
Input-Dynamic Distributed Algorithms
for Communication Networks

Klaus-Tycho Foerster
University of Vienna

Janne H. Korhonen
IST Austria

Ami Paz
University of Vienna

Joel Rybicki
IST Austria

Stefan Schmid
University of Vienna

ABSTRACT
Consider a distributed task where the communication network is
fixed but the local inputs given to the nodes of the distributed system
may change over time. In this work, we explore the following
question: if some of the local inputs change, can an existing solution
be updated efficiently, in a dynamic and distributed manner?

To address this question, we define the batch dynamic CONGEST
model in which we are given a bandwidth-limited communication
network and a dynamic edge labelling defines the problem input.
The task is to maintain a solution to a graph problem on the labelled
graph under batch changes. We investigate, when a batch of 𝛼 edge
label changes arrive,

– howmuch time as a function of𝛼 we need to update an existing
solution, and

– howmuch information the nodes have to keep in local memory
between batches in order to update the solution quickly.

Our work lays the foundations for the theory of input-dynamic
distributed network algorithms. We give a general picture of the
complexity landscape in this model, design both universal algo-
rithms and algorithms for concrete problems, and present a general
framework for lower bounds. The diverse time complexity of our
model spans from constant time, through time polynomial in 𝛼 ,
and to 𝛼 time, which we show to be enough for any task.

CCS CONCEPTS
• Networks → Network algorithms; • Theory of computa-
tion → Distributed computing models; Dynamic graph algo-
rithms.

KEYWORDS
dynamic graph algorithms; congest model; distributed algorithms;
communication networks; network management
ACM Reference Format:
Klaus-Tycho Foerster, Janne H. Korhonen, Ami Paz, Joel Rybicki, and Stefan
Schmid. 2021. Input-Dynamic Distributed Algorithms for Communication
Networks. In Abstract Proceedings of the 2021 ACM SIGMETRICS / Inter-
national Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS ’21 Abstracts), June 14–18, 2021, Virtual Event, China. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3410220.3453923

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMETRICS ’21 Abstracts, June 14–18, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8072-0/21/06.
https://doi.org/10.1145/3410220.3453923

+10

+8 -3-4

+5

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1: Examples of an input-dynamic minimum-weight
spanning tree. (a) The underlying communication graph,
with all edges starting with weight 1. (b) A feasible minimum-
weight spanning tree. (c) A batch of two edge weight incre-
ments. (d) Solution to the new input labelling. (e) A new batch
of three changes: two decrements and one increment. (f) An
updated solution.

1 INTRODUCTION
Large communication networks are dynamic: network operators
perform link weight updates for dynamic traffic engineering or
to adjust link layer forwarding in local area networks, content
distribution providers dynamically optimise cache assignments,
and traffic patterns naturally evolve over time. However, while
some “input parameters” change over time, the underlying wired
communication topology is typically relatively static (e.g. layout
and connections of the physical network equipment).

In this setting, it can be inefficient to always recompute the data
structures and other information related to the operation of the
network from scratch upon each change; rather, it is important
to update these structures efficiently and reliably. In particular, it
is desirable that if there are only few changes, then the existing
solution could be efficiently utilised for computing a new solution.

Formally, many network tasks can be modelled as distributed
graph problems, where we want to understand the power and
limitations of dynamic distributed optimisations. To this end, we
initiate the study of input-dynamic distributed graph algorithms,
with the goal of laying the groundwork for a comprehensive theory.

In particular, we introduce the batch dynamic CONGEST model,
which allows us to formally develop a theory of input-dynamic
graph algorithms. This model hence complements prior work fo-
cused on how to operate in dynamic environments where the under-
lying communication network changes, such as temporally dynamic
graphs [?] and distributed dynamic graph algorithms [? ?].

https://doi.org/10.1145/3410220.3453923
https://doi.org/10.1145/3410220.3453923

In brief, themodel is a dynamic variant of the standardCONGEST
model of distributed computation with following characteristics:
(1) The communication network is represented by a static graph

𝐺 = (𝑉 , 𝐸) on |𝑉 | = 𝑛 nodes. The nodes can communicate
with each other over the edges, with 𝑂 (log𝑛) bandwidth per
round. (This is the standard CONGEST model [?].)

(2) The input is given by a dynamic edge labelling of𝐺 . The input
labelling may change and once this happens nodes need to
compute a new feasible solution for the new input labelling.
The labelling can denote, e.g., edge weights or mark a subgraph
of𝐺 . We assume that the labels can be encoded using𝑂 (log𝑛)
bits so that communicating a label takes a single round.

(3) The goal is to design a distributed algorithm which maintains
a solution to a given graph problem on the labelled graph
under batch changes: up to 𝛼 labels can change simultaneously,
and the nodes should react to these changes. The nodes may
maintain a local auxiliary state to store, e.g., the current output
and auxiliary data structures, in order to facilitate efficient
updates upon subsequent changes.

2 CONTRIBUTIONS
We focus on the following questions. When a batch of 𝛼 edge label
changes arrive, and the communication graph has diameter 𝐷 ,
(a) how much time does it take to update an existing solution, as

a function of 𝛼 and 𝐷 , and
(b) how much information does a node need to keep in its local

memory between batches, to achieve optimal running time?
With these questions, we lay the foundations for the theory of input-
dynamic distributed graph algorithms. We draw a general picture of
the complexity landscape in the batch dynamic CONGEST model
as summarised in Table 1. Our main results are as follows.

