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ABSTRACT
Computer networks have become a critical infrastructure.
Especially in shared environments such as datacenters it is
important that a correct, consistent and secure network op-
eration is guaranteed at any time, even during routing policy
updates. In particular, at no point in time should it be pos-
sible for packets to bypass security critical waypoints (such
as a firewall or IDS) or to be forwarded along loops.

This paper studies the problem of how to change routing
policies in a transiently consistent manner. Transiently con-
sistent network updates have been proposed as a fast and re-
source efficient alternative to per-packet consistent updates.
Our main result is a negative one: we show that there are
settings where the two basic properties waypoint enforce-
ment and loop-freedom cannot be satisfied simultaneously.
Even worse, we rigorously prove that deciding whether a
waypoint enforcing, loop-free network update schedule ex-
ists is NP-hard. These results hold for both kinds of loop-
freedom used in the literature: strong and relaxed loop-
freedom. This paper also presents optimized, exact mixed
integer programs to compute optimal update schedules. We
report on extensive simulation results and initiate the dis-
cussion of scenarios where multiple waypoints need to be
ensured (also known as service chains).

1. INTRODUCTION
Computer networks are becoming more and more pro-

grammable and flexible. In particular, the software-defined
networking paradigm enables a logically centralized oper-
ation of computer networks: in a Software-Defined Net-
work (SDN), a software controller can install, update and
verify“the paths that packets follow”, i.e., the (routing) poli-
cies [5], fast and in a globally consistent manner.

However, today, we do not have a good understanding
yet of the opportunities and limitations of a more dynamic
network management in general, and the Software-Defined
Network (SDN) paradigm in particular. Over the last years,
especially the problem of consistent network updates has
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received much attention [11, 13, 19, 22, 31]. While the logi-
cally centralized control introduced by software-defined net-
working is appealing, an SDN still needs to be regarded as
a distributed system, posing non-trivial challenges: in par-
ticular, the communication channel between switches and
controller exhibits non-negligible and varying delays [6, 13,
18]. The non-atomicity of seemingly atomic data plane up-
dates means that there are periods when the network config-
uration is incorrect despite looking correct from the control
plane perspective [17].

In a first line of works, initiated by Reitblatt et al. [31],
network updates providing strong consistency guarantees
have been studied: even during the transition from an old
routing policy π1 to a new routing policy π2, the Per-Packet
Consistency (PPC) property is ensured, i.e., each packet
will either be forwarded according to π1 (exclusively-)or π2,
but not a combination of both. In a second line of works,
initiated by Mahajan and Wattenhofer [22], weaker tran-
sient consistency properties have been investigated: during
a network update, a packet may be forwarded according to
the old policy π1 at some switches and according to the
new policy π2 at other switches; however, the update still
provides the most basic transient guarantees, such as Loop-
Freedom (LF): packets will never be forwarded along a loop.
Transiently loop-free updates are an attractive alternative to
stronger consistency models such as PPC, as updates take
effect earlier, are more resource efficient (no need for ex-
tra rules on the switch), and do not require tagging (often
problematic given the limited packet header space). Ludwig
et al. [19] have observed that besides the canonical strong
loop-freedom, there exists a relaxed notion of loop-freedom
which facilitates even faster network updates.

Security critical environments require additional consis-
tency guarantees, beyond loop-freedom. A particularly im-
portant one is Waypoint Enforcement (WPE): it needs to
be ensured that packets traverse specific network functions
or middleboxes. In fact, today’s computer networks con-
sist of a large number of so-called middleboxes, providing a
wide spectrum of in-network functionality for security, per-
formance, policy compliance, etc. For example, network
policies are often defined in terms of adjacency matrices or
big switch abstractions, specifying which traffic is allowed
between an ingress network port s and an outgress network
port d [14]. In order to enforce such a policy, traffic from s
to d needs to traverse a middlebox instance inspecting and
classifying the flows. The number of middleboxes in enter-
prise networks can be of the same order of magnitude as
the number of routers [12]. Middleboxes can also be virtual-
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ized [1]: such middleboxes can be deployed fast and flexibly
on the virtualized network nodes, e.g., running in a virtual
machine on a commodity x86 server.

In a nutshell, a transiently consistent waypoint enforcing
upate should guarantee that before, during and after the
transition from π1 to π2, packets traverse a certain middle-
box (the waypoint).

1.1 Contributions
This paper studies the problem of how to consistently up-

date a network such that waypoint enforcement and loop-
freedom are ensured. In particular, we make the following
contributions:

1. Waypoint enforcement matters: We show that
waypoints may easily be bypassed if no countermea-
sures are in place. Moreover, we prove that Loop-
Freedom (LF) and Waypoint Enforcement (WPE) can-
not always be implemented in a wait-free manner, in
the sense that the controller must rely on an upper
bound estimation for the maximal packet latency in
the network.

2. LF and WPE may conflict: We show that the tran-
sient Waypoint Enforcement WPE property may con-
flict with Loop-Freedom (LF), in the sense that both
properties may not be implementable simultaneously.
We also prove that relaxing the notion of loop-freedom,
as suggested by Ludwig et al. [19] for performance rea-
sons, does not help to render impossible instances fea-
sible: a given problem instance which cannot be solved
under strong loop-freedom, cannot be solved with re-
laxed loop-freedom either.

3. NP-hardness: The main technical result of this pa-
per is a formal proof that the decision problem whether
both consistency properties, LF and WPE, can be sat-
isfied simultaneously, is NP-hard. This result holds for
both strong and the relaxed loop-freedom.

4. Multiple waypoints: We initiate the discussion of
how to consistently update routes with more than one
waypoint, a.k.a. service chains. In particular, we show
that flexibilities in the order in which service chain
functions are traversed do not help regarding feasibil-
ity.

5. Algorithms: We present optimized, exact mixed in-
teger algorithms for the different network update vari-
ants. While solving mixed integer programs can be
resource- and time-consuming in general, we show that
in some scenarios, solutions can be computed effi-
ciently, and present a succinct formulation accordingly.

6. Simulations: We report on an extensive simulation
study. In particular, we find that the scenario size as
well as the number of waypoints significantly impacts
the runtime. While computing the schedule with a
minimum number of rounds is the main objective, we
show that for many scenarios the feasibility or the in-
feasibility can be decided quickly.

1.2 Paper Organization
The remainder of this paper is organized as follows. Sec-

tion 2 introduces our formal model. Section 3 presents first

intuitions and insights. The formal NP-hardness proof is
given in Section 4. Section 5 initiates the discussion of mul-
tiple waypoints. Section 6 presents different optimized and
exact algorithms (mixed integer programs). Simulation re-
sults are discussed in Section 7. After reviewing related work
in Section 8, we conclude our contribution in Section 9.

2. FORMAL MODEL
We consider a network which is managed by a controller,

sending out updates to the different switches across an asyn-
chronous network. As the updates are asynchronous, we re-
quire the controller to send out simultaneous updates only
to a “safe” subset of nodes. Only after these updates have
been confirmed (using acknowledgments), the next subset is
updated.

