“We cannot direct the wind,
but we can adjust the sails.”

(Folklore)

L]

Datacenters (“hyper-scale”)

Interconnecting networks:
a critical infrastructure
of our digital society.

Traffic
Growth

Source: Facebook

[ay

Datacenters (“hyper-scale”)

Interconnecting networks:
a critical infrastructure
of our digital society.

1

Credits: Marco Chiesal

>

>

>

Network equipment reaching
capacity limits

— Transistor density rates stalling
— “End of Moorefs Law in networking”

Hence: more equipment,
larger networks

Resource intensive and:
inefficient

Gbps/€

[1] Source: Microsoft, 2019

How to interconnect?

(e]e]

(o] o)

o0

oo

oo

00

00

©

o0

©
oo

Root Cause

Fixed and Demand-Oblivious Topology

Many flavors,
but in common:
fixed and

oblivious to
actual demand.

Root Cause

Fixed and Demand-Oblivious Topology

............

Many flavors,
but in common:
fixed and

oblivious to
actual demand.

Highway which ignores

actual traffic:

frustrating!

©
oo

oo
©
oo

00
©
ooo
(o] o]

oo

©
oo

©
000

©
ooo

e

mirrors

® © & @& © & @& @

new flexible
interconnect

O

o
n_nn

0

o
nnn

0

o
nnn

(o] o]

00

O

o
nnn

O

o
n_______

0

o
nnn

123456 78

demand
matrix:

00 N OV R W N

e.g.,

© © © & © &€ € @ oo

new flexible
interconnect

123 456 78

demand
matrix:

® © &€ @& © © & @

0 N VbR W R

e.g.,
mirrors

new flexible
interconnect

1234567 8

new
demand:

0 N OV A W N

mirrors

e.g.,

new flexible
interconnect

123 45678

new flexible
interconnect

mirrors

@ © & @& @

(o] o]

00

A Vision

Flexible and Demand-Aware Topologies

1 23 456 78

new
demand:

Self-Adjusting
Networks

0 ~N OV R WN R

e.g.,
mirrors

new flexible
interconnect

Empirical studies:

traffic matrices sparse and skewed

Facebook Microsoft N
s mtnnf;_ : &l » y
‘l_- 4 ; i iy (b : R RSP
" } <-/A:7- - PR
~ e -d'x-ma- e i g e o o iasifnof | gh-oios Sy
") AL TR o T—— : T
o ¥ o o |
|S] V) :
< [
=} >
o o : '
9 N Rt =i E PR
* : ;) I
e Bt S B I L
destinations destinations \/

Mbps

traffic bursty over time

Facebook

Time (seconds)

DB

Web

Had

ML

CNS

Multi
Grid

pF

NN

Griner et al., SIGMETRICS 2020

non-temporal complexity

bursty

uniform

pF
CNS

Multi
Gnid

.. NN

bursty & skewed

temporal complexity

o
o)
g
a0
00
ol

Griner et al., SIGMETRICS 2020

DB

Web

Had

ML

CNS

Multi
Grid

pF
NN

Traffic is also clustered:

Small Stable Clusters

reordering based on
bicluster structure

Opportunity: exploit with little reconfigurations!

Forster et al., Analyzing the Communication Clusters
in Datacenters. WWW 2023

Sounds Crazy?
Emerging Enabling
Technology.

Photonics

H2020:

“Photonics one of only five
key enabling technologies
for future prosperity.”

US National Research Council:
“Photons are the new
Electrons.”

-» Spectrum of prototypes
— Different sizes, different reconfiguration times
— From our ACM SIGCOMM workshop OptSys

Prototype 1

Prototype 2

Prototype 3

>

Spectrum of prototypes
— Different sizes, different reconfiguration times
— From our ACM SIGCOMM workshop OptSys

Prototype 1

Moving antenna (ms)

Prototype 2

Moving mirrors (mus)

Prototype 3

Changing lambdas (ns)

-» Optical Circuit Switch rapid adaption of physical layer

— Based on rotating mirrors

Fixed
Mirror

/
L X

Rotate Mirror =N

Optical Circuit Switch

By Nathan Farrington, SIGCOMM 2010

Systems

Jupiter evolving: Reflecting on Google’s data
center network transformation

August 24, 2022

Amin Vahdat
VP & GM, Systems and Services Infrastructure

Flexibility

Structure

Self-Adjusting
Networks

Now is the time!

