
Reconfigurable Networks: Enablers, Algorithms, Complexity

Ramakrishnan Durairajan, Klaus-Tycho Förster, Stefan Schmid

Flexibilities: Along 3 Dimensions
Tutorial @ ACM Sigmetrics 2019

Phoenix, Arizona, USA

A demand-aware network with fast
reconfigurations + high fanout: ProjecToR

Manya Ghobadi et al.*
(* collaborators from U. Arizona!)
Kudos for some slides!

ProjecToR

t=1

• Based on free-
space optics

• Demand-aware
• Reconfiguration

in ~10 μs:

ProjecToR

t=2

• Based on free-
space optics

• Demand-aware
• Reconfiguration

in ~10 μs:

ProjecToR

t=2

• Based on free-
space optics

• Demand-aware
• Reconfiguration

in ~10 μs:

Digital Micromirror Devices (DMDs)

ProjecToR

t=2

• Based on free-
space optics

• Demand-aware
• Reconfiguration

in ~10 μs:

Digital Micromirror Devices (DMDs)

Faster than
moving

antennas!

ProjecToR in More Details:
Empirical Motivation

0 3 3 3

3 0 3 3

3 3 0 3

3 3 3 0

Ideal demand matrix:
uniform and static

0 6 6 0

0 0 0 0

0 0 0 0

0 0 0 0

Non-ideal demand matrix:
skewed and dynamic

A
B
C
D

A B C D A B C D

A
B
C
D

0 0 0 0

0 0 0 0

8 0 6 0

0 0 0 0

0 0 0 0

0 0 0 7

0 0 0 7

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 12 8 0

0 6 6 0

0 0 0 0

0 0 0 0

0 0 0 0

Microsoft data: 200K servers across 4 production clusters, cluster sizes: 100 - 2500 racks.
Mix of workloads: MapReduce-type jobs, index builders, database and storage systems.

Observation 1:
• Many rack pairs exchange

little traffic
• Only some hot rack pairs

are active

Observation 2:
• Some source racks send

large amounts of traffic to
many other racks

ProjecToR in More Details:
Empirical Motivation

Observation 1:
• Many rack pairs exchange

little traffic
• Only some hot rack pairs

are active

Observation 2:
• Some source racks send

large amounts of traffic to
many other racks

ProjecToR in More Details:
Empirical Motivation

This has
implications on
network design!

Microsoft data: 200K servers across 4 production clusters, cluster sizes: 100 - 2500 racks.
Mix of workloads: MapReduce-type jobs, index builders, database and storage systems.

Implication for static topology with uniform
capacity:
• Over-provisioned for most rack pairs
• Under-provisioned for few others

Implications for dynamic topology:
• Must be able to create direct links to lots of

other racks (high fan-out)
• And switch quickly among destinations (low

switching time)

ProjecToR in More Details:
Empirical Motivation

ProjecToR in More Details:
Technological Enabler

11

Laser Photodetector

ProjecToR in More Details:
DMDs

Array of
micromirrors

Memory cell

• Each micromirror can be turned on/off
• Essentially a 0/1-image: e.g., array size 768 x 1024
• Direction of the diffracted light can be finely tuned

ProjecToR in More Details:
DMDs to Redirect Light Fast

0 0 0

0 1 0

0 0 0

1 1 1

1 0 1

1 1 1

ProjecToR in More Details:
DMDs to Redirect Light Fast

0 0 0

0 1 0

0 0 0

1 1 1

1 0 1

1 1 1

Challenge:
limited angular

range +/- 3°

ProjecToR in More Details:
Coupling DMDs with angled mirrors

15

Coupling: point the DMDs toward
a “disco-ball” mirror assembly
installed overhead.

Assembly’s angled facets magnify
the DMD’s reach to the entire DC.

ProjecToR in More Details:
Coupling DMDs with angled mirrors

16

ProjecToR in More Details:
Coupling DMDs with angled mirrors

17

60x higher fan-out (can directly connect all pairs)
and 2500x faster switching time

than optical circuit switches

ProjecToR in More Details:
2-Topology Approach

ToR1

ToR2

ToR3

ToR1

ToR2

ToR3

ToR1

ToR2

ToR3

ToR1

ToR2

ToR3

dedicated topology
(multihop, changes slowly)

opportunistic links
(singlehop, changes fast)

+

k-shortest paths routing Decentralized stable matching

ProjecToR in More Details:
Based on Virtual Output Queue Technique

ToR1

ToR2

ToR3

ToR1

ToR2

ToR3

2

3

3

3

Virtual output queues

2

2

2

2

2

2

2

ProjecToR in More Details:
Based on Virtual Output Queue Technique

ToR1

ToR2

ToR3

ToR1

ToR2

ToR3

2

3

3

3

Virtual output queues

2

2

2

2

2

2

2

Bundles = same src-dst pair,
size ~10x reconfiguration latency

ProjecToR in More Details:
Matching with a Twist

• Challenge: scheduling problem is 2-tiered:
– While traffic matrix is between ToRs
– matching occurs between lasers and photodetectors: multiples of those per ToR!

ProjecToR in More Details:
Matching with a Twist

• Challenge: scheduling problem is 2-tiered:
– While traffic matrix is between ToRs
– matching occurs between lasers and photodetectors: multiples of those per ToR!Each ToR has an interest map:

outstanding bundles and their priorities

ProjecToR in More Details:
Matching with a Twist

• Challenge: scheduling problem is 2-tiered:
– While traffic matrix is between ToRs
– matching occurs between lasers and photodetectors: multiples of those per ToR!All ToRs send a proposal for their top priority bundle

to the corresponding destination

ProjecToR in More Details:
Matching with a Twist

• Challenge: scheduling problem is 2-tiered:
– While traffic matrix is between ToRs
– matching occurs between lasers and photodetectors: multiples of those per ToR!

