ

is an arbitrarily small constant according to Chernoff,
level j is at most by 1 away from the ideal level!

• Details: see paper!

Let B(j) be the number of older alive nodes in level-j interval;
Then increase j if j>B(j)/c – log B(j), and

decrease j if j<B(j)/c – log B(j).

Stefan Schmid @ Wroclaw, 2009 42

Applications: Sybil Attacks

3

47
5

10 8 912

21
14 15 11

Attack

„Rate Control“

Traffic between nodes
safe!

Stefan Schmid @ Wroclaw, 2009 43

Applications: Heterogeneous Systems

3

47
5

10 8 912

21
14

Traffic not via weak nodes!

Idea: Order = Inverse of quality of Internet connection

Stefan Schmid @ Wroclaw, 2009 44

More Literature about the SHELL System

http://www.cs.uni-paderborn.de/fachgebiete/fg-ti/personen/schmiste.html

Stefan Schmid @ Wroclaw, 2009 45

Extra Slides

Stefan Schmid @ Wroclaw, 2009 46

Routing: Phase 1 (1)

Why is this good for congestion?

Expected number of messages through v?

Let s = c log nv / nv be the size of the home interval. On a given de Bruijn path
of length k intervals I0 , I1 , ..., Ik are visited. For how many nodes u
does this path lead through v?

When is the path u = u0 , u1 , ..., uk = v valid?

If in an interval Ii there is no node between order ui-1 and ui !
Let m = nu – nv , then how many paths go through v?

Over all order differences,
count the number of possibilities that

the k (hop-)nodes are in the right
Interval and the „unwanted nodes“ not!

Stefan Schmid @ Wroclaw, 2009 47

Routing: Phase 1 (2)

Why is this good for congestion?

Expected number of messages through v?

One can show:

Thus: for a constant number only! ☺

From this, we can show that the expected number is at most logarithmic:
A random de Brujin path has probability WSK 1/2k, and is used by a constant
number of nodes (see above); a path has a logarithmic number of hopes.

	How to Design Robust Networks?�Connect to the Seniors!
	Popular Networks
	Interesting Properties
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47