Efficiency

10

Flexibility

Structure

Self-Adjusting
Networks

Now is the time!

Efficiency

10

non-temporal complexity

bursty

uniform

pF
CNS

Multi
Gnid

.. NN

bursty & skewed

temporal complexity

o
o)
g
a0
00
ol

DB

Web

Had

ML

CNS

Multi
Grid

pF
NN

DB
Web
Had
ML
CNS
Multi
Grid
pF

NN

uniform

LERRSIEEEN

temporal complexity

pF
o\

bursty & skewed

bursty
@

A3TX9Tdwod Tedodwdi-uou

= TH
%
I

Our focus:
in hardware

Everywhere, but mainly
in software

Algorithmic trading

oo
©
00

Recommender systems
NETFLIX

Neural networks

11

A first insight: entropy of the demand.

12

Destinations

5

4

3

$924Nn0S

ERL(D,N) = z p(u,v) - dy(u,v)

(u,v)eD

Destinations

Sources

ERL(D,N) = z p(u,v) - ng/)
~ o

Expected Route Demg
Length (u,v) E@ <

Destinations

Sources

ERLON) =) p(uv) - dy(uv)
(u,v)eD

Sources

" 3v5

ERL(D,N) = z p(u,v) - dy(u,v)
(u,v)eD

Destinations

1 2 3 4 5 6 7 /

Sources

8%
_—

ERLON) =) p(uv) - dy(uv)
(u,v)eD

Destinations
1 2 3 4 5 6 7

v

Huffman tree:
“ego-tree”

Sources

Destinations
1 2 3 4 5 6 7

>

Huffman tree:
“ego-tree”

Sources

-» Idea for algorithm:
— Union of trees

e
-
t (V)]
.m e
b}
o ., S
o0
v
_I_e%..&
0 < -d
P oW
C 4 5 a
55,8
T 557
O +H T &
U S U S
o5 O X @
H 11 1
A

-» Idea for algorithm:
— Union of trees
— Reduce degree
— But keep distances

-> 0k for sparse demands
— Not everyone gets tree
— Helper nodes

-» Idea for algorithm:
— Union of trees
— Reduce degree
— But keep distances

-> 0k for sparse demands
— Not everyone gets tree
— Helper nodes

Traditional BST Demand-aware BST Self-adjusting BST

More structure: improved access cost >

13

Traditional BST Demand-aware BST Self-adjusting BST
(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST,
Q)

BST; 1
&)

More structure: improved access cost / shorter codes >

13

Traditional BST Demand-aware BST Self-adjusting BST
(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST; BST,.
Q) @

Similar benefits? >

13

Traditional BST Demand-aware BST Self-adjusting BST
(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST; BST,.
Q) @

Similar benefits? >

13

Traditional BST Demand-aware BST Self-adjusting BST
(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST; BST,.
Q) @

Generalize methodology:
... and transfer
entropy bounds and
algorithms of data-
structures to networks.

First result:
Demand-aware networks
of asymptotically
optimal route lengths.

Reduced expected route lengths! >

13

Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

OO0 00

Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

cost 5

et kel ket

_A———"'

6‘6660

Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

cost 1

666666

Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

MLA is NP-hard
— .. and so is our problem!

\
1
\
\
1
\
\
\
\

OO0 00b

Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

MLA is NP-hard
— .. and so is our problem!

But what about A>2?

— Embedding problem still hard

— But we have a new degree of
freedom!

Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

MLA is NP-hard
— .. and so is our problem!

But what about A>2?

— Embedding problem still hard

— But we have a new degree of
freedom!