Tentatively accept highest-priority proposal

ProjecToR in More Details:
Matching with a Twist

• Challenge: scheduling problem is 2-tiered:
– While traffic matrix is between ToRs
– matching occurs between lasers and photodetectors: multiples of those per ToR!

Propose second-highest priority

ProjecToR in More Details:
Matching with a Twist

• Challenge: scheduling problem is 2-tiered:
– While traffic matrix is between ToRs
– matching occurs between lasers and photodetectors: multiples of those per ToR!

When there are no more proposals
all tentative arrangements become final

Such Fast Reconfigurability Enables
Demand-Aware Networks (DANs)!

You: I invented a great new reconfigurable

network which allows to self-adjust to the

demand it serves!

Boss: Okay, so how much better is your

demand-aware network really compared

to demand-oblivious networks!?

You: hmm…

A Simple Answer

Demand-Oblivious Networks =

The SIGMETRICS Answer

• It depends…

The SIGMETRICS Answer

• It depends…

• … on the demand!

We need metrics!

As always in
computer
science! 

Roadmap

• Entropy: A metric for demand-aware networks?
– Intuition

– A lower bound

– Algorithms achieving entropy bounds

• From static to dynamic demand-aware networks
– Empirical motivation

– A connection to self-adjusting datastructures

5

Roadmap

• Entropy: A metric for demand-aware networks?
– Intuition

– A lower bound

– Algorithms achieving entropy bounds

• From static to dynamic demand-aware networks
– Empirical motivation

– A connection to self-adjusting datastructures

5

A Simple Example

So
u

rc
es

Destinations

Input:
Workload

Output:
Constant-Degree DAN

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1

2

3 4

5

6

7

D N

So
u

rc
es

Destinations

Input:
Workload

Output:
Constant-Degree DAN

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1

2

3 4

5

6

7

Makes sense
to add link!

Much from 4 to 5.

D N

So
u

rc
es

Destinations

Input:
Workload

Output:
Constant-Degree DAN

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1

2

3 4

5

6

7
1 communicates

to many. Bounded degree: route
to 7 indirectly.

D N

So
u

rc
es

Destinations

Input:
Workload

Output:
Constant-Degree DAN

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1

2

3 4

5

6

7

4 and 6 don’t
communicate…

… but “extra” link still
makes sense: not a

subgraph.

D N

ERL D,N =
(u,v)∈D

p u, v ∙ dN(u, v)

Objective: Expected Route Length

path length on N

frequencyD[𝐩 𝐢, 𝐣]: joint distribution

DAN N of degree Δ

Remark

• Can represent demand matrix as a demand graph

sparse distribution D sparse graph G(D)

3 4

So
u

rc
es

Destinations
1 2

Some Examples

• DANs of Δ = 3:
– E.g., complete binary tree

– dN(u,v) ≤ 2 log n

– Can we do better than log n?

• DANs of Δ = 2:
– E.g., set of lines and cycles

Remark: Another Hardness Proof

DAN design can be NP-hard

• Example Δ = 2: A Minimum Linear
Arrangement (MLA) problem
– A “Virtual Network Embedding Problem”, VNEP

– Minimize sum of lengths of virtual edges

Embedding?

DAN design can be NP-hard

Bad!

e.g.,
cost 5

• Example Δ = 2: A Minimum Linear
Arrangement (MLA) problem
– A “Virtual Network Embedding Problem”, VNEP

– Minimize sum of lengths of virtual edges

DAN design can be NP-hard

Better!

e.g.,
cost 1

• Example Δ = 2: A Minimum Linear
Arrangement (MLA) problem
– A “Virtual Network Embedding Problem”, VNEP

– Minimize sum of lengths of virtual edges

DAN design can be NP-hard

Better!

e.g.,
cost 1

• Example Δ = 2: A Minimum Linear
Arrangement (MLA) problem
– A “Virtual Network Embedding Problem”, VNEP

– Minimize sum of lengths of virtual edges

DAN design can be NP-hard

A new knob for
optimization!

e.g.,
cost 1

• But what about > 2? Embedding
problem still hard, but we have an
additional degree of freedom:

Do topological flexibilities make problem
easier or harder?!

• Example Δ = 2: A Minimum Linear
Arrangement (MLA) problem
– A “Virtual Network Embedding Problem”, VNEP

– Minimize sum of lengths of virtual edges

Rewinding the clock
of the Internet to a

decade ago...

Rewinding the Clock:
Degree-Diameter Tradeoff

Each network with n nodes and max
degree Δ >2 must have a diameter of at
least log(n)/log(Δ-1)-1.
Example: constant Δ, log(n)
diameter

Kudos to: Pedro Casas

Proof Idea

In k steps,
reach at most
1+ Σ Δ(Δ -1)k

nodes

Kudos to: Pedro Casas

1 Δ Δ(Δ -
1)

…

Is there a better tradeoff in DANs?

Sometimes, DANs can be much better!

Example 1: low-degree demand

If demand graph is of degree Δ, it is trivial
to design a DAN of degree Δ which achieves

an expected route length of 1.

Just take DAN =
demand graph!