The controller needs to change an old policy resp. route
π1 to a new policy resp. route π2. Both π1 and π2 are sim-
ple directed paths. Initially, packets are forwarded (using
the old rules, henceforth also called old edges) along π1, and
eventually they should be forwarded according to the new
rules of π2. Packets should never be delayed or dropped at
a switch, henceforth also called node: whenever a packet
arrives at a node, a matching forwarding rule should be
present.

Without loss of generality, we assume that π1 and π2

lead from a source s to a destination d. Since nodes ap-
pearing only in one or none of the two paths are triv-
ially updatable, we focus on the network G induced by
the nodes V which are part of both policies π1 and π2,
i.e., V = {v : v ∈ π1 ∧ v ∈ π2}. Thus, we can rep-
resent the policies as π1 = (s = v0, v1, . . . , v`−1 = d)
and π2 = (s = v0, π(v1), . . . , π(v`−2), v`−1 = d), for
some permutation π : V \ {s, d} → V \ {s, d} and some
number `. In fact, we can represent policies in an even
more compact way: we are actually only concerned about
the nodes U ⊆ V which need to be updated. Let,
for each node v ∈ V , out1(v) (resp. in1(v)) denote the
outgoing (resp. incoming) edge according to policy π1,
and out2(v) (resp. in2(v)) denote the outgoing (resp. in-
coming) edge according to policy π2. Moreover, let us ex-
tend these definitions for entire node sets S, i.e., outi(S) =⋃
v∈S outi(v), for i ∈ {1, 2}, and analogously, for ini. We

define s to be the first node (say, on π1) with out1(v) 6=
out2(v), and d to be the last node with in1(v) 6= in2(v).
We are interested in the set of to-be-updated nodes U =
{v ∈ V : out1(v) 6= out2(v)}, and define n = |U |. Given
this reduction, in the following, we will assume that V only
consists of interesting nodes (U = V ).

Our main objective is to compute update schedules which
ensure loop-freedom and waypoint enforcement. We will
discuss the two properties in turn.

2.1 Loop-Freedom
We distinguish between Strong Loop-Freedom and Relaxed

Loop-Freedom [19].

2.1.1 Strong Loop-Freedom (SLF)
Our goal is to find an update schedule U1, U2, . . . , Uk, i.e.,

a sequence of subsets Ut ⊆ U where the subsets form a par-
tition of U (i.e., U = U1 ∪ U2 ∪ . . . ∪ Uk), with the property
that for any round t, given that the updates Ut′ for t′ < t
have been made, all updates Ut can be performed “asyn-
chronously”, that is, in an arbitrary order without violating
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Figure 1: Overview of model and reduction (adopted
from [19]). The solid lines show the old policy π1

and the dashed lines show the new policy π2. The
update problem on the left boils down to the update
problem for the line representation depicted on the
right (the old route goes from left to right). Nodes
shown in white are the only ones which are part on
both paths, and hence relevant for the problem.

loop-freedom. Thus, consistent paths will be maintained for
any subset of updated nodes, independently of how long in-
dividual updates may take.

More formally, let U<t =
⋃
i=1,...,t−1 Ui denote the set

of nodes which have already been updated before round t,
and let U≤t, U>t etc. be defined analogously. Since updates
during round t occur asynchronously, an arbitrary subset
of nodes X ⊆ Ut may already have been updated while
the nodes X = Ut \ X still use the old rules, resulting in
a temporary forwarding graph Gt(U,X,Et) over nodes U ,
where Et = out1(U>t ∪ X) ∪ out2(U<t ∪ X). We require
that the update schedule U1, U2, . . . , Uk fulfills the property
that for all t and for any X ⊆ Ut, Gt(U,X,Et) is loop-free.

Figure 1 illustrates our model [19]: We are given two poli-
cies (the old rules of π1 are solid, the new ones of π2 are
dashed), see Figure 1 (left). We focus on the updateable
nodes which are shared by the two policies. Thus, in our
example, the update problem can be reduced to the 5-node
chain graph in Figure 1 (right).

In the following we will call an edge (u, v) of the new policy
π2 forward, if v is closer (with respect to π1) to the desti-
nation, resp. backward, if u is closer to the destination. It is
also convenient to name nodes after their outgoing dashed
edges (e.g., forward or backward); similarly, it is sometimes
convenient to say that we update an edge when we update
the corresponding node.

2.1.2 Relaxed Loop-Freedom (RLF)
Relaxed Loop-Freedom is motivated by the practical ob-

servation that transient loops are not very harmful if they
do not occur between the source s and the destination d. If
relaxed loop-freedom is preserved, only a constant number
of packets can loop: we will never push new packets into a
loop “at line rate”. In other words, even if nodes acknowl-
edge new updates late (or never), new packets will not enter
loops. Concretely, and similar to the definition of SLF, we
require the update schedule to fulfill the property that for
all rounds t and for any subset X, the temporary forward-
ing graph Gt(U,X,E

′
t) is loop-free. The difference is that

we only care about the subset E′t of Et consisting of edges
reachable from the source s.

Throughout this paper we refer to Loop-
Freedom (LF) whenever the results hold for both SLF
and RLF.

2.2 Waypoint Enforcement
In addition to loop-freedom, we want to ensure waypoint-

enforcement (WPE). That is, we assume that both the old

route π1 as well as the new route π2 traverse a special node
in the network, henceforth called the waypoint. For instance,
the waypoint could describe a firewall or intrusion detection
system which each packet should traverse: both before, dur-
ing, as well as after the update.

2.3 Fast Network Updates
We are interested in consistent network updates which are

fast: we want to minimize the number of update rounds k
in the schedule, where in each round, the controller sends
another batch of updates to a subset of nodes, and waits
for their completion before starting the next round. This
is a natural metric, given the time it takes to update an
individual OpenFlow switch today [6, 13, 18].

3. FIRST OBSERVATIONS
To acquaint ourselves with the problem, in this section,

we give some examples and also derive first insights.

3.1 Example
Let us consider the example illustrated in Figure 2. The

old policy π1 connects four nodes (switches), from left to
right (depicted as a straight, solid line, s → v1 → v2 → d);
the new policy π2 is shown as a dashed line. The second
node, v1 (in black), represents the waypoint which needs to
be enforced.

How can we update the policy π1 to π2? A simple solution
is to update all nodes concurrently. However, as the con-
troller needs to send these commands over the asynchronous
network, they may not arrive simultaneously at the nodes,
which can result in inconsistent states. For example, if s is
updated before v1 and v2 are updated, a temporary forward-
ing path may emerge which violates WPE: packets originat-
ing at s will be sent to v2 and from there to the destination
d: the waypoint v1 is bypassed.

