

Active Buffer Management in Datacenters

<u>Vamsi Addanki</u>, Maria Apostolaki, Manya Ghobadi, Stefan Schmid, Laurent Vanbever

Massachusetts Institute of Technology

Active Queue Management (AQM)

Buffer Management (BM)

Controlling queueing delay

AQM

- A novel Buffer Sharing algorithm *for datacenter switches*

- A novel Buffer Sharing algorithm

- A novel Buffer Sharing algorithm
- AQM that depends on Buffer Management

- A novel Buffer Sharing algorithm
- Active Buffer Management

- A novel Buffer Sharing algorithm
- Active Buffer Management
 - Isolation across traffic priorities (eg., different SLAs)

- A novel Buffer Sharing algorithm
- Independent AQM and Buffer Management
- Active Buffer Management
 - Isolation across traffic priorities (eg., different SLAs)
 - Bounded queue drain time (Queueing delay)

- A novel Buffer Sharing algorithm
- Independent AQM and Buffer Management
- Active Buffer Management
 - Isolation across traffic priorities (eg., different SLAs)
 - Bounded queue drain time (Queueing delay)
 - Better burst absorption

- Both BM and AQM calculate *drop thresholds*

- Both BM and AQM calculate *drop thresholds*
- BM calculates a threshold for every queue in a *device*
 - function of the shared buffer space

- Both BM and AQM calculate *drop thresholds*
- BM calculates a threshold for every queue in a *device*
 - function of the shared buffer space
- AQM calculates thresholds for a single queue
 - function of queue statistics

- Both BM and AQM calculate *drop thresholds*
- BM calculates a threshold for every queue in a *device*
 - function of the shared buffer space
- AQM calculates thresholds for a single queue
 - function of queue statistics
- BM and AQM act independently

Large Buffers

Shallow buffers

Shallow buffers

Threshold = alpha x (Remaining shared buffer)

$$T_p^i(t) = lpha_p \cdot \underbrace{(B-Q(t))}_{Remaining}$$

Threshold = alpha x (Remaining shared buffer)

$$T_p^i(t) = lpha_p \cdot \underbrace{(B-Q(t))}_{Remaining}$$

Priority inversion (No isolation) Oblivious to buffer drain time

Oblivious to drain rate

Oblivious to drain rate

Benefits and Drawbacks of Existing Approaches

- BM can in-principle offer isolation across queues
 - oblivious to buffer drain time
- AQM can in-principle offer bounded queue drain time
 - cannot fundamentally satisfy the isolation property

Our Goals

- Isolation across traffic priorities
- Bounded drain time
- Better burst absorption
 - requires <u>both</u> isolation and bounded drain time

Active Buffer Management

$$T_p^i(t) = lpha_p \cdot rac{1}{n_p} \cdot (B - Q(t)) \cdot rac{\mu_p^i}{b}$$

Threshold per queue port i, priority p

Active Buffer Management

$$T_p^i(t) = \alpha_p \frac{1}{n_p} \cdot (B - Q(t)) \cdot \frac{\mu_p^i}{b}$$

Parameter *To be set for each priority*

Active Buffer Management

$$T_p^i(t) = \alpha_p \prod_{n_p}^1 \left(B - Q(t)\right) \cdot \frac{\mu_p^i}{b}$$

congested queues of priority p

Active Buffer Management

$$T_p^i(t) = lpha_p \cdot rac{1}{n_p} \cdot (B - Q(t)) \cdot rac{\mu_p^i}{b}$$

Active Buffer Management $T_p^i(t) = \alpha_p \cdot \frac{1}{n_p} \cdot (B - Q(t)) \cdot \frac{\mu_p^i}{b}$

Active Buffer Management $T_p^i(t) = \alpha_p \cdot \frac{1}{n_p} \cdot (B - Q(t)) \cdot \underbrace{\frac{\mu_p^i}{b}}_{Buffer \ Management} \cdot \underbrace{\frac{\mu_p^i}{b}}_{AQM}$

Properties of ABM

 Upper bounds the buffer allocated to a priority (Prevents monopoly)

$$B_p^{max} \leq rac{B \cdot lpha_p}{1+lpha_p}$$

Depends only on the parameter set for the corresponding priority

Properties of ABM

 Lower bounds the buffer allocated to a priority (Minimum buffer guarantee)

$$B_p^{min} \geq \frac{B \cdot \alpha_p}{1 + \sum_{p \in \mathcal{P}} \alpha_p}$$

Depends only on the parameter set for all priorities

Properties of ABM

 Upper bounds the drain time for each priority (Bounded queuing delays)

$$\Gamma \leq rac{B \cdot lpha_p}{(1 + lpha_p) \cdot b}$$

Depends only on the parameter set for the corresponding priority and the port bandwidth

Evaluation

- NS3 simulations
- Leaf-Spine topology (4:1 oversubscription)
- 9.6KB buffer-per-port-per-Gbps for all switches
 - Similar to Broadcom TridentII switch
- Websearch + incast workload

ABM Improves Short Flows FCTs

+ DT FAB CS ---- IB (AFD + Elephant trap) ABM 99-pct FCT slowdown 101 101 76% 20 40 60 80 Load (%) **Short flows**

ABM Improves Incast Flows FCTs

Evaluation under Shallow Buffers and Advanced CC

ABM / DT ____ IB (AFD + Elephant trap)

Evaluation under Shallow Buffers and Advanced CC

ABM / DT IB (AFD + Elephant trap)

PowerTCP

Conclusion

- Existing approach of hierarchical buffer sharing is fundamentally limited to a single dimension
- ABM offers both isolation and stable drain time; and improves burst absorption
- ABM significantly improves the performance of incast flows
- ABM works well even under shallow buffers

Thank you

https://github.com/inet-tub/ns3-datacenter