Sometimes, DANs can be much better!

Example 2: skewed demand

If demand is highly skewed, it is also
possible to achieve an expected route
length of 1 in a constant-degree DAN.

?

Sometimes, DANs can be much better!

Example 2: skewed demand

If demand is highly skewed, it is also
possible to achieve an expected route
length of 1 in a constant-degree DAN.

E.g., arrange neighbors of node 1
in a Huffman tree!

Toward Demand-Aware Networking: A Theory for Self-
Adjusting Networks. Chen Avin and Stefan Schmid. ACM

SIGCOMM CCR, October 2018

So on what does it depend?

So on what does it depend?

We argue (but still don‘t know!): on the

“entropy” of the demand!

?

Intuition: Entropy Lower Bound
?

Lower Bound Idea:
Leverage Coding or Datastructure

So
u

rc
es

Destinations

• DAN just for a single (source) node 3

• How good can this tree be? Cannot do better
than Δ-ary Huffman tree for its destinations

• Entropy lower bound on ERL known for binary
trees, e.g. Mehlhorn 1975

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

Lower Bound Idea:
Leverage Coding or Datastructure

So
u

rc
es

Destinations

• DAN just for a single (source) node 3

• How good can this tree be? Cannot do better
than Δ-ary Huffman tree for its destinations

• Entropy lower bound on ERL known for binary
trees, e.g. Mehlhorn 1975

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

An optimal “ego-tree“
for this source!

So: Entropy of the Entire Demand

• Proof idea (EPL=Ω(HΔ(Y|X))):

• Compute ego-tree for each source
node

• Take union of all ego-trees

• Violates degree restriction but valid
lower bound

sources destinations

entropy degree

Do this in both dimensions:

Ω(HΔ(X|Y))

D

EPL ≥ Ω(max{HΔ(Y|X), HΔ(X|Y)})
Ω(HΔ(Y|X))

Entropy of the Entire Demand:
Sources and Destinations

Do this in both dimensions:

Ω(HΔ(X|Y))

D

EPL ≥ Ω(max{HΔ(Y|X), HΔ(X|Y)})
Ω(HΔ(Y|X))

Entropy of the Entire Demand:
Sources and Destinations

Demand-Aware Network Designs of Bounded Degree. Chen
Avin, Kaushik Mondal, and Stefan Schmid. DISC, 2017.

Achieving Entropy Limit: Algorithms

Ego-Trees Revisited

• ego-tree: optimal tree for
a row (= given source)

D[i]
ego-tree

Ego-Trees Revisited

D[i] Can we merge the trees without
distortion and keep degree low?

• ego-tree: optimal tree for
a row (= given source)

ego-tree

Ego-Trees Revisited

D[i] Can we merge the trees without
distortion and keep degree low?

For sparse demands yes:
enough low-degree nodes which can

serve as “helper nodes“!

• ego-tree: optimal tree for
a row (= given source)

ego-tree

From Trees to Networks

Taking union of ego-trees results in high degree:
u and v will appear in many ego-trees

Idea: Degree Reduction
Demand graph1 2 Hierarchical representation

3 Add low-degree nodes as helpers

Node h helps edge (u, v) by participating in ego-tree(u) as a
relay node toward v and in ego-tree(v) as a relay toward u

high degree

low degree

• Find low degree nodes

– Half of the nodes of lowest degree: “below
twice average degree”

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Find high degree nodes having only low
degree neighbors (e.g., 15 but not 12):
– Create optimal binary tree with low degree

neighbors

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2):

one is enough so distanced increased by +1

• Now high degree nodes have only low
degree neighbors: make tree again

Algorithm: Degree Reduction

Low: can
be helper

Low: can
be helper

• Find low degree nodes

– Half of the nodes of lowest degree: “below
twice average degree”

• Put the low-low edges into DAN and
remove from demand

• Find high degree nodes having only low
degree neighbors (e.g., 15 but not 12):
– Create optimal binary tree with low degree

neighbors

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2):

one is enough so distanced increased by +1

• Now high degree nodes have only low
degree neighbors: make tree again

Algorithm: Degree Reduction

Low: can
be helper

Low: can
be helper

low-low

1 2

3 4

5 6

6 8

9 10

• Find low degree nodes

– Half of the nodes of lowest degree: “below
twice average degree”

• Put the low-low edges into DAN and
remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2):

one is enough so distance increased by +1

– Create optimal binary tree with low degree
neighbors

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2):

one is enough so distanced increased by +1

• Now high degree nodes have only low
degree neighbors: make tree again

Algorithm: Degree Reduction

High and has high
neighbor (e.g., 14)

High-high edge

• Find low degree nodes

– Half of the nodes of lowest degree: “below
twice average degree”

• Put the low-low edges into DAN and
remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2):

one is enough so distance increased by +1

• Now high degree nodes have only low
degree neighbors: make tree
– Create optimal binary tree with low degree

neighbors

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2):

one is enough so distanced increased by +1

Algorithm: Degree Reduction

Only low
neighbors

15

2

3 11

4

• Find low degree nodes

– Half of the nodes of lowest degree: “below
twice average degree”

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2):

one is enough so distanced increased by +1

• Now high degree nodes have only low
degree neighbors: make tree
– Create optimal binary tree with low degree

neighbors

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2):

one is enough so distanced increased by +1

Algorithm: Degree Reduction

Only low
neighbors

Theorem [Asymptotic Optimality]: Helper node does not participate
in many trees, so constant degree, and constant distortion.

