
Competitive FIB Aggregation without Update Churn:
Online Ski Rental on the Trie

1

Marcin Bienkowski (Uni Wroclaw)

Stefan Schmid (TU Berlin & T-Labs)

Competitive FIB Aggregation without Update Churn:
Online Ski Rental on the Trie

2

Marcin Bienkowski (Uni Wroclaw)

Stefan Schmid (TU Berlin & T-Labs)

redundantly….

Wow! Growth of Routing Tables

3 Stefan Schmid (T-Labs)

Reasons: scale, virtualization, IPv6 may not help, …

Local FIB Compression: 1-Page Overview

4 Stefan Schmid (T-Labs)

Routers or SDN Switches
 RIB: Routing Information Base

 FIB: Forwarding Information Base

 FIB consists of

 set of <prefix, next-hop> Routers
(RIB+FIB)

SDN
Controller

Basic Idea
 Dynamically aggregate FIB

 “Adjacent” prefixes with same next-hop (= color):
one rule only!

 But be aware that BGP updates (next-hop change,
insert, delete) may change forwarding set, need to
deaggregate again

 Additional churn is bad: rebuild internal FIB structures,
traffic between controller and switch, etc.

Benefits
 Only single router affected

 Other routers do not notice

 Aggregation = simple software update

Setting: A Memory-Efficient Switch/Router

5 Stefan Schmid (T-Labs)

Route processor

 (RIB or SDN controller)

FIB
(e.g., TCAM on SDN switch)

BGP
updates

updates 0

0 1

1
0 1

full list of forwarded
prefixes: (prefix, port)

compressed list

Goal: keep FIB small but consistent!

Without sending too many additional updates.

tr
a

ff
ic

Setting: A Memory-Efficient Switch/Router

6 Stefan Schmid (T-Labs)

Route processor

 (RIB or SDN controller)

FIB
(e.g., TCAM on SDN switch)

BGP
updates

updates 0

0 1

1
0 1

full list of forwarded
prefixes: (prefix, port)

compressed list

Goal: keep FIB small but consistent!

Without sending too many additional updates.

tr
a

ff
ic

 Expensive!
Memory

constraints?

Setting: A Memory-Efficient Switch/Router

7 Stefan Schmid (T-Labs)

Route processor

 (RIB or SDN controller)

FIB
(e.g., TCAM on SDN switch)

BGP
updates

updates 0

0 1

1
0 1

full list of forwarded
prefixes: (prefix, port)

compressed list

Goal: keep FIB small but consistent!

Without sending too many additional updates.

tr
a

ff
ic

Update Churn?

Data structure,

networking, …

Motivation: FIB Compression and Update Churn

8 Stefan Schmid (T-Labs)

Benefits of FIB aggregation
 Routeview snapshots indicate 40%

 memory gains

 More than under uniform distribution

 But depends on number of next hops

Churn
 Thousands of routing updates per second

 Goal: do not increase more

Model: Costs

9 Stefan Schmid (T-Labs)

Route processor

 (RIB or SDN controller)

FIB
(e.g., TCAM on SDN switch)

BGP
updates

updates 0

0 1

1
0 1

full list of forwarded
prefixes: (prefix, port)

compressed list

tr
a

ff
ic

online and
worst-case

arrival
consistent at any time!

(rule: most specific)

Cost = α (# updates to FIB) + ∫ memory
t

Ports = Next-Hops = Colors

Model: Aggregation

10 Stefan Schmid (T-Labs)

Uncompressed FIB (UFIB):

independent prefixes

size 5

size 3

FIB w/o

exceptions

size 2

FIB w/

exceptions

Model: Aggregation

11 Stefan Schmid (T-Labs)

Uncompressed FIB (UFIB):

independent prefixes

size 5

size 3

FIB w/o

exceptions

size 2

FIB w/

exceptions

Model: Aggregation

12 Stefan Schmid (T-Labs)

Uncompressed FIB (UFIB):

independent prefixes

size 5

size 3

FIB w/o

exceptions

size 2

FIB w/

exceptions
not

now!

