An Approximation Algorithm for Path Computation and Function Placement in SDNs

Matthias Rost Technische Universität Berlin

July 21, SIROCCO 2016

Joint work with Guy Even and Stefan Schmid

Service Chain: 100\$

Service Chain: 100\$

Service Chain: 100\$

Substrate Network

- Directed network N = (V, E)
- capacities $c: V \cup E \to \mathbb{R}_{\geq 0}$

Requests

- Acyclic graph $G_i = (X_i, Y_i)$
- mapping restrictions $U_i: X_i \cup Y_i \rightarrow 2^V \cup 2^E$
- ullet benefit, demand: $b_i, d_i \in \mathbb{R}_{\geq 0}$
- start, target: $s_i, t_i \in X_i$

$$U_i(\text{fw}) = \{a\} \quad U_i(\text{gw}) = \{d\}$$

$$S_i \quad \text{fw} \quad \text{gw}$$

$$U_i(s_i) = \{b\} \quad U_i(t_i) = \{c\}$$

$$U_i(x86) = \{c\}$$

Substrate Network

- Directed network N = (V, E)
- ullet capacities $c:V\cup E
 ightarrow \mathbb{R}_{\geq 0}$

Substrate Network

- Directed network N = (V, E)
- capacities $c: V \cup E \to \mathbb{R}_{>0}$

Requests

- Acyclic graph $G_i = (X_i, Y_i)$
- mapping restrictions $U_i: X_i \cup Y_i \rightarrow 2^V \cup 2^E$
- ullet benefit, demand: $b_i,d_i\in\mathbb{R}_{\geq 0}$
- start, target: $s_i, t_i \in X_i$

Task

Find set $I' \subseteq I$ of requests to embed and valid realizations \bar{p}_i for $i \in I'$, s.t.

- **1** \bar{p}_i represents a path from $s_i \rightsquigarrow t_i$
- 2 capacities of substrate nodes and edges is not violated
- 3 the profit $\sum_{i \in I'} b_i$ is maximized.

Substrate

$$U_i(\text{fw}) = \{a\} \quad U_i(\text{gw}) = \{d\}$$

$$\underbrace{fw} \quad \text{gw}$$

$$U_i(s_i) = \{b\} \quad \text{80} \quad U_i(t_i) = \{c\}$$

$$U_i(x86) = \{c\}$$

Valid Realizations via Product Networks: $pn(N, r_i)$

Valid Realizations

Any $\hat{s}_i - \hat{t}_i$ path in $pn(N, r_i)$ represents a valid realization of request r_i .

Valid Realizations via Product Networks: $pn(N, r_i)$ \hat{s}_i \hat{s}_i \hat{t}_i

Approximating PCFP

Flow Formulation

- Compute *unsplittable* flows $\bar{f}_i : E(pn(N, r_i)) \rightarrow \{0, d_i\}$
- Flow preservation within each product network (except at \hat{s}_i and \hat{t}_i)
- max $\sum_i b_i \cdot |\bar{f}_i|/d_i$
- s.t. node and edge capacities are not violated

Flow Formulation

- Compute *unsplittable* flows $\bar{f}_i : E(pn(N, r_i)) \rightarrow \{0, d_i\}$
- Flow preservation within each product network (except at \hat{s}_i and \hat{t}_i)
- max $\sum_i b_i \cdot |\bar{f}_i|/d_i$
- s.t. node and edge capacities are not violated

Flow Formulation

- Compute *unsplittable* flows $\bar{f}_i : E(pn(N, r_i)) \rightarrow \{0, d_i\}$
- Flow preservation within each product network (except at \hat{s}_i and \hat{t}_i)
- $\max \sum_i b_i \cdot |\bar{f}_i|/d_i$
- s.t. node and edge capacities are not violated

NP-Hardness follows from ... the Unsplittable Flow Problem.

Flow Solution in Product Networks

PCFP as a Flow Problem

NP-Hardness follows from ... the Unsplittable Flow Problem.