One solution to overcome this problem would be to per-
form the update in two (communication) rounds: in the first
round, only v1 and v2 are updated, and in a second round,
once these updates have been performed and acknowledged,
the controller also updates s. Note that this 2-round strat-
egy indeed maintains the waypoint at any time during the
policy update. However, the resulting solution may still
be problematic, as it violates our second desirable transient
consistency property, loop-freedom: if the update for node v2
arrives before the update at node v1, packets may be for-
warded in a loop, from nodes v1 to v2 and back. Both Way-
point Enforcement WPE as well as Loop-Freedom LF can be
ensured (for this specific example) in a three-round update:
in the first round, only v1 is updated, in the next round v2,
and finally s.

We, in this paper, are interested in consistent network
updates which are fast : (parts of) the new paths should be
used as soon as possible during the update. Concretely, we
want to minimize the round complexity of the policy update:
the number of communication rounds where in each round,
the controller sends another batch of updates to a subset
of nodes, and waits for their completion before starting the
next round.

3.2 Observation 1: You may have to wait!
It turns out that the transient enforcement of a waypoint

is non-trivial. We first show an interesting negative result: it
is not possible to implement WPE in a “wait-free manner”,
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Figure 2: Updating all nodes in one round may vio-
late WPE.

in the following sense: a controller does not only need to
wait until the nodes have acknowledged the policy updates
of round i before sending out the updates of round i + 1,
but the controller also needs some estimate of the maximal
packet latency: if a packet can take an arbitrary amount
of time to traverse the network, it is never safe to send out
a policy update for certain scenarios. We are not aware
of any other transient property for which such a negative
result exists. For ease of presentation, we will use the nota-
tion π<wpi to refer to the first part of the route given by pol-
icy πi, namely the sub-path from the source to the waypoint,
and π>wpi to refer to the second part from the waypoint to
the destination.

Theorem 1. In an asynchronous environment, a new
policy can never be installed without risking the violation
of WPE, if a node is part of π<wp1 and π>wp2 .

Proof. Consider the example in Figure 2 again, but
imagine that the waypoint is at node v2 instead of node v1.
Assume the following update strategy: in the first round, s
and v2 are updated, and in the second round, v1. This strat-
egy clearly ensures WPE, if (but only if) the updates of
Round 2 are sent out after packets forwarded according to
the rules before Round 1 have left the system. However, if
packets can incur arbitrary delays, then there could always
be packets left which are still traversing the old (solid) path
from s to v1. These packets have not been routed via the
waypoint (v2) so far but will be sent out to d by v1 in the
new path, violating the WPE property. This problem also
exists for any other update strategy.

Fortunately, in practice, packets do not incur arbitrary
delays, and Theorem 1 may only be of theoretical interest:
it is often safe to provide an update algorithm with some
good upper bound θ on the maximal packet latency. The
upper bound θ can be seen as a parameter to tune the safety
margin: the higher θ, the higher the probability that any
packet is actually waypoint enforced.

3.3 Observation 2: It may be impossible!
We next show a negative result: WPE and LF may conflict,

i.e., it is sometimes impossible to simultaneously guarantee
both properties.

Theorem 2. WPE and LF may conflict.

Proof. Consider the example depicted in Figure 3.
Clearly, the source s can only be updated once v3 is up-
dated, otherwise packets will be sent to d directly, which
violates WPE. An update of v3 can only be scheduled after
an update of v2 without risking the violation of LF. How-
ever, v2 needs to wait for v1 to be updated for the same
reasons. This leaves an update of v1 as the last possibility,
which however violates WPE again. Hence there is no up-
date schedule which does not violate either WPE or LF.

Figure 3: WPE and LF may conflict.

3.4 Observation 3: It does not help to relax!
Given the additional flexibility introduced by relaxed

loop-freedom, one could hope that relaxed loop-freedom
can also help to overcome the impossibility observed above.
However, as we prove in the following, this is never the case.

Theorem 3. If there does not exist a strong loop-free so-
lution, there there does also not exist a relaxed solution.

Proof. For the sake of contradiction, assume that there
exists a scenario which is solvable for RLF but not for SLF.
Consider the first round in which the RLF algorithm makes
the relevant update which is not possible with SLF. In this
configuration, there must exist at least one backward edge
and one forward edge which are not updated yet. In a sce-
nario in which all backward edges are already updated, no
forward edge can bypass the waypoint if the final policy is
consistent. If all forward edges would have already been up-
dated, then the path could easily be completed, updating
the backward edges one by one starting with the backward
edges connected to the forward edges.

Thus, there exists a forward edge e, which cannot be up-
dated in SLF and by definition must be bypassing the way-
point, as forward edges in SLF cannot create loops. Since
this scenario is solvable for RLF, there must exist a backward
edge e′ that allows the update of e at some point. As e′ can
only be updated for RLF but not for SLF, it must be an
edge which creates a loop which is not on the path between
source and destination. However, to enable the update of e,
the update of e′ must impact the current flow, since an up-
date of e is only possible if the path from the head of e to
the destination is leading through the waypoint. Hence, it
cannot be the update of e′ as it will not change the current
flow, which contradicts our assumption.

4. NP-HARDNESS
Our observation that LF and WPE can conflict may not

necessarily be a problem in practice: if these instances can
be identified quickly, one could resort to an alternative, pos-
sibly more resource-intensive update mechanisms [4, 31].
Unfortunately, however, as we will prove in the following,
the underlying decision problem is NP-hard. In particular,
we will prove a polynomial-time reduction from 3-SAT: we
construct a network update instance according to a 3-SAT
formula which is updatable if and only if the 3-SAT formula
is satisfiable. We will refer to the 3-SAT formula as C and
to network update instance as G(C).

Notation
In our reduction we will assume that each clause in 3-SAT
has exactly 3 literals. We will denote the number of variables
as k and the number of clauses as m. The variables will be
denoted as x1, x2, . . . , xk and the clauses as K1,K2, . . . ,Km.
We will denote the total number of clauses with variable xi
as mi, number of clauses with literal xi as pi and number
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of clauses with literal ¬xi as qi. We will also denote the
clauses with literal xi as P i1 , P

i
2 , . . . , P

i
pi and the clauses with

literal ¬xi as Qi1, Q
i
2, . . . , Q

i
pi .

General Structure
In the constructed instance there will be a destination d,
waypoint wp and auxiliary nodes u1, u2, u3 and δ. For
each variable and each clause in 3-SAT we will create a
gadget. Additionally for each clause we will add three
nodes di1, d

i
2, d

i
3 and for each variable we will add m

nodes r1j , . . . , r
m
j . The source of the path will be the first

node in the first clause gadget. The order of gadgets and
nodes is presented in Figure 4.

In a gadget for variable xi there will be a set of nodes
connected with clauses containing xi. Updating one of those
edges connecting a clause with the gadget will allow to un-
tangle the corresponding clause (we will define untangling
more formally later; generally speaking in order to untan-
gle a clause we need to update one of its edges which cor-
responds to satisfying it in 3-SAT formula). The variable
gadgets will be constructed such that until all clauses are
untangled only the edges corresponding to one literal (xi
or ¬xi) can be updated. Therefore the constructed instance
will be solvable only if we can untangle all clauses using
one literal for each variable, which corresponds to satisfying
3-SAT formula.

