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Many Years Ago

e Single server

e Systems were fixed and
workload-agnostic

e Simple communication
patterns (if at all),
endpoints fixed

https://www.flickr.com/photos/jurvetson/157722937



Map of Amazon's Data Centers

Nowadays

e Large distributed systems
(even geographically distributed):
communication over network

* \irtualization technologies
enable workload-aware
operations that improve system
efficiency

e Communicating processes can
be far away and
re-locating them is costly

https://wikileaks.org/amazon-atlas/map/

https://commons.wikimedia.org/wiki/File:Bacloud.com_data_center.JPG
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The Model

The VMs
are the
workloads.

n virtual machines (VMs)
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The Model

e |nternal server communication cost: 0
e Server-server communication cost: 1
e \VM re-location cost: 94

= Given an online sequence of communication requests,

minimize total cost paid for communication

server
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VM silot

free
VM slot
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The Model

occupied
VM siot
: . . free
* Internal server communication cost: 0 VM slot
e Server-server communication cost: L
After all
e \/M re-location cost: 94 communications
finished:
= Given an online sequence of communication requests, 1 server

minimize total cost paid for communication =~
1 component
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A EWAIES

e Competitive analysis comparing to OPT:
e OPT knows all communications in advance

e OPT computes solution with optimal cost

ALG
OPT

e (Strict) competitive ratio =

server

occupied
VM silot

free
VM slot




Results

e For /' — 7) servers:

logn

e Algorithm whichis O < >—competitive

E
* Lower bound: Any algorithm must be
Q(1/e + log n)-competitive

= Our results are almost tight for two servers

server

occupied
VM silot

free
VM slot




server

Results

occupied
VM silot

free
e For Lﬂ servers: VM slot

+ Algorithm which is O ((£ log nlog £)/¢ )-competitive

= Ffficient when f IS small,
e.g., for communication across data centers

= |mplementable for distributed computation
communication cost < communication for re-locating VMs (if #=0(Ven))
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Applications

e Distributed Union Find Data Structure

(with small cost for re-locating the sets across servers)

e Online Balanced k-way Partition

(with small cost for re-assigning numbers to balanced partitions)
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Algorithm for Two Servers

O

O O

Color each VM based on its initial server
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Algorithm for Two Servers

Contains more
yellow than green VMs

assign
to

yellow

server

Ensures
that we stay
close to initial

Majority-voting step assignment
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For each new
communication request:

Move smaller component to the
server of the larger one

If size of new component exceeds
a power of 2:
Perform majority-voting step

If server capacity exceeded:
Find cheapest balanced
assignment using
brute-force enumeration

P —

Can only happen

0 (=5

logn

> times
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e \We introduced a new model for
online workload (re-)embedding

e Distributed algorithm which is

O ((¢ lognlog ¢)/e)-competitive

e Applications to version of
fundamental problems such as
union find and k-way partition
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Open Problems

e Qur algorithm for £ servers has competitive-ratio
O ((#lognlog#)/e). Can we shave the # -factor?

e Study generalized setting where communication patterns
can change arbitrarily over time

e Tuning our algorithms further to perform even better in
specific use cases
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@ 7 @

Efficient Distributed
Workload (Re-)Embedding

new model for
distributed workload d'St"bUted algorithm
(re-)embedding Applications W|th competitive ratio
f (Z lognlog f)/e)

Distributed Online
Union Find Balanced
Data Structure k-way Partition
(with small cost (with small cost

for re-locating the sets) for assigning numbers to partitions)
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Related Work

+ Avin et al. (DISC’16, SIDMA'19).
* No ground-truth assumption
o O(n/¢)-competitive algorithm

e Competitive ratio for deterministic algorithms is
Qnl/t)
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