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DISTRIBUTED COMPUTING

Social networks...

Popular Networks

... peer-to-peer networks ...

etc.
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DISTRIBUTED COMPUTING

Interesting Properties

• „Small World Phenomenon“
- Short chains of „friends“ between two people
- Also neural networks of animals

• Topological properties of Gnutella
- Tolerates random, but not worst-case failures
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Another Useful Property? (1) 

• Often older network participants are more reliable!

• Measurements in p2p networks:
- Nodes that have been online longer, will typically stay longer
- Older neighbors often more stable

• E.g. Social networks? 
- Who already wrote many good Wikipedia articles, is likely to do so also
in the future?



Stefan Schmid @ Wroclaw, 2009 5

Another Useful Property? (2) 

• Idea: if everybody only connects to older network participants...
- ... nodes would have stable neighborhoods!
- ... one is resilient against attacks by „young troublemakers“
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Another Useful Property? (3) 

• Implications:
- Communication paths of the „seniors“ never include younger nodes -
- Young nodes cannot overload network (rate control in „core network“) 
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Model

• How to implement such an idea? 

• Idea: A central server assigns joining nodes a rank
- Nodes only connect to nodes that arrived earlier (lower rank) 
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Network Entry Point

A distributed heap!
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A naive Solution

• Our goal is achieved with:

• Problem: Scalability
- Large diameter, not robust to join/leave, etc.

145 3 2

• Better topologies: hypercubes, pancake graphs, ...
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Simple Approach for „good“ Peer-to-Peer Topologies

• Naor & Wieder: The Continuous-Discrete Approach

• Simplified version: 
- Nodes join at random position in [0,1)
- Connects to points x/2 and (1+x)/2
- If there is no node, rounding is necessary
(„continuous => discrete“)

- Details less interesting here

• Result: a kind of de Bruijn Graph
- constant degree
- logarithmic diameter
- simple routing

0 1

x/2
(x+1)/2

x
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Routing

• Naor & Wieder: The Continuous-Discrete Approach

• Node u at binary position (0....)
u = 11010111

to node
v = 01000101 

• Ideal path over points:

111010111
011101011
101110101

...
01000101

Assumption: All nodes k = log n bit
positions, correct one bit per step
(„next last “ of v).
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Idea and Problem

• Network Entry Point assigns random position [0,1)...

• ... and then build topology according to Continuous-Discrete 
Approach!

• Problem? 0 1

x/2
(x+1)/2

x There could be a younger
node there!
Solution?
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Solution and another Problem

• Connect to corresponding older node close to this position

• Everything solved? Other problems?

• Analysis shows, that older nodes can be congested,
as everybody tries to connect to them!

Idea?
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Redundancy

• Solution: we connect to more than one node!

• Allows us to „load-balance“
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The Algorithm (1)

• Assume, each node u knows n_u = # living nodes that are older
(can be estimated, see later)

• Divide [0,1) Circle in fixed Intervals / Levels of exponentially 
decreasing sizes

Partition 1 Partition 2

Partition 3 Partition 4
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The Algorithm (2)

• Node v connects to three Intervals
- lv,0 & buddy: Home-interval with position x

plus other half of the (i-1)-interval
- lv,1 & buddy: Interval with position x/2, plus buddy
- lv,2 & buddy: Interval with position (1+x)/2, plus buddy

• Interval is chosen such that it includes at least c log nv older nodes (c 
= const.)! (If not possible, set level to 0.)

• Establish forward edges to these nodes. Store all incoming edges as 
backward edges!
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Overview „Forward Edges“

x = „home“

x/2 = de Bruijn 1
(1+x)/2 = de Bruijn 2

buddy

buddy

buddy

c log nv / nv

c log nv
/ nv
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Oblivious Structure

Note:

Our distributed heap structure is oblivious
- Node positions independent of join/leave history
- This is an advantage for dynamic systems: allows for
efficient joins/leaves!
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... how efficient is the system?!?!
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Forward Edge Degree

• Number of forward edges?

• Interval chosen s.t. at least c log nv older nodes contained

• Number of nodes in interval binomially distributed

• In total there are 3 intervals with 3 buddies, so 6 intervals

• Chernoff: O(log nv ) older nodes, w.h.p.