Approximating PCFP using Randomized Rounding: Idea

Flow Formulation

 Compute flows as above, but relax integrality:

 $\bar{f}_i: E(pn(N, r_i)) \rightarrow [0, d_i]$

Approximating PCFP using Randomized Rounding: Idea

Flow Formulation

• Compute flows as above, but relax integrality:

 $\bar{f}_i: E(pn(N,r_i)) \rightarrow [0,d_i]$

Algorithm

- Scale capacities by $1/(1+\varepsilon)$
- 2 Compute fractional flows
- **③** Place request i ∈ I into set I' ⊆ I with probability $|\bar{f}_i|/d_i$
- Perform random walks to obtain \bar{p}_i for $i' \in I'$

Product Networks

Approximating PCFP using Randomized Rounding: Idea

Algorithm

- Scale capacities by $1/(1+\varepsilon)$
- 2 Compute fractional flows
- **③** Place request i ∈ I into set I' ⊆ I with probability $|\bar{f}_i|/d_i$
- 4 Perform random walks to obtain \bar{p}_i for $i' \in I'$

Questions

- What is the expected profit?
- ② How badly do we violate capacities?

Performing Random Walks

Theorem (by induction, cf. Motwani et al. [1996])

The probability that an edge $e \in E(pn(N, r_i))$ will be used equals $\bar{f}_i(e)/d_i$. Hence, the expected load on an edge $e \in E(pn(N, r_i))$ equals $\bar{f}_i(e)$.

Notation

Let $E_i(e)$ denote all *copies* of edge $e \in E$ within $pn(N, r_i)$.

Important

 $f_i(e) \leq |E_i(e)| \cdot d_i$.

Analysis of Randomized Rounding

Approximating PCFP using Randomized Rounding: Analysis of Edge Capacities

Notation

• Let $\Delta_{\mathsf{max}} = \mathsf{max}_{i \in I} \; E_i(e) \; \mathsf{and} \; d_{\mathsf{max}} = \mathsf{max}_{j \in I} \; d_i$

Approach: Fix single substrate edge $e \in E$

- Interpret $f_i(e)$ as random variable
- Define $X_i \in [0,1]$: $X_i \triangleq f_i(e)/(\Delta_{\mathsf{max}} \cdot d_{\mathsf{max}})$.

Approximating PCFP using Randomized Rounding: Analysis of Edge Capacities

Notation

• Let $\Delta_{\max} = \max_{i \in I} E_i(e)$ and $d_{\max} = \max_{j \in I} d_i$

Approach: Fix single substrate edge $e \in E$

- Interpret $f_i(e)$ as random variable
- Define $X_i \in [0,1]$: $X_i \triangleq f_i(e)/(\Delta_{\mathsf{max}} \cdot d_{\mathsf{max}})$.
- Observe $\mathbf{E}[X_i] = \sum_{e' \in E_i(e)} \bar{f}_i(e') / (\Delta_{\mathsf{max}} \cdot d_{\mathsf{max}}).$

Approximating PCFP using Randomized Rounding: Analysis of Edge Capacities

Notation

• Let $\Delta_{\max} = \max_{i \in I} E_i(e)$ and $d_{\max} = \max_{i \in I} d_i$

Approach: Fix single substrate edge $e \in E$

- Interpret $f_i(e)$ as random variable
- Define $X_i \in [0,1]$: $X_i \triangleq f_i(e)/(\Delta_{\max} \cdot d_{\max})$.
- Observe $\mathbf{E}[X_i] = \sum_{e' \in E_i(e)} \bar{f}_i(e') / (\Delta_{\mathsf{max}} \cdot d_{\mathsf{max}}).$
- Note that $\mathbf{E}[X_i] \leq \mu_i$ holds for

$$\mu_i \triangleq \frac{\bar{c}(e)}{\Delta_{\max} \cdot d_{\max}} \cdot \frac{\sum_{e' \in E_i(e)} \bar{f}_i(e')}{\sum_{j \in I} \sum_{e' \in E_j(e)} \bar{f}_j(e')} ,$$

as $\sum_{i \in I} \sum_{e' \in E:(e)} \bar{f}_j(e') \leq \bar{c}(e)$ holds.

