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“It is not the strongest of the species that survives, 
nor the most intelligent that survives. But the one 
that is most adaptable to change.”
(Leon C. Megginson )
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Mapping a Landscape of Network Traffic

o Define

o Categorize

o Quantify 

o Map different types of structure  

o Better design of networks?

The complexity map
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What is 
Structure?
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Visible Structure?
• Can we see patterns in 
real network traffic?
• Yes!
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Rack-to-rack, Frontend cluster 
FB @ SIGCOMM 2015
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Structure: Two Types 
• Temporal • Non temporal(spatial)
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ML Example: Non temporal structure 
•A traffic matrix of a distributed 
ML application

• Source destination denoted by 
color

• Height denotes amount of traffic

• How would a matrix without 
structure look like? Real

Uniform
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Temporal structure

• Not all structure is related to 

frequency

• Temporal structure, represents 

the dependency of future events 

on recent events  

• Example: bursts of traffic 

• Both traces have the same traffic 

matrix but are different in time  
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How to 
Measure 
Structure
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An information theoretic perspective 
• In Information theory entropy (entropy rate) is 
a measure “randomness”

• Lower entropy ⇒ More predictable traffic

• Traffic with more “structure” is less “complex”

• Compression offers a way to estimate entropy

• But how to represent traffic? 

9



Traffic as a 
Network Trace

•A Simplified time 
ordered list of 
source-destination
pairs

•How to use it?
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Methodology
• Measuring complexity with two steps:

1. Sequentially randomize a trace, 
remove a specific types of structure

2. Compress the trace, compare their 
size.
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Systematic randomization

A trace
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Systematic randomization
Increasing complexity 

Original trace 𝝈
✓ Temporal

✓ Non Temporal

Uniform Trace u(𝜎)
X Temporal

X Non Temporal

A trace

Source Destination Source Destination Source Destination

Row Randomized Γ(𝜎)
X   Temporal

✓ Non Temporal
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Compression

A trace ≤ ≤
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Formal Definitions of Trace Complexity
Let 𝑐(𝜎) is the size of a compressed trace σ:

We define:

Total complexity: 𝜓 𝜎 =
C 𝜎

C(u(𝜎))

Temporal complexity:T(𝜎) =
C 𝜎

C(Γ(𝜎))

Non-temporal complexity: NT 𝜎 =
C Γ 𝜎

C(u 𝜎 )

Complexity is in the range of [0…1]

Uniform 

transformation

Row 

transformation
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Mapping Trace 
Complexity
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The Complexity Map
• X axis: temporal complexity

• Y axis: non-temporal complexity

• Rule of thumb:
Closer to the axis’s origin, means
lower complexity

more temporally complex
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The Complexity Map

• Uniform Traffic
• Lacking any structure, 

maximal entropy

• Bursty Traffic
• Has temporal correlations

• Skewed Traffic
• From a skewed distribution

• Skewed & Bursty Traffic
• Has both temporal and non 

temporal elements 
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Case Study 

• ML

• Facebook
• Database, Web, 

Hadoop

• High Power 
Computing (HPC) 

• pFabric

Facebook
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What can we 
expect to learn 
from trace 
complexity?

Lower complexity means better optimization

Identify and quantify different structures

Compare different traces?

Differentiate between different workloads? 
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Future work

• Test trace with more metadata

• Interarrival times, ports etc

• What are the other dimensions of complexity?

• Practical implementation of complexity in online algorithms?

•Trace website:

• https://self-adjusting.net

• Further details are found in the paper:
On the Complexity of Traffic Traces and Implications.

Chen Avin, Manya Ghobadi, Chen Griner, Stefan Schmid. Sigmetrics 2020
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