Model: Aggregation

13 Stefan Schmid (T-Labs)

Uncompressed FIB (UFIB):

independent prefixes

size 5

size 3

FIB w/o

exceptions

size 2

FIB w/

exceptions

u

Note: if node u changes color to blue, three
updates are required in the compressed tries!
(remove one, insert two)

Model: Online Input Sequence

14 Stefan Schmid (T-Labs)

Route processor

 (RIB or SDN controller)

BGP
updates 0

0 1

1

full list of forwarded
prefixes: (prefix, port)

Update: Color change

0

0 1

1 0

0 1

1

Update: Insert/Delete

0

0 1

1 0

1

1

Model: Online Perspective

15 Stefan Schmid (T-Labs)

Online algorithms make
decisions at time t without any
knowledge of inputs at times
t’>t.

Online Algorithm

Competitive analysis framework:

An r-competitive online algorithm
ALG gives a worst-case
performance guarantee: the
performance is at most a factor r
worse than an optimal offline
algorithm OPT!

Competitive Analysis

Competitive ratio r,

 r = Cost(ALG) / cost(OPT)

The price of not knowing the future!

Competitive Ratio

No need for complex predictions but still good!

Algorithm BLOCK(A,B)

16 Stefan Schmid (T-Labs)

BLOCK(A,B) operates on trie:

 Two parameters A and B for amortization (A ≥ B)

 Definition: internal node v is c-mergeable if subtree
T(v) only constains color c leaves

 Trie node v monitors: how long was subtree T(v) c-
mergeable without interruption? Counter C(v).

 If C(v) ≥ A α, then aggregate entire tree T(u) where
u is furthest ancestor of v with C(u) ≥ B α. (Maybe

v is u.)

 Split lazily: only when forced.

Nodes with square inside: mergeable. Nodes with bold border: suppressed for FIB1.

Algorithm BLOCK(A,B)

17 Stefan Schmid (T-Labs)

BLOCK(A,B) operates on trie:

 Two parameters A and B for amortization (A ≥ B)

 Definition: internal node v is c-mergeable if subtree
T(v) only constains color c leaves

 Trie node v monitors: how long was subtree T(v) c-
mergeable without interruption? Counter C(v).

 If C(v) ≥ A α, then aggregate entire tree T(u) where
u is furthest ancestor of v with C(u) ≥ B α. (Maybe

v is u.)

 Split lazily: only when forced.

Nodes with square inside: mergeable. Nodes with bold border: suppressed for FIB1.

BLOCK:

 (1) balances memory and update costs

 (2) exploits possibility to merge multiple tree nodes
 simultaneously at lower price (threshold A and B)

Analysis

18 Stefan Schmid (T-Labs)

Theorem:

Proof idea (a bit technical):

 Time events when ALG merges k nodes of T(u) at u

 Upper bound ALG cost:

 k+1 counters between B α and A α

 Merging cost at most (k+3) α: remove k+2 leaves, insert
one root

 Splitting cost at most (k+1) 3α: in worst case, remove-
insert-remove individually

 Lower bound OPT cost:

 Time period from t- α to t

 If OPT does not merge anything in T(u) or higher: high
memory costs

 If OPT merges ancestor of u: counter there must be
smaller than B α, memory and update costs

 If OPT merges subtree of T(u): update cost and memory
cost for in- and out-subtree

 Optimal choice: A = √13 - 1 , B = (2√13)/3 – 2/3

 Add event costs (inserts/deletes) later!

BLOCK(A,B) is 3.603-competitive.

QED

u

T(u):

Lower Bound

19 Stefan Schmid (T-Labs)

Theorem:

Proof idea:

 Simple example:

Any online algorithm is at least 1.636-competitive.