Approximating PCFP using Randomized Rounding: Analysis of Edge Capacities

Notation

• Let $\Delta_{\max} = \max_{i \in I} E_i(e)$ and $d_{\max} = \max_{j \in I} d_i$

Approach: Fix single substrate edge $e \in E$

- Interpret $f_i(e)$ as random variable
- Define $X_i \in [0,1]$: $X_i \triangleq f_i(e)/(\Delta_{\mathsf{max}} \cdot d_{\mathsf{max}})$.
- Observe $\mathbf{E}[X_i] = \sum_{e' \in E_i(e)} \bar{f}_i(e') / (\Delta_{\mathsf{max}} \cdot d_{\mathsf{max}}).$
- Note that $\mathbf{E}[X_i] \leq \mu_i$ holds for

$$\mu_i \triangleq \frac{\bar{c}(e)}{\Delta_{\mathsf{max}} \cdot d_{\mathsf{max}}} \cdot \frac{\sum_{e' \in E_i(e)} \bar{f}_i(e')}{\sum_{j \in I} \sum_{e' \in E_j(e)} \bar{f}_j(e')} ,$$

as $\sum_{j \in I} \sum_{e' \in E_i(e)} \bar{f}_j(e') \leq \bar{c}(e)$ holds.

• Hence, $\mu \triangleq \sum_{i \in I} \mu_i = \bar{c}(e)/(\Delta_{\text{max}} \cdot d_{\text{max}})$.

Approximating PCFP using Randomized Rounding: Analysis of Edge Capacities

Approach: Fix single substrate edge $e \in E$

- Interpret $f_i(e)$ as random variable
- Define $X_i \in [0,1]$: $X_i \triangleq f_i(e)/(\Delta_{\max} \cdot d_{\max})$.
- Observe $\mathbf{E}[X_i] \leq \mu_i = \mu_i \triangleq \frac{\bar{c}(e)}{\Delta_{\mathsf{max}} \cdot d_{\mathsf{max}}} \cdot \frac{\sum_{e' \in E_i(e)} \bar{f}_i(e')}{\sum_{j \in I} \sum_{e' \in E_i(e)} \bar{f}_j(e')}$.
- Let $X = \sum_{i \in I} X_i$ with $\mathbf{E}[X] \le \mu = \sum_{i \in I} \mu_i = \bar{c}(e)/(\Delta_{\mathsf{max}} \cdot d_{\mathsf{max}})$.
- The capacity along edge $e \in E$ is violated, if

$$X \ge (1 + \varepsilon) \cdot \mu = \frac{c(e)}{\Delta_{\mathsf{max}} \cdot d_{\mathsf{max}}}$$

Excursion: A Chernoff-Bound

Chernoff

Let $\{X_i\}_i$ denote a sequence of independent random variables attaining values in [0,1]. Assume that $\mathbf{E}[X_i] \leq \mu_i$. Let $X \triangleq \sum_i X_i$ and $\mu \triangleq \sum_i \mu_i$. Then, for $\varepsilon > 0$,

$$\Pr[X \ge (1+\varepsilon) \cdot \mu] \le e^{-\beta(\varepsilon) \cdot \mu}.$$

Excursion: A Chernoff-Bound

Chernoff

Let $\{X_i\}_i$ denote a sequence of independent random variables attaining values in [0,1]. Assume that $\mathbf{E}[X_i] \leq \mu_i$. Let $X \triangleq \sum_i X_i$ and $\mu \triangleq \sum_i \mu_i$. Then, for $\varepsilon > 0$,

$$\Pr\left[X \geq (1+\varepsilon) \cdot \mu\right] \leq e^{-\beta(\varepsilon) \cdot \mu}.$$

Definition of β

The function $\beta: (-1, \infty) \to \mathbb{R}$ is defined by $\beta(\varepsilon) \triangleq (1 + \varepsilon) \ln(1 + \varepsilon) - \varepsilon$.