• Find low degree nodes

– Half of the nodes of lowest degree: “below
twice average degree”

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2):

one is enough so distanced increased by +1

• Now high degree nodes have only low
degree neighbors: make tree
– Create optimal binary tree with low degree

neighbors

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2):

one is enough so distanced increased by +1

Algorithm: Degree Reduction

Only low
neighbors

Theorem [Asymptotic Optimality]: Helper node does not participate
in many trees, so constant degree, and constant distortion.

Demand-Aware Network Designs of Bounded Degree. Chen
Avin, Kaushik Mondal, and Stefan Schmid. DISC, 2017.

DAN Design: Related to Spanners

Low-Distortion Spanners

• Classic problem: find sparse, distance-preserving (low-
distortion) spanner of a graph

The „DAN“ The demand
graph

Low-Distortion Spanners

• Classic problem: find sparse, distance-preserving (low-
distortion) spanner of a graph

• But:
– Spanners aim at low distortion among all pairs; in our case, we are

only interested in the local distortion, 1-hop communication neighbors

– We allow auxiliary edges (not a subgraph): similar to geometric
spanners

– We require constant degree

Yet: We can leverage the connection to
spanners sometimes!

Theorem: If request distribution D is regular and uniform, and if we can find a constant
distortion, linear sized (i.e., constant, sparse) spanner for this request graph: then we can

design a constant degree DAN providing an optimal ERL (i.e., O(H(X|Y)+H(Y|X)).

r-regular and uniform
demand:

Sparse, irregular
(constant) spanner:

Constant degree optimal
DAN (ERL at most log r):

subgraph! auxiliiary edges

Yet: We can leverage the connection to
spanners sometimes!

Theorem: If request distribution D is regular and uniform, and if we can find a constant
distortion, linear sized (i.e., constant, sparse) spanner for this request graph: then we can

design a constant degree DAN providing an optimal EPL (i.e., O(H(X|Y)+H(Y|X)).

subgraph! auxiliiary edges

Simply using our degree reduction
trick again: now for spanner!

r-regular and uniform
demand:

Sparse, irregular
(constant) spanner:

Constant degree optimal
DAN (ERL at most log r):

Yet: We can leverage the connection to
spanners sometimes!

Theorem: If request distribution D is regular and uniform, and if we can find a constant
distortion, linear sized (i.e., constant, sparse) spanner for this request graph: then we can

design a constant degree DAN providing an optimal EPL (i.e., O(H(X|Y)+H(Y|X)).

subgraph! auxiliiary edges

Why optimal: in r-regular graphs,
conditional entropy is log r.

r-regular and uniform
demand:

Sparse, irregular
(constant) spanner:

Constant degree optimal
DAN (ERL at most log r):

Proof Idea

• Degree reduction again, this time from sparse spanner (before:
from sparse demand graph)

• Optimal DAN designs for
– Hypercubes (with n log n edges)

– Chordal graphs

– Trivial: graphs with polynomial degree (dense graphs)

– Graphs of locally bounded doubling dimension

Has sparse 3-spanner.

Has sparse O(1)-spanner.

Corollaries

We also know
some more algos,

e.g., for BSTs.

An Example: Demands of Locally-
Bounded Doubling Dimension

• LDD: GD has a Locally-bounded
Doubling Dimension (LDD) iff all 2-
hop neighbors are covered by 1-hop
neighbors of just 𝝀 nodes
– Note: care only about 2-neighborhood

• Formally, B(u, 2) ⊆ i=1
λ B(vi, 1)

• Challenge: can be of high degree! 82

We only consider 2 hops!

Nodes 1,2,3 cover 2-hop
neighborhood of u.

Lemma: There exists a sparse 9-(subgraph)spanner for LDD.

Def. (ε-net): A subset V’ of V is a ε-net for a graph G = (V,E) if
– V’ sufficiently “independent”: for every u, v ∈ V’, dG(u, v) > ε

– “dominating” V: for each w ∈ V , ∃ at least one u ∈ V’ such that, dG(u,w) ≤ ε

DAN for Locally-Bounded Doubling Dimension

83

This implies optimal DAN: still
focus on regular and uniform!

Simple algorithm:

1. Find a 2-net

84

9-Spanner for LDD (= optimal DAN)

Easy: Select nodes into 2-net
one-by-one in decreasing

(remaining) degrees, remove
2-neighborhood. Iterate.

2-net node (clusterhead)

2-net node (clusterhead)

Simple algorithm:

1. Find a 2-net

2. Assign nodes to one of the
closest 2-net nodes: tree

85

9-Spanner for LDD (= optimal DAN)

Assign: at most 2 hops.

Union of these shortest paths:
a forest. Add to spanner.

Simple algorithm:

1. Find a 2-net

2. Assign nodes to one of the
closest 2-net nodes: tree

3. Join two clusters if there are
edges in between

86

9-Spanner for LDD (= optimal DAN)

Connect forests (single „connecting
edge“): add to spanner.

Simple algorithm:

1. Find a 2-net

2. Assign nodes to one of the
closest 2-net nodes: tree

3. Join two clusters if there are
edges in between

87

9-Spanner for LDD (= optimal DAN)

Sparse: Spanner only includes forest (sparse) plus
“connecting edges”: but since in a locally doubling
dimension graph the number of cluster heads at
distance 5 is bounded, only a small number of
neighboring clusters will communicate.

Distortion 9: Short detour via
clusterheads: u,ch(u),x,y,ch(v),v

So: How much structure/entropy is there?

