
“We cannot direct the wind, 
but we can adjust the sails.”
(Folklore)

Learning-Augmented Online Algorithms
Stefan Schmid (TU Berlin)
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Example 1: Scheduling
Online Re-Partitioning (Sigmetrics‘19, SODA‘21)
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Migrate to reduce communication
costs? Tradeoff!

Example 1: Scheduling
Online Re-Partitioning (Sigmetrics‘19, SODA‘21)
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Tradeoff: benefits vs
costs of adjustments



Underlying Technology
Optical Circuit Switch

⇢ Optical Circuit Switch rapid adaption of physical layer
⇀ Based on rotating mirrors

Optical Circuit Switch
By Nathan Farrington, SIGCOMM 2010

Lenses
Fixed
Mirror

Mirrors on Motors

Rotate Mirror
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ρ = maxσ Cost_ON(σ)/Cost_OFF(σ) 

Too conservative? Demand often not “worst case”. 

Competitive Ratio
Metric for Evaluating Self-Adjusting Systems
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Recent Representation of Trace Structure:

Complexity Map (Sigmetrics’20)
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Traffic is also clustered (WWW’23):

Small Stable Clusters

reordering based on
bicluster structure

Förster et al., Analyzing the Communication Clusters 
in Datacenters. WWW 2023

Opportunity: exploit with little reconfigurations!



⇢ Restricting inputs: random arrival order, 

locality of reference, access graph, smoothed 

analysis, independent sampling, diffused 

adversaries, distributional analysis, … 

⇢ Deviating from competitive analysis: resource 

augmentation, loose competitiveness, and 

competitiveness with high probability 

⇢ Advice: Next slide ☺

Beyond Worst-Case
Many approaches, also for online algorithms!



Advice from an oracle: side-loaded information about the 

future helps online algorithms to make better decisions.

Model 1: perfect advice

⇢ Assumes a powerful, fully trustworthy oracle 

⇢ Provides algorithm with any information about the future

⇢ Question how many bits of the advice an online algorithm 

needs to achieve a certain competitive ratio c

Model 2: predictions (untrusted advice)

⇢ Introduced by Mitzenmacher and Vassilvitskii: predictor may   

be faulty, and the competitive ratio depends on its error 

⇢ For small error, algorithm should perform close to the  

offline optimum (consistency), for large error, not worse 

than non-augmented online algorithms (robustness)

Model 3: lookahead

⇢ Related to local algorithms of distributed computing*

Advice Models



⇢ All these models require new algorithmic 

features (e.g., a designated advice tape) 

⇢ Hence not applicable to existing 

online algorithms

⇢ Bounds also depend on choice of 

error function

Limitations
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An alternative

⇢ Idea: for randomized online algorithms, we may feed advice

„non-intrusively“ via the random bits tape
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⇢ Applies to: paging, uniform metrical task systems, 

online set cover, etc.

⇢ New upper bounds which improve when the infusion    

parameter α increases 

⇢ Often tight lower bounds (assuming algorithm cannot 

access buffer of previous rounds)

First Results (ESA‘23)
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Application 

domains for 

augmentation?



⇢ Classic buffer sharing algorithm: 

which packets to accept/drop?

⇢ Typically no pushout: once

packet admitted to buffer, 

cannot be dropped later

⇢ Future arrivals unknown: 

how to maximize throughput?

⇢ Programmable switches enable

new applications: running ML   

models in the data plane

Emerging Applications
Example: Programmable Network Switches



⇢ Challenge: drop tail algorithms may drop red packets in 

order to keep buffer for other ports (and transmit

in parallel) 

⇢ Not competitive: if not differently colored packets arrive

Emerging Applications
Example: Programmable Network Switches



⇢ Alternatively: if drop tail algorithm absorbs burst, it may

lead to reactive drops in future and low throughput

Emerging Applications
Example: Programmable Network Switches



⇢ Augment switches with predictions

⇢ Simple random forest approach

significantly improves

competitive ratio

⇢ Depending on prediction error

⇢ Can be implemented on switch 

hardware…

Emerging Applications
Example: Programmable Network Switches



⇢ Further reading: NSDI’24

⇢ Video: https://www.youtube.com/watch?v=sAPe78RFsz0 

Emerging Applications
Example: Programmable Network Switches



⇢ Augmenting online algorithms with learning can benefit

competitive ratio in theory but also in practice as input

is skewed and predictable

⇢ Network equipment supports such augmentations to some extent

⇢ Infused advice approach allows to augment existing algorithms

⇢ Interesting use cases in networked systems, much to explore

Conclusion



http://self-adjusting.net/
Project website

https://trace-collection.net/
Trace collection website

Data Available
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Thank you! Questions?

Golden Gate Zipper



Online Video Course
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Bonus Material

Hogwarts Stair