K1 K2 Km

r1k+1
r1k

r11 rmk+1
rmk rm1

u1 u2 u3 wp

x1 x2 xk
δ

d11 d12
dm3

d
wp

Figure 4: Order of gadgets and nodes. The upper
part shows the order from the source to wp. The
lower part shows the order from wp to the destina-
tion.

Variable Gadgets
For each variable xj we construct a gadget consisting of
four nodes vj1, v

j
2, v

j
3, v

j
4. These nodes are connected with

the edges (vj1, v
j
3) and (vj2, v

j
4) and there is an edge from vj4

to first node of next variable gadget, vj+1
1 (and in case of

the last variable gadget there is an edge from vk4 to δ). Note
that these nodes vj4 and vj+1

1 would be combined in our
model, but it makes no difference for the problem if we keep
both and the proof is easier to follow if we treat them seper-
ately. In the gadget there are also nodes yj1, y

j
2, . . . , y

j
pi be-

tween vj1 and vj2 and nodes zj1, z
j
2, . . . , z

j
qi between vj3 and vj4.

Clauses P j1 , P
j
2 , . . . , P

j
pi will be connected to yj1, y

j
2, . . . , y

j
pi ,

and updating an edge yji will allow clause P ji to become

untangled. Similarly clauses Qj1, Q
j
2, . . . , Q

j
qi will be con-

nected to zj1, z
j
2, . . . , z

j
qi . In turn nodes yj1, y

j
2, . . . , y

j
pi can

be updated only if vj1 is updated, and zj1, z
j
2, . . . , z

j
qi if vj2 is

updated and vj1 is not updated (or all clauses are already
untangled). That will allow us to conclude the value of xj
based on whether before all clauses become untangled vj1 is
updated or not. A construction of the gadget is presented
in Figure 5.

vj−1
4 vj+1

1vj1 vj2 vj3 vj4

yj
piyj

pi−1

yj
1

zj
qi

zj
qi−1

zj
1

xj
xj−1 xj+1

Figure 5: Construction of a variable gadget for xj.

Clause Gadgets
For each clause Ki we construct a gadget consisting of
nodes ci1, c

i
2, . . . , c

i
6. Also for each clause we add three

nodes (outside of the gadget, close to d, see also Fig-
ure 4) di1, d

i
2, d

i
3. For each j ∈ {1, 2, 3} we add edges (cij , d

i
j)

and (dij , c
i
j+3). The purpose of nodes di1, d

i
2 and di3 is to de-

lay the update of nodes ci1, c
i
2 and ci3 until all the clauses are

untangled. The construction of a clause gadget is shown in
Figure 6.

ci1 ci2 ci3 ci4 ci5 ci6 wp di1 di2 di3

Figure 6: Construction of a clause gadget.

Connecting the Gadgets
Let us consider variable xi. Let Kj = P ia be any
clause containing literal xi. Then we connect one of
the nodes cj4, c

j
5, c

j
6 to node yia, and this node to respec-

tively cj+1
1 , cj+1

2 or cj+1
3 (if Kj is the last clause than to u1, u2

or u3 instead). Note, that the nodes yi1, . . . , y
i
pi are in re-

verse order than clauses P i1 , . . . , P
i
pi (so the earliest clause

is connected to the last node). We proceed similarly with
clauses Qi1, . . . , Q

i
qi and nodes zi1, . . . , z

i
qi .

P i
1 P i

2
P i
pi xi

Figure 7: Edges to connect clauses

Connecting the Whole Graph
In addition to the gadgets we need to connect the path
to the destination d, the waypoint node wp and the three
nodes u1, u2, u3 which will be in the old policy just before
the waypoint. We add edges from u3 to wp, from wp to v11 ,
from u1 to c12 and from u2 to c13. After every i-th clause gad-
get we create k + 1 nodes ri1, r

i
2, . . . , r

i
k+1 in reverse order,

i.e. rik+1 is the first node after the gadget and ri1 is the last.
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Figure 8: Connecting all paths.

For each variable xi we create a path starting in vi3, then
going through nodes rmi , r

m−1
i , . . . , r1i and ending in vi2. We

also create a similar path starting in δ, then going through
nodes rmk+1, r

m−1
k+1 , . . . , r

1
k+1 and ending in vid. All these edges

are shown in Figure 8.

Proof of Correctness
In this section we will prove, that the reduction is correct.
We will say that a clause (or clause gadget) is untangled if
at least one of the nodes ci4, c

i
5 or ci6 is updated. We say that

a clause is tangled if it is not untangled.

Theorem 4. If C is satisfiable then there is a schedule
for G(C) which satisfies SLF and WPE.

Proof. Let σ be an assignment that satisfies C. Then
based on σ we will show how to update all nodes in G(C)
without violating SLF or WPE. The nodes will be updated
according to the following round schedule:

1. For each variable xi we update vi2. Also if σ(xi) = 1
we update vi1 (which makes the update of vi2 irrelevant
as it bypasses vi2).

2. For each variable xi we update either nodes yi1, . . . , y
i
pi ,

if σ(xi) = 1, or nodes zi1, . . . , z
i
qi otherwise.

3. Since for each clause Kj there is at least one literal that
satisfies it, we update one of nodes cj4, c

j
5, c

j
6 which is

connected to that literal. The path after these updates
is shown on Figure 9.

4. We update nodes rij for all i, j. This can be done,
since every clause has at least one outgoing edge and
every rij edge has a clause inbetween.

5. We update nodes vi3, for all i, and node δ, which con-
nects the path updated in round 4 with the reachable
parts behind the waypoint.

6. We update those nodes vi1 that were not updated ear-
lier, as the path starting at vi3 is now loop-free.

7. We update those nodes yij and zij that were not up-
dated earlier.

8. We update those nodes cj4, c
j
5 and cj6 that were not

updated earlier.

9. We update nodes dj1, d
j
2, d

j
3, for all j.

10. We update nodes cj1, c
j
2, c

j
3, for all j.

11. We update nodes u1, u2, u3 and wp.

None of these updates will violate WPE or SLF.

Theorem 5. If there is a schedule for G(C) which satis-
fies RLF and WPE then C is satisfiable.

We will start by proving the following lemma:

Lemma 1. In any correct order of updating edges, as long
as some clause gadgets remain tangled, the following condi-
tions hold:

1. A node yij can be updated only if node vi1 is updated.

A node zij can be updated only if node vi2 is updated.

Nodes zij and vi1 cannot be both updated.

2. A node rij, for any i ∈ {1, . . . ,m} and j ∈ {1, . . . , k +
1}, can be updated only if i-th clause gadget is untan-
gled.

3. A node cij, for j ∈ {4, 5, 6} can be updated only if its
successor is already updated or if there is h ∈ {4, 5, 6}
such that h < j and cih is already updated.

4. A node vi3, for any i, can be updated if for all j ∈
{0, 1, . . . ,m} rji is updated or if vi2 is updated, but vi1
is not. The same applies to node δ.