— Self-adjusting networks may be really useful to serve large

hop routing

avoiding multi-

flows (elephant flows)

[
[
o Il
e Il

[
[
[
[

oo
ooo

oo
oo

oo
oog

oo
oog

oo
ooo

oo
oog

A

00
ooo

° ___
ooo

%
__ A
= _8

oo

8

F@ Il

oo
ooo

00
ooo

1 hop

6 hops

14

(]
o0
M oo
1 e lll
e oo
: o Il
e g 00
; o |l
O t oo
ot o |l
l P 00
22 e |lll
e m 00
; £ o |l

.1 -1}
.W_ . o Il
l m 00
- e lll
Y no

[
v o
a ©

ol S
> 9 ”
>
s ©
Y- o ||l
w m oo
- o |lll
ﬁ ﬂ oo
: e |l
o S a
» A
t wl oo
3 5 o |l
“MJ @ oo
a o |l
FF m oo
7 e |l
% ﬂ (1]

o [l

1

14

1 hop

6 hops

— Self-adjusting networks may be really useful to serve large
flows (elephant flows): avoiding multi-hop routing

000
]
O

o0
©

00

— However,

requires optimization and adaption, which takes time

14

— Self-adjusting networks may be really useful to serve large
flows (elephant flows): avoiding multi-hop routing

— However, requires optimization and adaption, which takes time

14

Diverse patterns:

— Shuffling/Hadoop:
all-to-all

— All-reduce/ML: ring or

tree traffic patterns
— Elephant flows

— Query traffic: skewed
— Mice flows
— Control traffic: does not evolve

but has non-temporal structure

Diverse requirements:

— ML is bandwidth hungry,
small flows are latency-
sensitive

Delay
sensitive

2]
Telemetry

/ control

15

Diverse topology components:
— demand-oblivious and
demand-aware

Demand - Demand -
oblivious aware

16

Dynamic

Diverse topology components:

— demand-oblivious and
demand-aware

— static vs dynamic

Demand - Demand -
oblivious aware

Static

16

Opportunity: Tech Diversity

Dynamic

Diverse topology components:
— demand-oblivious and

demand-aware

— static vs dynamic

[

Demand-
oblivious

e.g., RotorNet
(SIGCOMM“17),
Opera (NSDI‘290),
Sirius
(SIGCOMM“20)

e.g., Clos
(SIGCOMM‘08),
Slim Fly
(SC€14), Xpander
(SIGCOMM‘17)

\

(

e.g., FireFly
(SIGCOMM‘14),
ProjecToR

(SIGCOMM‘16),

J

SplayNet (ToN‘16)

Static

16

Demand -
aware

Opportunity: Tech Diversity

Diverse topology components:

— demand-oblivious and
demand-aware

— static vs dynamic

Demand-
oblivious

Demand-
Aware

Dynamic
N\
Rotor
N\
\
Static
_J

Static

Demand -
aware

16

Dynamic

Diverse topology components:
— demand-oblivious and

demand-aware « N «)
— static vs dynamic Rotor Demand-
Aware
_ O\ _J
Demand- Demand-
oblivious aware
~ R
Static
_ J

Static

16

Dynamic

Diverse topology components:
— demand-oblivious and

demand-aware « N « h
— static vs dynamic Rotor Demand-
Aware
_ O\ _J
Demand- Demand-
oblivious aware
~ R
Static
_ _J
As always in CS: Static

It depends..

16

Rack Interconnect

Optical Switches

2@8| [E@3 |2©8| [2@3] |2©@8| |2©@3] [2©@8| [2©3
(=] o (=] (=] (=] (=] (=] (=]
1 2 3 4 5 6 7 8

Typical rack internconnect: ToR-Matching-ToR (TMT) model

17

Rack Interconnect

2@8| [E@3 |2©8| [2@3] |2©@8| |2©@3] [2©@8| [2©3
(=] o (=] (=] (=] (=] (=] (=]
1 2 3 4 5 6 7 8

Typical rack internconnect:

ToR-Matching-ToR (TMT) model

17

Details: Switch Types

Periodic Switch (aka Rotor Switch)

Rotor switch: periodic matchings (demand-oblivious)

- BHSSHR

[
»

time

18

Details: Switch Types

Demand-Aware Switch

Demand-aware switch: optimized matchings

- BRRARE

» time

19

Static switches: combine for optimized static topology

S1:

(j/gl\t{i) e.g, tree, expander

20

Design Tradeoffs (1)

The “Awareness-Dimension”

a4) @)
Demand-
Rotor
Aware
\) \— _J
Demand- Demand-
oblivious aware
Good for all-to-all traffic! Good for elephant flows!
— oblivious: very fast — optimizable toward traffic
periodic direct connectivity — but slower

— no control plane overhead

21

N O

Demand-
Rotor
Aware
) \—
Demand- Demand-
oblivious aware
Good for all-to-all traffic! Good for elephant flows!
— oblivious: very fast — optimizable toward traffic
periodic direct connectivity — but slower

— no control plane overhead

Compared to static networks: latency tax!

21

Design Tradeoffs (2)

The “Flexibility-Dimension”

Dynamic
. 4
Good for high throughput!
: L Rotor /
— direct connectivity saves
. . Demand-
bandwidth along links
Aware
\
Good for low latency! a4
— no need to wait for
reconfigurable links Clos
— compared to dynamic: _

bandwidth tax (multi-hop)

Static

22

Good for high throughput!
— direct connectivity saves
bandwidth along links

Good for low latency!

— no need to wait for
reconfigurable links

— compared to dynamic:
bandwidth tax (multi-hop)

Dynami

C

(

Rotor
Demand-
Aware

Static

Clos

22

-»> Observation 1: Different topologies provide
different tradeoffs.

-> Observation 2: Different traffic requires different
topology types.

~> Observation 3: A mismatch of demand and topology
can increase flow completion times.

23

iy

Shuffling
Dynamic
‘ Demand -
Rotor
e Aware
Delay Telemetry
sensitive / control
Demand - Demand-
oblivious aware
Demand
Static
Static

Topology

24

iy

Shuffling

Dynamic

Demand -
Aware
Delay Telemetry
sensitive / control
Demand - Demand-
oblivious aware
Demand
Static
Serving mice flows on demand-aware? Static

Topology

24

iy

Shuffling

Dynamic

Demand -
Aware
Delay Telemetry
sensitive / control
Demand - Demand-
oblivious aware
Demand
Static
Serving mice flows on demand-aware? Static

Bad idea! Latency tax.

Topology

24

ik

Shuffling
Dynamic
‘ P Rotor Demand -
= Aware
Delay Telemetry
sensitive / control
DemarNL- Demand-
oblivio aware
Demand
Static
Serving elephant flows on static? Static

Topology

24

iy

Shuffling

Dynamic

' Demand-
2 — Aware
Delay Telemetry
sensitive / control
Demand-
aware

Demand
Static

Serving elephant flows on static? Static
Bad idea! Bandwidth tax.

Topology

24

Dynamic

ey

Shuffling

Demand -
aware

Demand-
oblivious

]

Delay Telemetry
sensitive / control

Static

We have a first approach:
Cerberus* serves traffic on the “best topology”! (Optimality open)

* Griner et al., ACM SIGMETRICS 2022

On what should topology type depend? We argue: flow size.

25

On what should topology type depend? We argue:

flow size.

-

<
iy
o

CDF of bytes
o
1

=0- Wekseacr- 2010 l

=/ Datamining- 2011

|| == Hadoop- 2015

== Pareto distribution

-> Observation 1: Different apps have different flow size distributions.

0 1

//

' -CI:I‘&

105 10° 107 108 10°

Flow size (bytes)

1010

25

Flow transmission time (40Gbps)
100ns 1us 10us 100us 1ms 10ms 100ms 1s

+ A
=0= \Websearch- 2010
0.751
=/ Datamining- 2011
05 == Hadoop- 2015
== Pareto distribution

00 ot 105 108 107 108 109 10
Flow size (bytes)

CDF of bytes

-> Observation 1: Different apps have different flow size distributions.
-> Observation 2: The transmission time of a flow depends on its size.