00
1

01
1 1 00

1
01 0

Adversary
Adversary

00 01

Ɛ
ALG

do nothing!

(1) If ALG does never changes to single entry, competitive ratio is at least 2 (size 2 vs 1).

(2) If ALG changes before time α, adversary immediately forces split back! Yields costly inserts...

(3) If ALG changes after time α, the adversary resets color as soon as ALG for the first time has a

 single node. Waiting costs too high.

Note on Adding Insertions and Deletions

20 Stefan Schmid (T-Labs)

 Algorithm can be extended to insertions/deletions

Insert:

u u u becomes
mergeable!

Delete:

u u u no longer
mergeable!

Allowing for Exceptions

21 Stefan Schmid (T-Labs)

Exceptions

in Input

Exceptions

in Output

So far:

Exceptions: Concepts and Definitions

22 Stefan Schmid (T-Labs)

Maximal subtrees of UFIB with
colored leaves and blank internal
nodes.

Sticks

Idea: if all leaves in Stick have same color, they would become mergeable.

The HIMS Algorithm

23 Stefan Schmid (T-Labs)

 Hide Invisibles Merge Siblings (HIMS)

u

 Two counters in Sticks:

u

C(u) = time since Stick
descendants are unicolor

H(u) = how long do nodes have
same color as the least colored
ancestor?

Hide Invisible
Counter:

Merge Sibling
Counter:

Note: C(u) ≥ H(u), C(u) ≥ C(p(u)), H(u) ≥ H(p(u)), where p() is parent.

u

The HIMS Algorithm

24 Stefan Schmid (T-Labs)

Keep rule in FIB if and only if all three conditions hold:

(1) H(u) < α (do not hide yet)

(2) C(u) ≥ α or u is a stick leaf (do not aggregate yet if ancestor low)

(3) C(p(u)) < α or u is a stick root

Examples:

Trivial stick: node is both root and leaf (Conditions 2+3 fulfilled).
So HIMS simply waits until invisible node can be hidden. Ex 1.

Ex 2.
Stick without colored ancestors: H(u)=0 all the
time (Condition 1 fulfilled). So everything
depends on counters inside stick. If counters
large, only root stays.

Analysis

25 Stefan Schmid (T-Labs)

Theorem:

HIMS is O(w) -competitive.

Proof idea:

 In the absence of further BGP updates

(1) HIMS does not introduce any changes after time α

(2) After time α, the memory cost is at most an factor O(w) off

 In general: for any snapshot at time t, either HIMS already started
aggregating or changes are quite new

 Concept of rainbow points and line coloring useful

 A rainbow point is a “witness” for a FIB rule

 Many different rainbow points over time give lower bound

addresses

rainbow point rainbow point

0 2w-1

Lower Bound

26 Stefan Schmid (T-Labs)

Theorem:

Any (online or offline) Stick-based algo is Ω(w) -competitive.

Proof idea:

Stick-based: (1) never keep a node outside a stick

 (2) inside a stick, for any pair u,v in ancestor-
 descendant relation, only keep one

Consider single stick: prefixes representing lengths 2w-1, 2w-2, ..., 21, 20, 20

Cannot aggregate stick!

But OPT could use FIB:

QED

LFA: A Simplified Implementation

27 Stefan Schmid (T-Labs)

 LFA: Locality-aware FIB aggregation

 Combines stick aggregation with offline optimal ORTC

 Parameter α: depth where aggregation starts

 Parameter β: time until aggregation

LFA Simulation Results

28 Stefan Schmid (T-Labs)

For small alpha, Aggregated Table (AT) significantly smaller than Original Table (OT)

Conclusion

29 Stefan Schmid (T-Labs)

 Without exceptions in input and output: BLOCK is constant competitive

 With exceptions in input and output: HIMS is O(w)-competitive

 Note on offline variant: fixed parameter tractable, runtime of dynamic
program in f(α) nO(1)

Thank you! Questions?