5. Nodes di1 and di2 and di3, for any i, cannot be updated.

6. Node ci3 cannot be updated. Node ci2 can be updated
only if ci−1

6 and its successor are updated, ci−1
5 or its

successor are not updated and ci−1
4 or its successor are

not updated. ci1 can be updated only if ci−1
4 or its suc-

cessor are not updated and either ci−1
6 and its successor

or ci−1
5 and its successor are updated.

Before proving the lemma, let us make some observations
about what these conditions mean in terms of the path tra-
versed by packets. Conditions 1 and 4 guarantee, that if a
packet is in vi1 or vi2, for some i, then it will be forwarded to
node δ without going through wp. That is because it uses
edges from vj1 and vj2 to bypass any backward edges. Then
Condition 5 guarantees that it travels from δ to d without
passing through the waypoint.

Conditions 2, 3 and 6 guarantee that a packet will traverse
from the source through all the clauses until it reaches the
waypoint. That holds because for each clause, if it is untan-
gled, the packet will be forwarded from some cij to yal , and

then, as yal must have been updated before cij , it returns to

ci+1
j−3. On the other hand, if the clause is tangled, the packet
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Figure 9: The path after three rounds of updating according to the schedule in proof of Theorem 4.

will go through rik+1, r
i
k, . . . , r

i
0 (none of them is updated,

since the clause is tangled) to ci+1
1 .

Conditions 2 and 4 guarantee that as long as not all clauses
are untangled, δ cannot be updated and vi3 can be updated
only if the path from source to destination does not go
through that node.

Let us also notice that if Conditions 5 and 6 hold, then a
packet can enter a clause gadget only through nodes ci1, c

i
2

and ci3, and it is afterwards forwarded to node ci4. Therefore
it is enough to show that a packet enters a clause gadget
twice to prove loop-freedom violation.

Proof. Let us take any order of updating edges, and
consider the first update that violates one of the conditions.
If we update any node other than vi1 at most one condition
is violated. So firstly let’s assume that only one condition is
violated and consider the cases for which condition it is.

1. Let us assume that yij is updated, but vi1 is not. Then
the packet goes through all clauses, and then through
all previous variable gadgets. Upon entering the gad-
get for xi it goes through an edge from yij to Ki and

therefore violates loop-freedom. The case when zij is
updated is similar.

2. Let us assume that rij is updated, but the i-th clause
is tangled. Then the packet goes through all clause
gadgets up to Ki, then it is forwarded to rij . Then
there are two possibilities. Firstly it may be forwarded
back to r1l , for l ≤ j, and from there to the gadget for
xl. But because Conditions 1, 4 and 5 are satisfied,
it would go to the end, without passing through the
waypoint. The other case is that it is forwarded back
to ral , for some a < i and l ≤ j, and then re-enters some
clause gadget, which would violate loop-freedom.

3. Let us assume that cij is updated but its successor yla
and cih, for all h ∈ {4, 5, 6} such that h < j, are not.
Then the packet traverses through cij without passing

through the waypoint, and then it goes to yla. Then
it may either be forwarded to vl2, which means that it
would be forwarded to d without passing through the
waypoint, because Conditions 1, 4 and 5 are satisfied,
or it travels from some node ylg to gadget Kf . But

then f ≤ i, because of the order of nodes ylpl , . . . , y
l
1,

it would go to a gadget that was already visited, and
therefore violate loop-freedom. The case when the suc-
cessor of cij is zla, for some l, a, is similar.

4. Let us assume that vi3 is updated, but there is some rji
which is not updated and either vi1 is updated or vi2
is not. Then the packet, after going through the way-
point, reaches the gadget for xi. Then, because vi1 is
updated or vi2 is not, it is forwarded to vi3. From there
it traverses through some backward edges, before it

enters some clause gadget (it cannot take backward
edges until it goes to r1a, and then go forward to some
variable gadget, because Condition 2 holds, and not all
clauses are untangled). Since all clause gadgets were
already visited, it violates loop-freedom.

5. If dij is updated, then the packet traverses through all

clause gadgets and variable gadgets until it reaches dij .

From there it goes back to cij+3. Then there are two
possibilities: if it will be forwarded to the next clause
gadget, it will violate loop-freedom, because all clauses
were already visited. Otherwise, if cij+3 is updated,

the packet is forwarded to some node yla (or zla). From
there, it can either be forwarded to some clause gadget,
or to xl+1. In both cases, it violates loop-freedom.

6. The condition guarantees that if the packet traverses
through cij , for j ∈ {1, 2, 3}, then this node can-
not be updated. Otherwise, the packet after going
to Ki (without going through the waypoint), would go
to dij , and from there to the destination.

Finally let us consider what happens when we update vi1
and it violates Conditions 1 and 4. Then the case is similar
to violating only Condition 4, that is, the packet traverses
through all the clauses to the waypoint, and from there to vi1
and next to vi3. From there it goes through backward edges
and re-enters the clause, which violates loop-freedom.

Now we are ready to prove Theorem 5.

Proof. Let us assume that there is a schedule for G(C).
Then let us look at the update which untangles the last
clause (that is before this update there was an tangled
clause, and after this update all clauses are untangled).
Then Condition 1 guarantees, that for each variable there
is no node corresponding to positive literal (node yia) and
a node corresponding to negative literal (node zil ) that
are both updated. That is because updating node yia re-
quires that vi1 is updated, whereas updating node zil requires
that vi1 is not updated. Therefore in the assignment of vari-
ables in C we set xi to 1, if at least one of nodes yia, for any a,
is updated, or to 0 otherwise. Then because all clauses are
untangled, and untangling a clause requires that at least
one literal has value 1, this assignment satisfies all formulas
in C.

Theorem 6. There is a schedule for G(C) satisfying RLF
and WPE iff C is satisfiable and iff there is a schedule
for G(C) satisfying SLF and WPE.

Proof. We have shown that the existence of a schedule
satisfying RLF and WPE implies that C is satisfiable. We
have also shown that if C is satisfiable then there is a schedule
satisfying SLF and WPE. Because a schedule satisfying SLF
and WPE is also a schedule satisfying RLF and WPE, these
three statements are equivalent.
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5. EXTENSION TO SERVICE CHAINS
We currently witness a trend towards more complex net-

work services, which concatenate multiple network func-
tions or middleboxes into so-called service chains [8, 21,
26, 28, 29]: sequences of network functions which are al-
located and stitched together in a flexible manner. For
example, a service chain c could define that traffic orig-
inating at source s is first steered through an intrusion
detection system for security (1st network function), next
through a traffic optimizer (2nd network function), and
only then is routed towards the destination d. Such ad-
vanced network services open an interesting new market for
Internet Service Providers, which can become “miniature
cloud providers” [30], specialized for in-network processing.
Clearly, enforcing multiple waypoints does not render the
problem easier.

Interestingly, it is even impossible to compute an update
from a route π1 to a route π2, if waypoints occur in reverse
order in the two policies.

Theorem 7. The order, in which two waypoints wp1
and wp2 are traversed cannot be changed from π1 to π2 with-
out violating either WPE or LF.