25

:
v

:
v

:
v

:
v

Flow Size Matters

Flow transmission time (40Gbps)
100ns 1us 10us 100us 1Ims 10ms 100ms 1s

T T T
= A
] —O— Websearch- 2010
£ 0.75
o =/ Datamining- 2011
©
LDL 05 Hadoop- 2915 |
O == Pareto distribution A
L m]
0.25 //{://
A \,’D
COTARS A Mo\ L D’ |

O AA == A AALONOLNLLDE

103 104 10° 10° 107 108 100 10
Flow size (bytes)

Observation 1: Different apps have different flow size distributions.
Observation 2: The transmission time of a flow depends on its size.
Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.
Observation 4: For large flows, reconfiguration time may amortize.

25

:
v

:
v

:
v

:
v

Flow Size Matters

Flow transmission time (40Gbps)
100ns lus 10us 100us Ims 10ms 100ms Is

T T T

Static Rotor Demand—aware

z o

B 0.75 1 =O= Websearch-2010 |[|€ :;
= Y . ~ e
o) == Datamining-2011 || & 8
5 . |8 5
L 05 Hadoop-2015 =8 i
. |oe -

0 ={J= Pareto distribution ||~ B
O 5 5

0.25F =

O AALAMNMANNATL YOI .I'I'I-_-_ﬁ'i | I
103 104 10° 106 107 108 107 1010

Flow size (bytes)

Observation 1: Different apps have different flow size distributions.
Observation 2: The transmission time of a flow depends on its size.
Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.
Observation 4: For large flows, reconfiguration time may amortize.

25

Cerberus

Optical Switches

oo

©

00

©

00

©

(o] o]
©
00O

00
©
noo

©
poo

©
00O

00
©
oo

26

Cerberus

—
K K. Kq
static rotor demand-aware
switches switches switches
/

26

Cerberus

K K. Kq
static rotor demand-aware
switches switches switches

_

2@3 |23 [E@8 |E@3 [E©3| |2©@3| |2@3| |2E©3
a a [[| 0 [[| a
1 2 3 4 5 6 7 8

Scheduling: Small flows go via static switches..

26

Cerberus

S K r |

static roton\!/

switches switcheas
N

Kq
demand-aware
switches

_

Scheduling: ..

medium flows via rotor

switches...

26

Cerberus

/ \ﬁ
K K. Kq
static rotor demand-awaré
\

switches switches Jk switches J J

\ \

2@3 |23 [E@8 |E@3 [E©3| |2©@3| |2@3| |2E©3
a a [[| 0 [[| a
1 2 3 4 5 6 7 8

Scheduling: .. and large flows via demand-aware switches
(if one available, otherwise via rotor).

26

Demand Matrix

123 4568678

“u
i.-'
u

00 N OV R oW N R

Metric: throughput

of a demand matrix..

27

Demand Matrix

123 4568678

“u

. x (D)
u
“u

00 N OV R oW N R

. 1s the maximal scale
down factor by which
traffic is feasible.

Metric: throughput
of a demand matrix..

27

“
Demand Matrix
12 3 456 7 8 K, K. Kqg
static rotor || demand -aware
switches switches switches

)
T x0T > s
"

ooo
I’

00 N OV R oW N R

) h h .. 1s the maximal scale .
Metric: throughput — 4,.n factor by which Throughput of network 6*:

of a demand matrix.. . ccil s feasible. worst case T

27

Throughput Analysis

00 N OV R oW N R

Demand Matrix

12345678

“u

Ks
rotor
switches

demand aware
switches

. x0T = .

static
switches

u

IIIZil [l I]IXII :::;Il t:;lﬂ
g@ THREEERECEREEE ‘g@s TEREE

©

Worst demand matrix for static

and rotor:

permutation. Best
case for demand-aware!

