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ABSTRACT

This paper presents a systematic approach to identify and quantify
the types of structures featured by packet traces in communica-
tion networks. Our approach leverages an information-theoretic
methodology, based on iterative randomization and compression
of the packet trace, which allows us to systematically remove and
measure dimensions of structure in the trace. In particular, we intro-
duce the notion of trace complexity which approximates the entropy
rate of a packet trace. Considering several real-world traces, we
show that trace complexity can provide unique insights into the
characteristics of various applications. Based on our approach, we
also propose a traffic generator model able to produce a synthetic
trace that matches the complexity levels of its corresponding real-
world trace. Using a case study in the context of datacenters, we
show that insights into the structure of packet traces can lead to
improved demand-aware network designs: datacenter topologies
that are optimized for specific traffic patterns.
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1 INTRODUCTION

Packet traces collected from networking applications, such as data-
center traffic, have been shown to feature much structure: datacen-
ter traffic matrices are sparse and skewed, exhibit locality, and are
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Entries in the trace are shown in the order of appearance. Time
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Figure 1: Visualization of temporal and non-temporal struc-
ture in a machine learning workload.

bursty. In other words, packet traces from real world applications
are far from arbitrary or random.

However, the available structure can differ significantly across
applications, and we currently lack a unified approach to measure
the structure in traffic traces in a systematic manner, accounting for
both non-temporal structures (e.g., how skewed the traffic matrices
are) and temporal structures (e.g., how bursty traffic is). The quan-
tification of trace structures and their locality can be very useful; it
can shed light on the potential of traffic-aware optimization, and
facilitate traffic modeling, benchmarking, and synthesis; these are
otherwise difficult to achieve, given the limited amount of traffic
data available to researchers today.

Let us illustrate the temporal and non-temporal structures avail-
able in a traffic trace with an example. Consider a packet trace from
a Machine Learning (ML) application based on a popular convo-
lutional neural network training job, with four GPUs. Figure 1(a)
visualizes the trace where each packet in the trace is represented
by a unique color corresponding to its (source, destination)-GPU
pair. The figure highlights the temporal structure of the trace: the
sequence of colors is far from random. Rather, a pattern is revealed,
where certain colors are more frequent in some intervals than in
others. For comparison, Figure 1(b) shows the same trace, but ran-
domizes the order of the entries in the trace: the randomization
removes the temporal structure observed in Figure 1(a). Intuitively,
the trace in Figure 1(a) has more temporal structure than the trace
in Figure 1(b). However, the frequency distribution of the two traces
is the same: summing up the entries over the entire trace file results
in the same traffic matrix (TM), shown in Figure 1(c).

The resulting traffic matrix shows structure as well. In this case
the traffic matrix is skewed, i.e., some GPU pairs communicate more
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Figure 2: The complexity map of six real traces (colored cir-
cles) and four reference points (grey circles at the corners).
HAD, WEB, and DB refer to Facebook’s Hadoop, web, and
database traces [4]. Two corresponding traces from Figure 1,
traces (a) and (d), are shown above the map.

frequently than others. That is, the traffic matrix loses information
about temporal differences, and it features a non-temporal structure.
For comparative purposes, consider two synthetic traces shown in
Figures 1(d) and (e). Trace (d) is generated uniformly and random
and has the least temporal structure compared to (a), while trace
(e) is bursty and built from consecutive source-destination requests,
and hence has the most temporal structure. Similarly, the traffic
matrix in Figure 1(f) captures the non-temporal structure in both (d)
and (e), but not the temporal structure. The traffic matrix is almost
uniform, and hence has less structure than (c).

While the different temporal and non-temporal structures in
the above traces are obvious and intuitive, we currently lack a
systematic approach to measure and quantify them.

This paper takes the first steps to close this gap. In particular, we
propose an approach to quantify the amount of temporal and non-
temporal structure in traffic traces using the information theory’s
measure of entropy. Since the term entropy is defined for random
variables, as opposed to a sequence of individual communication
requests in a packet trace, in this paper, we will use the more
general term “complexity” to quantify the structure in a packet
trace. In particular, we will refer to the complexity of a trace as the
trace complexity. We will also provide a traffic generation model
to produce synthetic traces that match the complexity of a given
real world trace. Intuitively, a packet trace with low entropy has low
complexity: it contains little information, and the sequence behavior
is more predictable; hence we say that it has high structure. Our goal
is to enable a unified mechanism to compare the structure pattern
in traces, irrespective of the number of nodes and the exact packet
arrival times. While prior work focused on providing distributions
for flow (or packet) inter-arrival times and sizes [3], we intentionally
replace the packet arrival times with the order of arrival to introduce
a degree-of-freedom that enables us to compare traces captured in
widely different settings.

Our approach allows us to chart, what we call, a complexity
map of individual traffic traces. More specifically, we map each
traffic trace to a two-dimensional graph indicating the amount of
temporal and non-temporal complexity that is present in a trace.
Figure 2 shows an example of this map. While details will follow
later, the map allows us to locate different workloads according to
their temporal complexity (x-axis) and their non-temporal complex-
ity (y-axis). The size of the circle represents the total complexity,
both temporal and non-temporal. A uniform trace without any tem-
poral nor non-temporal structure (like the trace in Figure 1(d) that
is shown again above the map) will be located on the upper right
corner x = 1 and y = 1. A trace that is both skewed and bursty
has both temporal and non-temporal complexity that are signifi-
cantly lower than a uniform trace. The trace of our ML example
in Figure 1(a) (shown again above the map) is such an example
and is denoted on the map by the yellow circle. A skewed trace
(like the trace in Figure 1(b)) does not have any temporal structure,
so its temporal complexity is maximal: the trace will be located
at x = 1. However, as this trace contains non-temporal structure,
i.e., is skewed (recall the matrix in Figure 1(c)), its y-value may be
lower. Given this intuition, we indicate in the figure five additional
workloads: three Facebook datacenter workloads (DB, WEB, HAD),
a high-performance computing workload (HPC), and a synthetic
pFabric [1] workload (pFab). They all provide different complexi-
ties, as our approach highlights. We provide more details on these
workloads and on the complexity map in the full paper [2].

The main contribution of this paper is a systematic information-
theoretic approach to identify and quantify the types of structures
(e.g., temporal and non-temporal) featured by packet traces in com-
munication networks. Our approach uses iterative randomization
and compression of the packet trace: we iteratively remove and
measure dimensions of structure in the trace. We demonstrate an
application of our approach in a case study: the design of demand-
aware datacenter topologies. In particular, we show that insights
into the structure of packet traces can lead to improved network
designs that are optimized toward specific traffic patterns. We fur-
ther present a simple yet powerful model to generate traffic traces
that match the complexity of production-level traces, also allowing
us to derive theoretical properties of the complexity.
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