Proof. Assume that in π1 packets traverse wp1 first, fol-
lowed by wp2 and vice versa for π2. By definition, before
the start of the update, packets are forwarded according
to π1 and hence, visit wp1 before wp2. Due to WPE, both
waypoints are on the source-destination path in every round
and hence, to change the order of both waypoints, we can
identify a single round where this order changes. Otherwise
there are either loops or bypassed waypoints. We can assume
w.l.o.g. that this round includes an update, which leads to
a forwarding of packets to wp2 before they traversed wp1
and that this update will be executed as the first update in
this round. However, this update immediately bypasses wp1,
since a way back to wp1 could only exist if this path existed
before. Thus, the round before included a loop, as wp1 was
visited before wp2.

6. OPTIMAL UPDATE ALGORITHMS
We now present exact algorithms, based on Mixed-Integer

Programs (MIPs), for computing update schedules, when-
ever this is possible. We generalize the Mixed-Integer Pro-
gram presented in [20] for multiple waypoints and present
the following extensions: (1) we model the decision prob-
lem by forcing only a single update to take place in each
round, (2) present an adaption for realizing the relaxed
loop-freedom property, and (3) introduce a flow extension
that computationally strengthens the formulation. Based on
these extensions, we obtain 8 different Mixed-Integer Pro-
gramming formulations in total. We refer to the formula-
tions by 3 character acronyms of the form -/D | S/R | -/F :
the first character indicates whether the decision problem
is considered (D) or not (-), the second character indicates
whether the strong (S) or the relaxed (R) loop-freedom prop-
erty is used, and the last indicates whether the flow ex-
tension is used (F) or not (-). Hence, DSF will refer to
the MIP formulation for the decision variant of the strong
loop-freedom property with the flow extension and -R- de-
notes the basic MIP formulation for the relaxed-loop free-
dom property without the decision and flow extensions (cf.
MIP 1). The models and the extensions are presented in the
following.

6.1 Basic Model
According to the line representation presented in Sec-

tion 3, policies π1 and π2 are described as (simple) paths Eπ1

and Eπ2 on the common set of nodes V . Both Eπ1 and Eπ2

connect the source s ∈ V to the destination d ∈ V .
The decision of whether switch v ∈ V shall be updated

in any round r ∈ R = {1, . . . , |V | − 1} is modeled using bi-
nary variables xrv ∈ {0, 1}. Constraint 2 of MIP 1 enforces
the policy of each node to be changed in exactly one of the
rounds. The general objective of the optimization problem is
to minimize the number of rounds. This is realized by mini-
mizing the variable R ≥ 0 which is lower bounded by all the
rounds in which an update is performed (see Constraint 1).

Given the assignment of switch updates to rounds, the
Constraints 3 and 4 set the variables yre ∈ [0, 1] to indicate
whether the edge e ∈ Eπ1 ∪Eπ2 exists after the (successful)
execution of all updates up to and including round r. Note
that these variables are actually binary based on their com-
putation as a function of the variables xrv. To check that the
properties WPE and LF hold, transient states between the
rounds r−1 and r need to be considered as described below.

Enforcing RLF.
We first outline how to enforce RLF and will then dis-

cuss how to adapt the constraints to enforce SLF. To model
the RLF property, we need to guarantee the transient states
between rounds to be loop-free. Note that the updates for
round r ∈ R will only be triggered when all updates of nodes
in previous rounds were successful. As updates within one
round are sent out asynchronously, the updates can be in-
stalled in an arbitrary order. To effectively forbid any in-
termediate cycles it suffices to forbid cycles in the union of
edges being installed after the execution of round r − 1 to-
gether with the edges that are enabled in round r. This
suffices, as, if there exists a partial update of nodes that
forms a transient loop, this loop is also contained in the
respective union of the edges.

Specifically, RLF only forbids loops which are reachable
from the source node s ∈ V . To this end, we define vari-
ables arv ∈ {0, 1} to indicate whether a node v ∈ V may
be reachable or accessible from the source node s under any
order of updates between rounds r− 1 and r. The variables
are set to 1 if, and only if, there exists a (simple) path from s
towards v using edges of either the previous round or the cur-
rent round (see Constraints 5 - 7). Similarly, and based on
this reachability information, the variables yr−1∨r

u,v ∈ {0, 1}
are set to 1 if the edge (u, v) ∈ E may be used in the
transient state, namely if the edge existed in round r − 1
or r and u could be reached (see Constraints 8 and 9).
Lastly, having reconstructed the information which edges
effectively may carry flow, we employ the well-known Miller-
Tucker-Zemlin constraints (see 10) with corresponding lev-
eling variables lrv ∈ [0, |V | − 1] to forbid loops: if traffic may
be sent along edge (u, v) ∈ E, i.e., if yr−1∨r

u,v = 1 holds,
then lrv ≥ lru + 1 is enforced. Hence, the level variable of
the head v of the edge (u, v) is strictly larger than the level
variable of its predecessor u. Clearly, an existing cycle does
not allow for a feasible assignment of level variables.

We lastly note, that we need to introduce the following
constants, modeling the initial state in round 0, for MIP 1
to be well-defined: we set a0s = 1, as the source node s is
always reachable, and enforce that initially only edges of
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Mixed-Integer Program 1: Optimal Rounds (-R-)

min R (Obj)

R ≥ r · xrv r ∈ R, v ∈ V (1)

1 =
∑
r∈R x

r
v v ∈ V (2)

yru,v = 1−
∑
r′≤r x

r′
u r ∈ R, (u, v) ∈ Eπ1 (3)

yru,v =
∑
r′≤r x

r′
u r ∈ R, (u, v) ∈ Eπ2 (4)

ars = 1 r ∈ R (5)

arv ≥ aru + yr−1
u,v − 1 r ∈ R, (u, v) ∈ E (6)

arv ≥ aru + yru,v − 1 r ∈ R, (u, v) ∈ E (7)

yr−1∨r
u,v ≥ aru + yr−1

u,v − 1 r ∈ R, (u, v) ∈ E (8)

yr−1∨r
u,v ≥ aru + yru,v − 1 r ∈ R, (u, v) ∈ E (9)

yr−1∨r
u,v ≤ lrv − lru − 1

|V | − 1
+ 1 r ∈ R, (u, v) ∈ E (10)

ar,ws = 1 r ∈ R, w ∈WP (11)

ar,wv ≥ ar,wu + yr−1
u,v − 1

r ∈ R, w ∈WP ,
(u, v) ∈ Ew

WP

(12)

ar,wv ≥ ar,wu + yru,v − 1
r ∈ R, w ∈WP ,

(u, v) ∈ Ew
WP

(13)

ar,wd = 0 r ∈ R, w ∈WP (14)

the old policy Eπ1 may be used, i.e. we set y0u,v = 1 for
(u, v) ∈ Eπ1 and y0u,v = 0 for (u, v) ∈ Eπ2 .