Y ¥ v e v 99

K a 5 - i - 5 *

oo
©
00

(L[]
@
00

oo
©
00

ooo
©
o0

=] o =] o

oo
o
ooo
o
oo
®
00
oo
©
00

27

Throughput Analysis

Demand Matrix

12345678

“u

00 N OV R oW N R

M

K K, Kq
static rotor demand-aware
switches switches switches

——

|
-
E/

,=|

B

00 ‘I]E\

i

[

-[llll'e

i

o
o

-[lll’e

-|lllr’e

ooo
-[llll’e
00

-|llll’e
[
@

Worst demand matrix for static

and rotor: permutation. Best
case for demand-aware!

o ¥ ® ¥ ® © € ©
expander-net | rotor-net | CERBERUS) mm e By D mim

BW-Tax v v X s03| [o3| [o3| [o3| [o3 [po3 [po3 [pos

LT-Tax X v v = == == ===

o(T) Thm 2 Thm 3 Thm 5

0" 0.53 0.45 Open

Datamining 0.53 0.6 0.8 (+33%)

Permutation 0.53 0.45 ~ 1(+88%)

Case Study 0.53 0.66 0.9 (+36%)

27

Throughput Analysis

Demand Matrix

12345678

K K, Kq
1 static rotor demand-aware
switches switches switches
2
3
a4
5 s) e
6
. cos| gos| [zos| [gos| [gog [os| [gos| [gos
8 = = = =] =] =] =] |=
1 2 3 4 5 6

Worst demand matrix for static

and rotor: permutation. Best
case for demand-aware!

o & ® ® ® ® © §
expander-net | rotor-net | CERBERUS e mm mm o

BW-Tax v v X s03| [o3| [o3| [o3| [o3 [po3 [po3 [pos

LT-Tax X v v E—E‘EEEEE

o(T) Thm 2 Thm 3

o 0.53 0.45

Datamining 0.53 0.6 Vo w371

Permutation 0.53 0.45 ~ 1(+88%)

Case Study 0.53 0.66 0.9 (+36%)

27

-> Opportunity: structure in demand and reconfigurable networks

-> How to measure demand? A first metric: entropy

-> New algorithmic problem: demand-aware and self-adjusting graphs

— At least for sparse demands we know how
— Open questions: What about general demand? Load? Distributed algorithms? Hybrid
networks (i.e., demand-aware on top of a fixed Clos topology)?

-» Cerberus aims to assign traffic to its best topology

— Depending on flow size
— Open questions: Analysis of throughput? Optimality?

29

-» So far: tip of the iceberg

~» Many more challenges
— Shock wave through Layers:
impact on routing and congestion control?
— Scalability of control in dynamic graphs:
Local algorithms? Greedy routing?

-» Complexity of demand-aware graphs
(pure vs hybrid, e.g., SplayNet)

— Application-specific self-adjusting networks:
e.g., for AI, or similar to active dynamic
networks (independent sets, consensus, ..)

- etc.

Thank you!

29

Online Video Course

I i
Inv1tat10ﬁ to

self-adjusting datacenter selF adjusting bridge

We cannot direct the wind,
but we can adjust the sails.

(Folklore)

@ ﬂﬁ ,%?": https://self-adjusting.net/course ¥ »

SELF-ADJUSTING NETWORKS Project Overview

RESEARCH ON SELF-ADJUSTING DEMAND-AWARE NETWORKS

AdjustNet

Breaking new ground with demand-aware self-adjusting networks

self-adjusting
Networks

EEEEEE

Soeceececsecsssncnee

oo e

Download Slides

http://self-adjusting.net/
Project website

O b0 AT @araa’v:

AND DC NETWDRK TRACE

The following table lists the traces used in the publication: On the Complexity of Traffic Traces and Implications

To reference this website, please use: bibtex

File Name

exact_Boxl b MG C Large. 1024 csv Troces 17547800 1513MB Download

‘exact BoxLb.CNS. NoSpec. Large. 1024 csv Traces 1108068 93MB Downioad

casar_Nekbana_ 1024 csv Trces 21745229 1840MB Download

CECOLLECI'IQN Publication Team Download Traces

Contact Us

https://trace-collection.net/

Trace collection website

Questions?