Forward Degree is logarithmic in number of older nodes
currently alive, w.h.p.!
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Backward Node Degree (1)

• Nodes also store incoming edges...
• Number of backward edges?

• Which node is expected to have highest in-degree?

• Alive node v with smallest rank (oldest)...
How to compute?

• Prob that a node w has a connection to v?

w v
?
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Backward Node Degree (2)

• Probability that w has a connection to v?

w v
?

• Node w connects to intervals of size at most
2 c log nw / nw

w.h.p. 
As w connects to 6 intervals (incl. buddies) of this size, the
probability is

P[w connects to v] ·

 

12 c log nw / nw
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Backward Node Degree (3)

E[In-degree of w] = ∑w ∈

 

V 12 c log nw / nw

·

 

∑i=1
n 12 c log n / i

∈

 

O(c log2 n) 

• So in total?

Backward degree / in-degree is in O(log2 n) w.h.p.!
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Routing

Idea
Phase 1: Along „Forward Edges“ to olders

Phase 2 (if destination not reached yet): 
„Descent“ to younger nodes

• Goal: Routing „as usual“ in de Bruijn graphs (fixing bits)
• „Slogan“: Use forward edges as long as possible:

Thus independent of younger nodes!
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Routing: Phase 1 (1)

• Recall: de Bruijn Routing

• Node u at binary position (0....)
u = 11010111

to node
v = 01000101 

• Ideal path via:

z_1 = 111010111
z_2 = 011101011
z_3 = 101110101

...
z_t = 01000101

We have connections to entire
intervals! For load balancing, apply
the following strategy in step i: 
Forward Message to youngest
node reachable with forward edges,
Whose home interval contains z_i.
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Routing: Phase 1 (2)

In other words, a node sends a message to its youngest older
neighbor whose interval contains the theoretic de Bruijn position
(„emulation“). Thus, older nodes are not overloaded!!

From de Bruijn property it follows: 
Phase 1 takes at most log hops!

... but what about congestion?!
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Routing: Phase 1 (3)

From this, it follows that the congestion is small...

Let δi be the difference of the order of node u and of the node reached
after the i-th hop.
What is the probability, that the first node has order nu - δ1 ?

Constant factor as interval sizes can

differ (random process)!

Probability that all younger older nodes are not in the

corresponding interval!

Probability that node of corresponding
order is in this interval!

Claim: In Phase 1, a packet of a node u ends at a node
whose order is not larger than nu /2!
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Routing: Phase 1 (4)

Claim: In Phase 1, a packet of a node u ends at a node
whose order is not larger than nu /2!

For general i?

Analoguous....
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Routing: Phase 1 (4)

We know that phase 1 requires at most log many steps. 
What is the probability, that there is a δk > nu /2?
(This would constitute a contradiction to the claim.)
Let δk be the first δi , with this property. 

Probability of a given
δi sequence!All possible divisions...

Path has at most log nu many hops.

Claim: In Phase 1, a packet of a node u ends at a node
whose order is not larger than nu /2!
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Routing: Phase 1 (5)

How many ways are there to select the δi ‘s?
(The first k-1 are hence smaller than nu /2...)

k-1 smaller ones...A larger one...

Claim: In Phase 1, a packet of a node u ends at a node
whose order is not larger than nu /2!
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Routing: Phase 1 (6)

Long calculations show.....

With high probability this is not
the case. So the claim is true!

Claim: In Phase 1, a packet of a node u ends at a node
whose order is not larger than nu /2!
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Routing: Phase 1 (7)

Why is this good for congestion?

How to measure the congestion?

Let‘s define a Random Routing Problem:
Each node wants to send a message to one random other node. 
Congestion = Number of messages pass a given node?
(in expectation or w.h.p.)
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Routing: Phase 1 (8)

Why is this good for congestion?

More interesting: Number of messages through v w.h.p.?
Which nodes send a message over node v?

We know: w.h.p. only those, whose order is between 2 nv and nv !
How long are these paths?

Due to de Bruijn strategy: log(2 nv ), over intervalls of size at most
2 c log nv / nv , w.h.p.
Probability that in the i-th hop, one comes across an intervall of v is at most
2 c log nv / nv . So the expected number is:

All holds also w.h.p.!