Enforcing WPE.
We denote by WP ⊂ V the set of waypoints, which may

under not be bypassed. For enforcing the WPE property, a
reachability construction similar to the one of Constraints 5
- 7 is employed. We define variables ar,wv ∈ {0, 1} for each
waypoint w ∈WP , each round r ∈ R and each node v ∈ V .
Intuitively, ar,wv = 0 may only hold, if no path from the
source towards the node v exists in the transient state be-
tween rounds r and r − 1, which does not contain way-
point w ∈ WP . To this end, we denote by Ew

WP
⊂ E all

edges not incident to the waypoint w and reachability prop-
agation is only enforced along these edges (cf. Constraints 11
- 13). As Constraint 14 ensures that no packet must arrive
at the destination d – using a path in Ew

WP
– no waypoint

w ∈WP will be bypassed.

6.2 Model Extensions
Based MIP 1, we consider a series of model extensions.

Decision Variant.
First, note that the above presented formulation only con-

siders the optimization problem of finding an update sched-
ule using the minimal number of rounds. However, for check-
ing whether a given problem is feasible or not, it will prove
useful to consider the respective decision problem. To this
end, we may include the following constraint, which only
allows one switch to be updated within each round.∑

v∈V

xrv = 1 r ∈ R . (15)

While simple, this constraint can drastically reduce the
search space and acts as symmetry reduction.

Enforcing SLF.
SLF is strictly stronger than RLF as it forbids cycles under

any circumstances, i.e. we forbid cycles even if none of its
nodes are (anymore) reachable from the source node. Hence,
the reachability variables arv are not needed anymore as all
nodes can be considered to be reachable. Therefore, Con-
straints 5 - 10 can be replaced by the following constraints
to enforce the SLF property.

yr−1∨r
u,v ≥ yr−1

u,v r ∈ R, (u, v) ∈ E (16)

yr−1∨r
u,v ≥ yru,v r ∈ R, (u, v) ∈ E (17)

yr−1∨r
u,v ≤ lrv − lru − 1

|V | − 1
+ 1 r ∈ R, (u, v) ∈ E (18)

Flow Extension.
A disadvantage of the MIP 1 is the (necessary) use of

reachability propagation constraints in the form of binary
conjunctions (cf. Constraints 6 - 9): if the tail u is reach-
able and the respective edge (u, v) is enabled, then the head
v is also reachable. These constraints often yield weak linear
relaxations [2], which can drastically worsen the solvability
in practice. To strengthen the models, we present a multi-
commodity flow extension. Concretely, we consider s-d flows
for each round r ∈ R to enforce the correctness of the non-
transient states and introduce flow variables fre ∈ [0, 1] for
each round r ∈ R and each edge e ∈ Eπ1 ∪Eπ2 . Our exten-
sion can be formalized as follows:∑

e∈δ+(s)

fre = 1 r ∈ R (19)

∑
e∈δ+(v)

fre =
∑

e∈δ−(v)

fre r ∈ R, v ∈ V \ {s, d} (20)

fre ≤ yre r ∈ R, e ∈ Eπ1 ∪ Eπ2 (21)∑
e∈δ−(w)

fre ≥ 1 r ∈ R, w ∈WP (22)

arv ≥ fr−1
v r ∈ R (23*)

arv ≥ frv r ∈ R (24*)

The first two constraints construct s-d flow, such that the
flow starting at the source s ∈ V must reach the destina-
tion d ∈ V . As the flow is upper bounded by the existence
of the edges (see Constraint 21), not even fractional cycles
may exist after having executed the updates of round r ∈ R;
this is in fact not safe-guarded by MIP 1. Note, that the
Constraint 21 is valid both for SLF and RLF, since the flow
always emerges at s and all intermediate nodes are therefore
reachable.

With respect to the WPE property, the Constraint 22
states that all waypoints must be reached by all of the
flow by lower bounding the flow along the the set of incom-
ing edges. Lastly, the Constraints 23* and 24* strenghten
the (relaxed) loop detection by bounding the reachability
variables arv from below. Note that these constraints are
only added, when RLF is considered, as these variables do
not exist in the SLF adaption.

7. SIMULATIONS
In our simulations we are specifically interested in the

number of scenarios in which LF and WPE conflict and hence
are not updateable without violating either one of the two
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Figure 10: Classification of the generated scenarios according to whether a feasible solution exists, how many
optimal solutions can be computed under strong and relaxed loop-freedom, how many scenarios are infeasible
and lastly for which percentage of the scenarios neither feasibility nor infeasibility can be proven with any of
the algorithms in 10 minutes. As can be seen, the number of waypoints has a distinct impact on the number
of feasible scenarios.
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Figure 11: Qualitative evaluation of the algorithm performance for 30 switches and different number of
waypoints. The bottom bar (dark gray) represents the (total) number of scenarios that can be solved optimally,
the light gray bar represents the number of scenarios for which a feasible solution is found but optimality is
not proven, the white bars represent the scenarios for which neither feasibility nor infeasibility can be proven
in 600 seconds and the black bars depict the number of scenarios whose infeasibility is proven successfully.

properties. We generate policy updates randomly and vary
the number of nodes as well as the number of waypoints. The
generated policies always have a fixed source node s ∈ V
and destination node d ∈ V , and the intermediate nodes’
order is shuffled uniformly at random. In cases of multiple
adjacent waypoints, we ensure that the order in which the
waypoints are traversed by π1 and π2 does not differ, as we
have already proven in Theorem 7 that these scenarios are
unsolvable (and can easily be identified). In addition, we
guarantee that no node has the same rule in π2 as it had
in π1, as those nodes do not need to be considered within
our model, since no update and hence, no changes in the
forwarding behavior exists. As middleboxes are traversed
one by one in the same order, the generated policies can be
viewed to model service chains.

We generate updates of lengths {10, 11, . . . , 30}, contain-
ing one to three waypoints. For each combination of these
values, we generate 200 instances (12,600 overall) at ran-
dom. We use Gurobi 6.5 to solve the respective eight differ-
ent MIP formulations and terminate experiments, if neither
optimality nor infeasibility was shown within 600 seconds.

As to be expected, the feasibility of scenarios is influenced
by the number of waypoints within the policy update, see
Figure 10. For a single waypoint the percentage of infea-
sible scenarios is decreasing when increasing the number of
nodes. While roughly 15% of the scenarios are infeasible
for 10 nodes, for scenarios involving at least 22 nodes only
a fraction of at most 3% remain infeasible. These numbers
differ when we add more waypoints. With two waypoints

the number of infeasible scenarios starts out at 20% and
decreases to 5%. Using three waypoints even increases the
percentage initially to roughly 30% for smaller instances.
More waypoints do not only lead to a higher percentage of
infeasible scenarios, but also to more time-intensive com-
putations. While scenarios with one waypoint are solved
in nearly all cases within the 600 seconds, the feasibility of
roughly 15% of the scenarios cannot be decided with three
waypoints at 30 nodes, i.e., within the time limit neither the
feasibility nor the infeasibility could be proven using any of
the Mixed-Integer Programs. Furthermore, the number of
scenarios solved to optimality decreases both with the sce-
nario size and the number of waypoints. Comparing the
different notions of Loop-Freedom, we note that for RLF a
smaller amount of scenarios could be solved optimally.