> »l o) 028/120 3

Golden Gate Zipper

Static DAN

Overview: Models

Static Optimality

Chen Avin Kaushik Mondal Stefan Schmid

Abstract Traditionally, networks such as datacenter
interconneets are designed to optimize worst-case per-
formance under arbitrary traffic patterns. Such network
designs can however be far from optimal when consider-
ing the actual worklaads and traffic patterns which they
serve. This insight led to the development of demand-
aware datacenter interconnects which can be reconfig-
ured depending on the worklond

Mativated by these trends, this paper initintes the
algorithmic study of demand-aware networks (DANs),
and in particular the design of bounded-degree net-
works. The inputs to the network design problem are a
diserete communication request distribution, D, defined
over communicating pairs from the node set V', and a
bound, 4, on the maximum degree. Tn turn, our ob-
jective is to design an (undirected) demand-aware net-
work N = (V. E) of hounded-degree A, which provide
short routing paths between frequently communicating
nodes distributod across N. In particular, the designed
network should minimize the ezpected path length on N

(with resnact to D) _which ic a_husic measure of the

Demand-Aware Network Designs of Bounded Degree

1 Introduction

The problem studied in this paper is motivated by the
advent of more flexible datacenter interconnects, such
as ProjocToR [20,31]. These interconects aim to over-
come a fundamental drawhack of traditional datacenter
notwork desigus: the fact that network designes must
decide m advance on how much capacity to provision
betwoen clectrical packet switches, e.g., between Top-
of-Rack (ToR) switchies in datacenters. This leads to
an undesirable tradeoff 42
provisioned and therefore the interconnect expensive
(e.g.. a fat-tree provides full-bisection bandwidth), or
one may risk congestion, resulting in a poor cloud appli-
cation performance. According
jecToR provide a roconfigurabl
to establish links flexibly and in a demand-aware man-
ner. For example, diroct links or at least short comumu-
nication paths can be established between frequently
commuuicating ToR switches. Such links can be
plemented using a bounded munber of lasers, mirrors,

Toward Demand-Aware Networking:
A Theory for Self-Adjusting Networks

Chen Avin
Ben Gurion University, Israel
avin@cse.bgu.ac.il

Stefan Schmid
University of Vienna, Austria
stefan_schmid@univie.ac.at

“This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT

‘The physical topology is emerging as the next frontier in an
ongoing effort to render communication networks more flex-
lblc Whﬂe first emplnta! results mdlcnle that these flexibili-

imize the network

Sowaid the workload it serves and &g, providiag the same
bandwidth at lower infrastructure cost, only little is known
today about the fundamental algorithmic problems underly-
ing the design of reconfigurable networks. This paper it
ates the study of the theory of demand-aware, self-adjusting
networks. Our main position is that self-adjusting networks
should be seen through the lense of self-adjusting datas-
tructures. Accordingly, e present a taxonomy classifying
khe dlﬂuem llgonthmlc models al'dmum‘l oblivious, fixed

Figure 1: Taxonomy of topology optimization

design of efficient datacenter networks has received much
attention over the last years. The topologies underlying mod-
ern datacenter networks range from trees (7, 8] over hyper-
cubes [9, 10] to expander networks [11] and provide high
at low cost [1].

d- networks,
introduce a roml model, and identify objectives and evalua-
tion metrics We al by examples. the inherent

Until now, these networks also have in common that their
topology is fixed and oblivious to the actual demand (

Robust DAN

Chen Avin' Alexandr Herenles'
! Ben-Gurion University, I * EPFL, CH

rDAN: Toward Robust Demand-Aware Network Designs

Andreas Loukas? Stefan Schmid®
* University of Vienna, AT & TU Berlin, DE

Abstract

We currently witness the emergence of interesting new network topologies optimized towards the
traffic matrices they serve, such as demand-aware datacenter interconnects (e.g.. PrajecToR) and
demand-aware peer-to-peer overlay networks (e.s., SplayNets). This paper introduces a formal
framework and approach to reason about and design robust demand-aware networks (DAN). In
particular, we establish a connection between the communication frequency of two nodes and
the path length between them in the network, and show that this relationship depends on the
entropy of the communication matrix. Our main contribution is a novel robust, yet sparse, family
of networks, short rDANs, which guarantee an expected path length that is proportional to the

entropy of the communication patterns.