How to measure it?
And which types of structures? E.g., temporal

structure in addition to non-temporal structure?
More tricky!

Often only intuitions in the literature…

“less than 1% of the rack pairs account for

80% of the total traffic”

“only a few ToRs switches are hot

and most of their traffic goes to a few

other ToRs”

“over 90% bytes

flow in elephant flows”

… and it is intuitive!
Non-temporal Structure

Traffic matrix of two different distributed ML applications (GPU-to-GPU):

Which one has more structure?

vs

Color =
comm. pair

… and it is intuitive!
Non-temporal Structure

Traffic matrix of two different distributed ML applications (GPU-to-GPU):

Which one has more structure?

vs

Color =
comm. pair

More
uniform

More
skewed

Two different ways to generate same traffic matrix (same non-temporal structure):

Which one has more structure?

vs

… and it is intuitive!
Temporal Structure

Two different ways to generate same traffic matrix (same non-temporal structure):

Which one has more structure?

vs

… and it is intuitive!
Temporal Structure More

bursty

More
random

Two different ways to generate same traffic matrix (same non-temporal structure):

Which one has more structure?

vs

… and it is intuitive!
Temporal Structure More

bursty

More
randomQuite intuitive: but how to define and

measure systematically?

The Trace Complexity

• An information-theoretic approach: how can we measure the entropy
(rate) of a traffic trace?

• Henceforth called the trace complexity

• Simple approximation: „shuffle&compress“
– Remove structure by iterative randomization

– Difference of compression before and after randomization: structure

The Trace Complexity
Original src-dst trace Randomize rows Randomized columns Uniform trace

Increasing complexity (systematically randomized)

More structure (compresses better)

The Trace Complexity
Original src-dst trace Randomize rows Randomized columns Uniform trace

Remove
temporal locality

Break src-dst
pairs

Remove non-
temporal locality

Difference in
compression?

Difference in
compression?

Difference in
compression?

The Trace Complexity
Original src-dst trace Randomize rows Randomized columns Uniform trace

Remove
temporal locality

Break src-dst
pairs

Remove non-
temporal locality

Difference in
compression?

Difference in
compression?

Difference in
compression?

Can be used to define a „complexity map“!

The Complexity Map

Complexity Map: Entropy
(„complexity“) of traffic traces.

!

!

More complexity

More structure

Complexity Map: Entropy
(„complexity“) of traffic traces.

!

!

M
o

re
 c

o
m

p
le

xi
ty

M
o

re
 s

tr
u

ct
u

re

The Complexity Map

Complexity Map: Entropy
(„complexity“) of traffic traces.

Size = product
of entropy

!

!

The Complexity Map

M
o

re
 c

o
m

p
le

xi
ty

M
o

re
 s

tr
u

ct
u

re

Uniform: Today’s
datacenters

• Traditional networks are optimized
for the “worst-case” (all-to-all
communication traffic)

• Example, fat-tree topologies:
provide full bisection bandwidth

The Complexity Map

Good in the worst case but:
cannot leverage different

temporal and non-temporal
structures of traffic traces!

The Complexity Map

Non-temporal structure could
be exploited already with static

demand-aware networks!

Good in the worst case but:
cannot leverage different

temporal and non-temporal
structures of traffic traces!

The Complexity Map

The Complexity Map
To exploit temporal structure,
need adaptive demand-aware

(“self-adjusting”) networks.

Non-temporal structure could
be exploited already with static

demand-aware networks!

Good in the worst case but:
cannot leverage different

temporal and non-temporal
structures of traffic traces!

• Facebook clusters: DB, WEB, HAD

• HPC workloads: CNS, Multigrid

• Distributed Machine Learning (ML)

• Synthetic traces like pFabric

Observation: different applications
feature quite significant (and
different!) temporal and non-

temporal structures.

The Complexity Map

Both structures!

TOR switches

Mirrors

Lasers

Goal: Design self-adjusting
networks which leverage both

dimensions of structure!

The Complexity Map

Potential gain / tax of
self-adjusting

networks!

Both structures!

No structure!

TOR switches

Mirrors

Lasers

Goal: Design self-adjusting
networks which leverage both

dimensions of structure!

The Complexity Map

Measuring the Complexity of Packet Traces.
Avin, Ghobadi, Griner, Schmid. ArXiv 2019.

But: How to design DANs which
also leverage temporal structure?

Inspiration from self-adjusting
datastructures again!

Roadmap

• Entropy: A metric for demand-aware networks?
– Empirical motivation

– A lower bound

– Algorithms achieving entropy bounds

• From static to dynamic demand-aware networks
– A connection to self-adjusting datastructures

5

First: An Analogy

Static vs dynamic demand-
aware networks!?

DANs vs SANs?

„Coming to Sigmetrics in Phoenix?“

00110101…

if demand arbitrary and unknown

log diameter

log # bits / symbol

An Analogy to Coding

01011…

if demand arbitrary and unknown

log diameter

log # bits / symbol

entropy / symbol

entropy?

DAN!

An Analogy to Coding

if demand known and fixed

„Coming to Sigmetrics in Phoenix?“

011…

if demand arbitrary and unknown

log diameter

log # bits / symbol

if demand known and fixed

entropy / symbol

entropy?

DAN! SAN!

Dynamic DANs:
Aka. Self-Adjusting
Networks (SANs)!