The feasibility trends observed in Figure 10 can also be
found in Figure 11, which gives an overview of the algo-
rithms’ performance for the scenarios containing 30 nodes.
Independent of the number of waypoints, it can be observed
that the MIP variants, which only allow a single update per
round (i.e. the decision variants), find more solutions for
the multiple waypoint scenarios than the formulations which
aim for a minimization of the number of rounds. Note that
when considering the decision variant, any feasible solution
is indeed optimal. The flow extension formulations also show
a slight benefit compared to its counterparts in terms of the
ability to find feasible solutions as well as to detect infeasi-
bilities. However, in scenarios with multiple waypoints, the
optimization variants all fail to detect a significant fraction

282



10 20 30

100

101

102

ru
nt

im
e

[s
]

-R-

10 20 30

-RF

10 20 30

-S-

10 20 30

-SF

10 20 30

DR-

10 20 30

DRF

10 20 30

DS-

10 20 30

DSF

Runtime Infeasibility Detection

nodes
10 20 30

100

101

102

ru
nt

im
e

[s
]

-R-

10 20 30

-RF

10 20 30

-S-

10 20 30

-SF

10 20 30

DR-

10 20 30

DRF

10 20 30

DS-

10 20 30

DSF

Runtime First Solution

nodes

Figure 12: Runtimes for proving the infeasibility of the underlying scenario (left) and runtimes for finding
the first feasible solution (right) aggregated over all number of waypoints and displayed for 10, 20, and 30
nodes as well as for each Mixed-Integer Programming formulation. Note the logarithmic y-axis.

of feasible scenarios as such, i.e. even though solutions exist,
none are found within the time limit.

Figure 12 provides a more detailed view on the runtime
distributions leading to the increase of undecided scenar-
ios. While there are only very few differences on small sce-
nario sizes, these differences increase with the scenario size.
In terms of the infeasibility detection, there is a significant
improvement when adding the flow extension to the algo-
rithms, e.g., the median runtime for all algorithms in the 20
node scenario is two orders of magnitude lower with this ex-
tension. Especially the decision variants benefit from this
extension where the median is also two orders of magnitude
lower in the 30 nodes scenarios. Given these results one
could possibly use the decision variants as an infeasibility
detector while concurrently running an instance of the min-
imization variant to search for applicable update schedules
using the minimal number of rounds. Concretely, in con-
trast to the benefit for the infeasibility detection, the flow
extension prolongs the time until the first solution is found
for the minimization algorithms and has roughly no impact
in the decision variants. The plots of the runtimes for find-
ing the optimal solution look similar to those for finding the
first solution and we hence omit it here.

As the overall goal is to minimize the number of rounds,
we lastly present in Figure 13 an ECDF for comparing the
minimal number of rounds required to update the differ-
ent scenarios. We distinguish between RLF and SLF con-
sider scenarios with 10, 20, and 30 nodes. We observe that
more than 90% of the scenarios are solvable with at most 10
rounds. Furthermore, the usage of RLF decreases the re-
quired number of rounds by roughly one on average.

8. RELATED WORK
Networking routing comes with many policy constraints

today, and the impact of these constraints and how to take
them into account algorithmically has been studied inten-
sively over the last years, specially in the context of the
wide-area Internet [3, 16, 29, 32]. We in this paper are
particularly interested in routes maintaining waypoint en-
forcement guarantees.

The problem of updating [4, 10, 13, 22, 31], synthe-
sizing [24] and checking [15] SDN policies [25] as well as
routes [5] has also been studied intensively. In their seminal
work, Reitblatt et al. [31] initiated the study of network up-
dates providing strong, per-packet consistency guarantees,
and the authors also presented a 2-phase commit proto-
col. This protocol also forms the basis of the distributed
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Figure 13: ECDF of the minimal number of required
rounds for updating (feasible) scenarios with 10
(solid), 20 (dash-dotted), and 30 (dashed) nodes un-
der relaxed (black) and strong loop-freedom (gray).
More than 90% of the scenarios can be solved using
10 or less rounds. Note the logarithmic x-axis.

control plane implementation in [4]. Mahajan and Wat-
tenhofer [22] started investigating weaker transient consis-
tency properties—in particular also (strong) loop-freedom—
for destination-based routing policies. The measurement
studies in [13] and [18] provide empirical evidence for the
non-negligible time and high variance of switch updates,
further motivating their and our work. In their paper, Ma-
hajan and Wattenhofer proposed an algorithm to “greed-
ily” select a maximum number of edges which can be used
early during the policy installation process. Our work builds
upon [22], and we consider the scheduling complexity of up-
dating arbitrary routes which are not necessarily destination
or shortest-path based. The weak-consistency model intro-
duced in [22] already led to several follow-up papers, for
example [19] which also studies round-based models and [7]
which studies extensions to jointly optimizing multiple poli-
cies. There have recently also been proposals to prioritize
shorter policies over longer policies, in order to improve the
overall update time [27]. Such a prioritization is meaning-
ful and orthogonal (i.e., could be used in addition) to our
approach which optimizes a single policy.

Researchers have also started investigating consistent up-
dates for networks which include (network function virtual-
ized) middleboxes [23]. In their interesting work [9], Ghor-
bani and Godfrey argue that in the context of network func-
tion virtualization, rather stronger consistency properties
are required.

A workshop version of this paper appeared at Hot-
Nets 2014 [20].
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9. CONCLUSION
While software-defined and network function virtualized

networks introduce a more flexible and dynamic network
operation, this new paradigm also introduces fundamental
new challenges. This paper initiated the study of how to up-
date a network in a transiently consistent manner, ensuring
two most basic invariants, loop-freedom and waypoint en-
forcement. We first made several fundamental observations
about this problem, and then presented a rigorous proof that
it is NP-hard to decide whether a feasible update schedule
satisfying both invariants exist. We complemented this neg-
ative result with multiple exact algorithms which not only
allow to quickly, in practice, identify infeasible instanced (in
which case one could resort to update schemes based on
tagging), but also to compute optimal transiently consistent
update schedules, whenever they exist. We also initiated the
discussion of scenarios in which network functions need to
be traversed in a certain order, and complemented our for-
mal results with an extensive simulation study. We believe
that our paper opens a rich and interesting area of research.
Indeed, the required level of consistency often depends on
the specific setting, and we will further explore the differ-
ent notions of consistent updates in the presence of network
functionality.
Acknowledgments. This research was supported by the
EU project UNIFY FP7-IP-619609 and a German BMBF
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Espres: transparent sdn update scheduling. In Proc.
ACM HotSDN, pages 73–78. ACM, 2014.

[28] R. Hartert et al. Declarative and expressive approach
to control forwarding paths in carrier-grade networks.
In Proc. ACM SIGCOMM, 2015.
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