Observation

For $0 < \varepsilon < 1$ we have $\beta(\varepsilon) \ge \frac{2\varepsilon^2}{4.2+\varepsilon}$ and hence $\beta(\varepsilon) = \Theta(\varepsilon^2)$.

Approximating PCFP using Randomized Rounding: Analysis of Edge Capacities

Approach: Fix single substrate edge $e \in E$

- Define $X_i \in [0,1]$: $X_i \triangleq f_i(e)/(\Delta_{\max} \cdot d_{\max})$, with $\mathbf{E}[X_i] \leq \mu_i$.
- Let $X = \sum_{i \in I} X_i$ with $\mathbf{E}[X] \le \mu = \bar{c}(e)/(\Delta_{\mathsf{max}} \cdot d_{\mathsf{max}})$.
- The capacity along edge $e \in E$ is violated, if $X \ge (1 + \varepsilon) \cdot \mu$

Application of Chernoff-Bound

$$\Pr\left|\sum_{i\in I}X_i\geq (1+\varepsilon)\cdot\mu\right|\leq e^{-\beta(\varepsilon)\cdot\mu}=e^{-\beta(\varepsilon)\cdot\bar{c}(e)/(\Delta_{\mathsf{max}}\cdot d_{\mathsf{max}})}$$

Under small demands, i.e. assuming $\frac{\bar{c}(e)}{\Delta_{\max}d_{\max}} \ge \frac{4.2+\varepsilon}{\varepsilon^2} \cdot \ln |E|$

As
$$\beta(\varepsilon) \geq \frac{2\varepsilon^2}{4.2 + \varepsilon}$$
 holds, $\Pr\left[\sum_{i \in I} X_i \geq (1 + \varepsilon) \cdot \mu\right] \leq 1/|E|^2$ follows.

Main Results

Approximating PCFP using Randomized Rounding: Main Results

Main Theorem

Assume that $\frac{c_{\min}}{\Delta_{\max} \cdot d_{\max}} \geq \frac{4.2 + \varepsilon}{\varepsilon^2} \cdot (1 + \varepsilon) \cdot \ln |E|$ for $\varepsilon \in (0,1)$. The rounding scheme – under scaling capacities by $1/(1 + \varepsilon)$ – yields

$$Pr [original edge capacity is violated] \leq \frac{1}{|E|}$$

$$\Pr\left[B(\mathsf{alg}) < \frac{1-\varepsilon}{1+\varepsilon} \cdot B(\mathsf{opt}^*)\right] \leq e^{-\beta(-\varepsilon) \cdot B(\mathsf{opt}^*)/((1+\varepsilon) \cdot b_{\mathsf{max}} \cdot d_{\mathsf{max}})}.$$

Approximating PCFP using Randomized Rounding: Main Results

Main Theorem

Assume that $\frac{c_{\min}}{\Delta_{\max} \cdot d_{\max}} \geq \frac{4.2 + \varepsilon}{\varepsilon^2} \cdot (1 + \varepsilon) \cdot \ln |E|$ for $\varepsilon \in (0,1)$. The rounding scheme – under scaling capacities by $1/(1+\varepsilon)$ – yields

$$Pr [original edge capacity is violated] \leq \frac{1}{|E|}$$

$$\Pr\left[B(\mathsf{alg}) < \frac{1-\varepsilon}{1+\varepsilon} \cdot B(\mathsf{opt}^*)\right] \leq e^{-\beta(-\varepsilon) \cdot B(\mathsf{opt}^*)/((1+\varepsilon) \cdot b_{\mathsf{max}} \cdot d_{\mathsf{max}})}.$$

Monte Carlo

By repeating the rounding finitely many times, a high quality solution can be found with high probability.