An Analogy to Coding

if demand unknown but reconfigurable

„Coming to Sigmetrics in Phoenix?“

An Analogy to Coding 011…

if demand arbitrary and unknown

log diameter

log # bits / symbol

DAN! SAN!

Dynamic DANs:
Aka. Self-Adjusting
Networks (SANs)!

Can exploit
spatial locality!

Additionally exploit
temporal locality!

if demand known and fixed if demand unknown but reconfigurable

„Coming to Sigmetrics in Phoenix?“

An Analogy to Coding 011…

if demand arbitrary and unknown

log diameter

log # bits / symbol

DAN! SAN!

Dynamic DANs:
Aka. Self-Adjusting
Networks (SANs)!

Can exploit
spatial locality!

Additionally exploit
temporal locality!

if demand known and fixed if demand unknown but reconfigurable

„Coming to Sigmetrics in Phoenix?“

Analogous to Datastructures: Oblivious…

• Traditional, fixed BSTs do not rely on any
assumptions on the demand

• Optimize for the worst-case

• Example demand:

1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

• Items stored at O(log n) from the root,
uniformly and independently of their
frequency

many many many many
Many requests

for leaf 1…
… then for

leaf 3…

many

Corresponds to
max possible demand!

• Demand-aware fixed BSTs can take
advantage of spatial locality of the
demand

• E.g.: place frequently accessed elements
close to the root

• E.g., Knuth/Mehlhorn/Tarjan trees

• Recall example demand:
1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)
– Amortized cost O(loglog n)

Amortized cost corresponds
to empirical entropy of demand!

loglog n

… Demand-Aware …

• Demand-aware reconfigurable BSTs
can additionally take advantage of
temporal locality

• By moving accessed element to the
root: amortized cost is constant, i.e.,
O(1)
– Recall example demand:

1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

… Self-Adjusting!

Datastructures

Oblivious Demand-Aware Self-Adjusting

Lookup

O(log n)

Exploit spatial locality:
empirical entropy O(loglog n)

Exploit temporal locality as well:

O(1)

Analogously for Networks

Oblivious DAN SAN

Const degree

(e.g., expander):

route lengths O(log n)

Exploit spatial locality Exploit temporal locality as well

000
Avin, S.: Toward Demand-Aware Networking: A Theory

for Self-Adjusting Networks. SIGCOMM CCR 2018.

Now: Design of Self-Adjusting Networks (SANs)

Inspiration from self-adjusting
datastructures again!

What’s the model?

What’s the model?

Again: it depends…

The Problem Input

A sequence σ = (u1,v1), (u2,v2), (u3,v3)….

chosen arbitrarily

Chosen i.i.d. from initially
unknown fixed distribution

The Problem Input

A sequence σ = (u1,v1), (u2,v2), (u3,v3)….

chosen arbitrarily

Chosen i.i.d. from initially
unknown fixed distribution

revealed online given offline

The Problem Input

A sequence σ = (u1,v1), (u2,v2), (u3,v3)….

chosen arbitrarily

Chosen i.i.d. from initially
unknown fixed distribution

revealed online given offline

Other options: sequences of snapshots,
generated according to Markov process, …

What’s the objective? Metric?

Also here: it depends…

A Cost-Benefit Tradeoff

Short routes

High reconfiguration cost

Low reconfiguration cost

Long routes

Basic question:

How often to reconfigure?

Tradeoff

A Metric

Entropy of the demand again…

• … but now entropy rate (entropy over time)!

A Taxonomy: Reconfigurable Networks

Demand-Aware

Reconfigurable

Offline Online

Awareness

Topology

Input

AlgorithmOFF ON

Revealed over time:
learning or online

algorithm

Static Optimality:

“Not worse than static
which knows demand

ahead of time!”

ρ = Cost(ON)/Cost(STAT*)
is constant.

Property
Static

Optimality

Static
Optimality

A Taxonomy: Reconfigurable Networks

Demand-Aware

Reconfigurable

Offline Online

Awareness

Topology

Input

AlgorithmOFF ON

Revealed over time:
learning or online

algorithm

Static Optimality:

“Not worse than static
which knows demand

ahead of time!”

ρ = Cost(ON)/Cost(STAT*)
is constant.

Property

Note: may be <<1. ON has
advantage of adjusting, but

the disadvantage of not knowing the
workload. E.g. if much temporal locality.

A Taxonomy: Reconfigurable Networks

Demand-Aware

Reconfigurable

Offline Online

Awareness

Topology

Input

AlgorithmOFF ON

Revealed over time:
learning or online

algorithm

Static
Optimality

Working Set Property:

“Topological distance
between nodes

proportional to how
recently they

communicated!”

Property

Working Set

A Taxonomy: Reconfigurable Networks

Demand-Aware

Reconfigurable

Offline Online

Awareness

Topology

Input

AlgorithmOFF ON

Revealed over time:
learning or online

algorithm

Static
Optimality Property

Dynamic
Optimality

Working Set

Dynamic Optimality:

“No worse than an
offline algorithm which
knows the sequence!”

ρ = Cost(ON)/Cost(OFF*)
is constant.

Always >=1.

The holy grail!

Algorithms for Self-Adjusting Networks

Algorithms for Self-Adjusting Networks

Let us start with trees again:

Self-adjusting tree?

Algorithms for Self-Adjusting Networks

Use self-adjusting BST!

Let us start with trees again:

Self-adjusting tree?

• A Binary Search Tree (BST)

• Inspired by “move-to-front”: move to root!