# „sender“
Path length prob in i-th hop
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Routing: Phase 1 (9)

Congestion in phase 1 is
thus at most O(log2 n)!
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Routing: Phase 2 (1)

• But what if an old node wants to send something to a young one?!

• Second Routing Phase 
- Phase 1: as long along Forward Edges until a node is reached whose
interval includes v.

- Then Phase 2: Backward Edges are allowed (give up invariant)!

v u
?

w
forward
edges
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Routing: Phase 2 (2)

• Goal: Send down the right level of v, the node there must know v!

v u
?

w

i

i-1

i-2

w

v

u
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Routing: Phase 2 (3)

• One can show: w always has an edge to a node in an interval closer
to v. By this „binary search“ v can be reached in logarithmic time 
(and low congestion).

i

i-1

i-2

w

v

u
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Join / Leave

• Another feature: efficient Join and Leave

• If many nodes leave, some intervals need to be merged

Join in time O(log n) and affects at most
O(log2 n) edges. 

Leave in time O(1) and with O(log2 n) 
many edge changes. 

• Result (w/o proof):
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Estimation of nv (1) 

• Nodes must estimate nv locally, to find level
- Recall: We want at least c log nv alive older nodes in an interval
- Problem: nv is a global variable!

Let B(j) be the number of older alive nodes in level-j interval; 
Then increase j if j>B(j)/c – log B(j), and

decrease j if j<B(j)/c – log B(j).

• Idea: Sampling Locally observed!

• The level with i = B(i)/c – log B(i) is „good“, almost as if one knew nv !
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Estimation of nv (2) 

• Why is i = B(i)/c – log B(i) good?

• In „the ideal case“ each level j contains the same number of nodes
(assumption uniform failures!): B(j) = nv /2j => nv = B(j) 2j

• Let B(j) = α

 

c log nv for a α. 

• Then also B(j)/α

 

= c log nv = c log(2j B(j))
and hence:

j = B(j)/(α

 

c) – log B(j)

This function has a unique extremal value => search possible!

Let B(j) be the number of older alive nodes in level-j interval; 
Then increase j if j>B(j)/c – log B(j), and

decrease j if j<B(j)/c – log B(j).
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Schätzung von nv (3) 

• But: World not ideal!
- Intervals have not the same number of nodes
- Variations in binomial distributed random variables:

B(j) = (1 ±

 

δ) α

 

c log nv

• Thus:

Let B(j) be the number of older alive nodes in level-j interval; 
Then increase j if j>B(j)/c – log B(j), and

decrease j if j<B(j)/c – log B(j).
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Schätzung von nv (3) 

• Thus

• And hence

• Since δ

 

is an arbitrarily small constant according to Chernoff,
level j is at most by 1 away from the ideal level! 

• Details: see paper!

Let B(j) be the number of older alive nodes in level-j interval; 
Then increase j if j>B(j)/c – log B(j), and

decrease j if j<B(j)/c – log B(j).
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Applications: Sybil Attacks

3

47
5

10 8 912

21
14 15 11

Attack

„Rate Control“

Traffic between nodes
safe!
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Applications: Heterogeneous Systems

3

47
5

10 8 912

21
14

Traffic not via weak nodes!

Idea: Order = Inverse of quality of Internet connection
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More Literature about the SHELL System

http://www.cs.uni-paderborn.de/fachgebiete/fg-ti/personen/schmiste.html
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Extra Slides
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Routing: Phase 1 (1)

Why is this good for congestion?

Expected number of messages through v?

Let s = c log nv / nv be the size of the home interval. On a given de Bruijn path
of length k intervals I0 , I1 , ..., Ik are visited. For how many nodes u
does this path lead through v?

When is the path u = u0 , u1 , ..., uk = v valid?

If in an interval Ii there is no node between order ui-1 and ui ! 
Let m = nu – nv , then how many paths go through v?

Over all order differences,
count the number of possibilities that

the k (hop-)nodes are in the right
Interval and the „unwanted nodes“ not!
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Routing: Phase 1 (2)

Why is this good for congestion?

Expected number of messages through v?

One can show:

Thus: for a constant number only! ☺

From this, we can show that the expected number is at most logarithmic: 
A random de Brujin path has probability WSK 1/2k, and is used by a constant
number of nodes (see above); a path has a logarithmic number of hopes. 
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