Universal upper bounds. As an almost trivial baseline, we
observe that any graph problem can be solved in 𝑂 (𝛼 + 𝐷) rounds.
Moreover, any graph problem where the output of a node depends
only on the constant-radius neighbourhood of the node – solvable
in 𝑂 (1) rounds in the LOCAL model1 – can be solved in 𝑂 (𝛼)
rounds. However, these universal algorithms come at a large cost
in space complexity: storing the auxiliary state between batches
may require up to 𝑂 (𝑚 log𝑛) bits, where𝑚 is the number of edges
— in the input graph if the input marks a subgraph, and in the
communication graph if the input represents edge weights.

Intermediate complexity: clique enumeration.We give an
algorithm for enumerating 𝑘-cliques in 𝑂 (𝛼1/2) rounds, beating
the universal upper bound for local problems, and showing that
there exist non-trivial problems that can be solved in 𝑜 (𝛼) rounds.
To complement this result, we show that dynamic clique detection
requires Ω(𝛼1/4) rounds. This is an example of a natural problem
with time complexity that is neither constant nor Θ(𝛼).

Saving space: minimum-weight spanning trees.We show
that a minimum-weight spanning tree2 can be maintained in𝑂 (𝛼 +
𝐷) rounds using only𝑂 (log𝑛) bits per node for storing the auxiliary
state; this exponentially improves the storage requirements of a
previous distributed dynamic algorithm of Peleg [?], which uses
𝑂 (𝑛 log𝑛) bits of memory per node. In addition, we show that our
1 The LOCAL model is similar to the CONGEST model, but without the𝑂 (log𝑛)
limitation on the message sizes [?]. 2 See Fig. 1 for an example.

Table 1: Upper and lower bounds for selected problems in
batch dynamic CONGEST. Upper bounds marked with † fol-
low from the universal algorithms. The lower bounds apply
in a regime where 𝜶 is sufficiently small compared to 𝒏.

Upper bound Lower bound

Problem Time Space Time

any problem 𝑂 (𝛼 + 𝐷) 𝑂 (𝑚 log𝑛) —
any LOCAL(1) probl.𝑂 (𝛼) 𝑂 (𝑚 log𝑛) —

min. spanning tree 𝑂 (𝛼 + 𝐷) 𝑂 (log𝑛) Ω(𝛼/log2 𝛼 + 𝐷)
𝑘-clique 𝑂 (𝛼1/2) 𝑂 (𝑚 log𝑛) Ω(𝛼1/4/log𝛼)

4-cycle 𝑂 (𝛼)† 𝑂 (𝑚 log𝑛)† Ω(𝛼2/3/log𝛼)
𝑘-cycle, 𝑘 ≥ 5 𝑂 (𝛼)† 𝑂 (𝑚 log𝑛)† Ω(𝛼1/2/log𝛼)
diam., (3/2 − 𝜀)-apx. 𝑂 (𝛼 + 𝐷)† 𝑂 (𝑚 log𝑛)† Ω(𝛼/log2 𝛼 + 𝐷)
APSP, (3/2 − 𝜀)-apx. 𝑂 (𝛼 + 𝐷)† 𝑂 (𝑚 log𝑛)† Ω(𝛼/log2 𝛼 + 𝐷)

result is tight, in terms of update time, up to poly log𝛼 : for any
𝛼 ≤ 𝑛1/2, maintaining a minimum-weight spanning tree requires
Ω(𝛼/log2 𝛼 + 𝐷) rounds.

A general framework for lower bounds.We develop a frame-
work for lifting CONGEST lower bounds into the batch dynamic
CONGESTmodel, providing a vast array of non-trivial lower bounds
for input-dynamic problems. These include lower bounds for clas-
sic graph problems, such as cycle detection, clique detection, com-
puting the diameter, approximating all-pairs shortest paths, and
computing minimum spanning trees. The lower bounds hold for
both deterministic and randomised algorithms.

Dynamic congested clique.We explore the dynamic variant of
the congested clique model, which arises as a natural special case of
the batch dynamic CONGEST. We show that triangle counting can
be solved in𝑂 ((𝛼/𝑛)1/3 + 1) rounds in this model using𝑂 (𝑛 log𝑛)
bits of auxiliary state by applying a dynamic matrix multiplication
algorithm. To contrast this, we show that any problem can be solved
in 𝑂 (⌈𝛼/𝑛⌉) rounds using 𝑂 (𝑚 log𝑛) bits of auxiliary state.

ACKNOWLEDGMENTS
We thank Jukka Suomela for discussions. Research supported by
the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement
No 805223 ScaleML), from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska–
Curie grant agreement No. 840605, from the Vienna Science and
Technology Fund (WWTF) project WHATIF, ICT19-045, 2020-2024,
and from the Austrian Science Fund (FWF) and netIDEE SCIENCE
project P 33775-N.

REFERENCES
[] Baruch Awerbuch, Israel Cidon, and Shay Kutten. 2008. Optimal Maintenance of

a Spanning Tree. J. ACM 55, 4 (Sept. 2008).
[] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro.

2012. Time-varying graphs and dynamic networks. IJPEDS 27, 5 (2012), 387–408.
[] Keren Censor-Hillel, Elad Haramaty, and Zohar S. Karnin. 2016. Optimal Dynamic

Distributed MIS. In Proc. PODC. 217–226.
[] David Peleg. 1998. Distributed matroid basis completion via elimination upcast

and distributed correction of minimum-weight spanning trees. In Proc. ICALP.
Springer, 164–175.

[] David Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach. Society
for Industrial and Applied Mathematics.

	Abstract
	1 Introduction
	2 Contributions
	Acknowledgments
	References