• Self-adjustment: zig, zigzig, zigzag
– Maintains search property

• Many nice properties
– Static optimality, working set, (static,dynamic)

fingers, …

Recall: Splay Tree
On access 4

1 4

2

5

7

2

4

5

7

1 7

2

4

5

1

zag@2

zig@5

root!

A Simple Idea:
Generalize Splay Tree To SplayNet

Splay Tree

1 4

2

5

7

1 4

2

5

7comm.

SplayNet

vs

BST is nice for networks:
local (greedy) search!

Splay Tree

1 4

2

5

7

1 4

2

5

7comm.

SplayNet

vs

But how?

A Simple Idea:
Generalize Splay Tree To SplayNet

SplayNet: A Simple Idea

Splay Tree SplayNet

x

@t: access x

x
@t+1

x

@t: comm
(x,y)

@t+1

y

LCA

y

x
splay

double-
splay

Example

t=1 t=2

1 4

2

5

7

4

7

5

2

1

adjust

Challenges: How to minimize reconfigurations?
How to keep network locally routable?

New connection!

Properties of SplayNets

• Statically optimal if demand comes from a
product distribution
– Product distribution: entropy equals conditional

entropy, i.e., H(X)+H(Y)=H(X|Y)+H(X|Y)

• Converges to optimal static topology in
– Multicast scenario: requests come from a binary

tree as well

– Cluster scenario: communication only within
interval

– Laminated scenario : communication is „non-
crossing matching“

Multicast
Scenario

Cluster

Scenario

Laminated

Scenario

I

I

Remark: Static SplayNet

I=[1..8]

23

25

21

4

1 7

v 8

10

18

19 22

I‘=[9..25]

Theorem: Optimal static SplayNet can be computed
in polynomial-time (dynamic programming)

– Unlike unordered tree?

Remark: Static SplayNet

I=[1..8]

23

25

21

4

1 7

v 8

10

18

19 22

I‘=[9..25]

Theorem: Optimal static SplayNet can be computed
in polynomial-time (dynamic programming)

– Unlike unordered tree?

SplayNet: Towards Locally Self-Adjusting Networks. Schmid et al. IEEE/ACM
Transactions on Networking (TON), Volume 24, Issue 3, 2016.

Algorithms for Self-Adjusting Networks II

From trees to networks!

Algorithms for Self-Adjusting Networks II

Ego-trees strike back!

From trees to networks!

Total Recall: Ego-Trees!

D[i] Ego−Tree

i

Total Recall: Ego-Trees!

D[i]

Idea: use our old
approach but
now let each

node adjust its
ego-tree!

i

Ego−Tree

A Dynamic Ego-Tree:
Splay Tree

An Alternative Dynamic Ego-Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s

An Alternative Dynamic Ego-Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s

Equivalent: structure
fix, moving nodes,

not edgesUnordered!

An Alternative Dynamic Ego-Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s

A useful dynamic property: Most-Recently Used (MRU)!
Similar to Working Set Property: more recent communication Partners closer to source.

Equivalent: structure
fix, moving nodes,

not edgesUnordered!

An Alternative Dynamic Ego-Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s

u

s communicates to u

An Alternative Dynamic Ego-Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s

u

Strict MRU requires: move u to root! But
how? Cannot swap with v: v no longer MRU!

s communicates to u
v

An Alternative Dynamic Ego-Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s

u

Strict MRU requires: move u to root! But
how? Cannot swap with v: v no longer MRU!

s communicates to u
v

r

s

Idea: Push v down, in a balanced manner, up to
depth(u): left-right-left-right („rotate-push“)

An Alternative Dynamic Ego-Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s

u

Strict MRU requires: move u to root! But
how? Cannot swap with v: v no longer MRU!

s communicates to u

v

r

s

push-down up to
depth(u)

Idea: Push v down, in a balanced manner, up to
depth(u): left-right-left-right („rotate-push“)

An Alternative Dynamic Ego-Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s

t

s communicates to u

Then: promote u to available root, and
t to u: at original depth!

v

r

s

push-down up to
depth(u)

u

Remarks

• Unfortunately, alternating push-down
does not maintain MRU (working set)
property

• Tree can degrade, e.g.: sequence of
requests from level 4,1,2,1,3,1,4,1

s

s1

s2 s3

s4 s5

s6 s7

s8 s9

Solution: Random Walk

s

t

s comm. to u

At least maintains approximate
working set / MRU!

v

r

s

rotate push-
down

u

s

t

v

r

s

random
walk!

u

s comm. to u

Solution: Random Walk

s

t

s comm. to u

At least maintains approximate
working set / MRU!

v

r

s

rotate push-
down

u

s

t

v

r

s

random
walk!

u

s comm. to u

Push-Down Trees: Optimal Self-Adjusting Complete Trees
Chen Avin, Kaushik Mondal, and Stefan Schmid.

ArXiv Technical Report, July 2018.

Remark 1: Decentralized Algorithms

A “Simple” Decentralized Solution:
Distributed SplayNet (DiSplayNet)

• SplayNet attractive: ordered BST supports local routing
– Nodes maintain three ranges: interval of left subtree, right

subtree, upward

• If communicate (frequently): double-splay toward LCA

• Challenge: concurrency!
– Access Lemma of splay trees no longer works: potential function

does not „telescope“ anymore: a concurrently rising node may
push down another rising node again

19

4
15

22

18
1 7

3
12

8

10

LCA

SplayNet

DiSplayNet: Challenges

• DiSplayNet: Rotations (zig,zigzig,zigzag)
are concurrent

• To avoid conflict: distributed
computation of independent clusters

• Still challenging:

Sequential SplayNet: requests one after another DiSplayNet: Analysis more challenging: potential function sum
no longer telescopic. One request can “push-down” another.