Approximating PCFP using Randomized Rounding: Main Results

Main Theorem

Assume that $\frac{c_{\min}}{\Delta_{\max} \cdot d_{\max}} \geq \frac{4.2 + \varepsilon}{\varepsilon^2} \cdot (1 + \varepsilon) \cdot \ln |E|$ for $\varepsilon \in (0, 1)$. The rounding scheme – under scaling capacities by $1/(1 + \varepsilon)$ – yields

$$Pr [original edge capacity is violated] \leq \frac{1}{|E|}$$

$$\mathbf{Pr}\left[B(\mathsf{alg}) < \frac{1-\varepsilon}{1+\varepsilon} \cdot B(\mathsf{opt}^*)\right] \leq e^{-\beta(-\varepsilon) \cdot B(\mathsf{opt}^*)/((1+\varepsilon) \cdot b_{\mathsf{max}} \cdot d_{\mathsf{max}})}.$$

Corollary

If additionally, $b_i = 1$ holds for all $i \in I$, then with probability 1 - O(1/Poly(|E|)), the algorithm returns a solution with at least $1 - O(\varepsilon)$ times the optimal benefit with high probability.

Conclusion

Summary

- PCFP considers the placement of functions and the routing between these for multiple requests to maximize the profit.
- Apply randomized rounding (cf. Raghavan and Tompson [1987]) and obtain approximation under certain assumptions:
 - Small demands $\frac{\bar{c}(e)}{\Delta_{\max} d_{\max}} \geq \frac{4.2 + \varepsilon}{\varepsilon^2} \cdot \ln |E|$ to not violate capacites Small demands and unit benefits yield $1 \mathcal{O}(\varepsilon)$ approximation.

Conclusion

Summary

- PCFP considers the placement of functions and the routing between these for multiple requests to maximize the profit.
- Apply randomized rounding (cf. Raghavan and Tompson [1987]) and obtain approximation under certain assumptions:
 - Small demands $\frac{\bar{c}(e)}{\Delta_{\max} d_{\max}} \ge \frac{4.2 + \varepsilon}{\varepsilon_{-}^2} \cdot \ln |E|$ to not violate capacites
 - Small demands and unit benefits yield $1 \mathcal{O}(\varepsilon)$ approximation.

Contribution: "Rediscovery" of randomized rounding

- Consider several (virtual) embedding options for requests (DAGs).
- Show applicability of randomized rounding to exert admission control.
- Perform concise mathematical analysis.
- First non-trivial approximation for embeddings multiple graphs.

Related Work

Randomized Rounding

- VLSI design to minimize width [Raghavan and Tompson, 1987]
- Analysis of the approximation for PCFP without requiring assumptions and generalization to 'cyclic' requests [Rost and Schmid, 2016]

Modeling and Embedding Requests

- Product Network and Online Approximation [Even et al., 2016]
- Heuristics for choosing virtual embedding options and embedding services [Sahhaf et al., 2015]

References I

- Guy Even, Moti Medina, and Boaz Patt-Shamir. Competitive path computation and function placement in sdns. *CoRR*, abs/1602.06169, 2016. URL http://arxiv.org/abs/1602.06169.
- D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig. Software-defined networking: A comprehensive survey. *Proceedings of the IEEE*, 103(1):14–76, 2015. ISSN 0018-9219. doi: 10.1109/JPROC.2014.2371999.
- Rajeev Motwani, Joseph Seffi Naor, and Prabhakar Raghavan. Randomized approximation algorithms in combinatorial optimization. In *Approximation algorithms for NP-hard problems*, pages 447–481. PWS Publishing Co., 1996.
- Prabhakar Raghavan and Clark D Tompson. Randomized rounding: a technique for provably good algorithms and algorithmic proofs. *Combinatorica*, 7(4):365–374, 1987.

References II

Matthias Rost and Stefan Schmid. Service chain and virtual network embeddings: Approximations using randomized rounding. *CoRR*, abs/1604.02180, 2016.

Sahel Sahhaf, Wouter Tavernier, Matthias Rost, Stefan Schmid, Didier Colle, Mario Pickavet, and Piet Demeester. Network service chaining with optimized network function embedding supporting service decompositions. In *Journal Computer Networks (COMNET)*, Elsevier, 2015.