DiSplayNet: Challenges

Telescopic: max
potential drop

Sequential SplayNet: requests one after another DiSplayNet: Analysis more challenging: potential function sum
no longer telescopic. One request can “push-down” another.

• DiSplayNet: Rotations (zig,zigzig,zigzag)
are concurrent

• To avoid conflict: distributed
computation of independent clusters

• Still challenging:

DiSplayNet: Challenges

Telescopic: max
potential drop

Sequential SplayNet: requests one after another DiSplayNet: Analysis more challenging: potential function sum
no longer telescopic. One request can “push-down” another.

• DiSplayNet: Rotations (zig,zigzig,zigzag)
are concurrent

• To avoid conflict: distributed
computation of independent clusters

• Still challenging:

Distributed Self-Adjusting Tree Networks. Bruna Peres, Otavio Augusto de Oliveira Souza,
Olga Goussevskaia, Chen Avin, and Stefan Schmid. IEEE INFOCOM, 2019.

Remark 3: Accounting for Congestion

A Tradeoff?!

Short routes:
congestion

Low congestion:
long routesvs

A Tradeoff?!

Short routes:
congestion

Low congestion:
long routesOr both?

A Tradeoff?!

Short routes:
congestion

Low congestion:
long routesOr both?

Ego-Tree++!

• Idea: place destination nodes
greedily across subtrees s.t.
congestion balanced

• … while preserving distance

• Trees can have different sizes
but similar mass!

• Bicriteria guarantee

s

Ego-Tree++!

• Idea: place destination nodes
greedily across subtrees s.t.
congestion balanced

• … while preserving distance

• Trees can have different sizes
but similar mass!

• Bicriteria guarantee

s

Demand-Aware Network Design with Minimal Congestion and Route Lengths.
Chen Avin, Kaushik Mondal, and Stefan Schmid. IEEE INFOCOM 2019.

Roadmap

• Entropy: A metric for demand-aware networks?
– Intuition

– A lower bound

– Algorithms achieving entropy bounds

• From static to dynamic demand-aware networks
– Empirical motivation

– A connection to self-adjusting datastructures

5

Demand-Oblivious

Fixed

Unknown

Bisection

Demand-Aware

Fixed Reconfigurable

Sequence Generator Offline Online

Awareness

Topology

Input

Static
Optimality

AlgorithmOFF ON

PropertyDiameter

Resiliency

Dynamic
Optimality

Learning
Optimality

STAT GENOBL

Uncharted Landscape! 000
Toward Demand-Aware Networking: A Theory for

Self-Adjusting Networks. SIGCOMM CCR, 2018.

Big Open Questions
• Cross-layer aspects

• Metrics: just the beginning!

• We need more data

• Unifying theory

• How to convince operators?

Thank you! Questions?

Fu
rt

h
er

 R
ea

d
in

g
Survey of Reconfigurable Data Center Networks: Enablers, Algorithms, Complexity
Klaus-Tycho Foerster and Stefan Schmid.
SIGACT News, June 2019.
Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks (Editorial)
Chen Avin and Stefan Schmid.
ACM SIGCOMM Computer Communication Review (CCR), October 2018.
Demand-Aware Network Design with Minimal Congestion and Route Lengths
Chen Avin, Kaushik Mondal, and Stefan Schmid.
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.
Documents: paper pdf, bibtex bib
Distributed Self-Adjusting Tree Networks
Bruna Peres, Otavio Augusto de Oliveira Souza, Olga Goussevskaia, Chen Avin, and Stefan Schmid.
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.
Efficient Non-Segregated Routing for Reconfigurable Demand-Aware Networks
Thomas Fenz, Klaus-Tycho Foerster, Stefan Schmid, and Anaïs Villedieu.
IFIP Networking, Warsaw, Poland, May 2019.
DaRTree: Deadline-Aware Multicast Transfers in Reconfigurable Wide-Area Networks
Long Luo, Klaus-Tycho Foerster, Stefan Schmid, and Hongfang Yu.
IEEE/ACM International Symposium on Quality of Service (IWQoS), Phoenix, Arizona, USA, June 2019.
Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
31st International Symposium on Distributed Computing (DISC), Vienna, Austria, October 2017.
SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016. Early version: IEEE IPDPS 2013.
Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures
Klaus-Tycho Foerster, Monia Ghobadi, and Stefan Schmid.
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Ithaca, New York, USA, July 2018.

Demand-Aware and Self-Adjusting Networks

https://www.univie.ac.at/ct/stefan/sigact19.pdf
https://www.univie.ac.at/ct/stefan/ccr18san.pdf
https://www.univie.ac.at/ct/stefan/infocom2019a.pdf
https://www.univie.ac.at/ct/stefan/infocom2019a.pdf
https://www.univie.ac.at/ct/stefan/stefan_schmid-all.bib
https://www.univie.ac.at/ct/stefan/infocom2019b.pdf
https://www.univie.ac.at/ct/stefan/ifip19dan.pdf
https://www.univie.ac.at/ct/stefan/iwqos19.pdf
https://net.t-labs.tu-berlin.de/~stefan/disc17.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7066977&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber%3D7066977
https://net.t-labs.tu-berlin.de/~stefan/ancs18.pdf