Dynamic DAN

Adsract—Tois paper Wktees the sindy of ecaky s

b pepphoiniedrasiady memcar, e 1o commumication et
Ourvﬁurl-hm-lﬂﬂrihldmin
datastructures nywmmp.mr
Ilmmnﬂlnlhdtlphylmwhkh optimize
Mlpmm--m‘kndllu-dylkhwm).nmk
to minimize the routing cost between arbitrary communication

We introduce u simple model which captures the
We present the SplayNet algorithm and formally analyze its
and prove its in specific we

edge expansion, 1o study the limitations of any demand-optimized
network. Finally, we extend our study to multi-tree networks, and
highlight an intriguing difference between classic and distributed
splay trees.

1. INTRODUCTION

In the 19805, Slcator and Tarjan [22] proposed an appealing
new paradigm to design efficient Binary Search Tree (BST)
datastructures: rather than optimizing traditional metrics such

SplayNet: Towards Locally Self-Adjusting Networks

Stefan Schmid*, Chen Avin®, Christian Scheideler, Michacl Borokhovich, Bernhard Haeupler, Zvi Lotker

toward static metrics, such as the diameter or the length of
the longest route: the self-adjusting paradigm has not spilled
over to distributed networks.

We, in this paper, initiate the study of a distributed general-
ization of self-optimizing datastructures. This is a non-trivial
generalization of the classic splay tree concept: While in clas-
sic BSTs, a lookup request always originates from the same
node. the tree root, distributed datastructures and networks
such as skip graphs (2], [13] have to support ruting requests
between arbilrary pairs (or peers) of communicating nodes; in
other words, both the source as well as the destination of the
requests become variable, Figure 1 illustrates the difference
between classic and distributed binary search trees.

Tn this paper, we ask: Can we reap similar benefits from self-
adjusting entire networks, by adaptively reducing the distance
between frequently communicating nodes?

As a finst step. we explore fully decentralized and self-
adjusting Binary Search Tree networks: in these networks,
nodes are amanged in a binary tree which respects node
identifiers. A BST topology is altractive as it supports greedy
routing: a node can decide locally 1o which port to forward a
request given its destination address.

ReNets: Toward Statically Optimal
Self-Adjusting Networks

Chen Avin' Stefan Schmid?
! Ben Gurion University, Israel 2 University of Vienna, Austria

Abstract

This paper studies the design of self-adjusting networks whose topol-
ogy dynamically adapts to the workload, in an online and demand-aware
manner. This problem is motivated by emerging optical technologies
which allow to reconfigure the datacenter topology at runtime. Our
‘main contribution is ReNet, a self-adjusting network which maintains a
balance between the benefits and costs of reconfigurations. In partic-
ular, we show that ReNets are statically optimal for arbitrary sparse
communication demands, i.c., perform at least as good as any fixed
demand-aware network designed with a perfect knowledge of the future
demand. Furthermore, ReNets provide compact and local routing, by
leveraging ideas from self-adjusting datastructures.

1 Introduction

Modern datacenter networks rely on efficient network topologies (based on
fat-trees [1], hypercubes [2, 3], or expander [4] graphs) to provide a high
connectivity at low cost [5]. These datacenter networks have in common that
their topology is fired and oblivious to the actual demand (i.e., workload
or communication pattern) they currently serve. Rather, they are designed
for all-to-all communication patterns, by ensuring properties such as full
bisection bandwidth or O(logn) route lengths between any node pair in a
constant-degree n-node network. However, demand-oblivious networks can

be inefficient for more specific demand patterns, as they usually arise in
oo Trvriisinal ‘choudl e ol that +22080 itbaing aft

Concurrent DANs

CBNet: Minimizing Adjustments in
Concurrent Demand-Aware Tree Networks

Otavio Augusto de Oliveira Souza' Olga Goussevskaia' Stefan Schmid?
! Universidade Federal de Minas Gerais, Brazil * University of Vienna, Austria

Aburuct—Ths poper studos the duden o domandowars CBNet is based an concepts from el acjsing daa s
atoeck bpsbgties it vort B ayeimicaly m-—tmmuucmmlmcnﬂaynuly-m
toward the demand they currently serve. e logeono

o the network topology toward mm..mh-p::-un

distribution. At the same time. bidirectional semi-splaying and
couaters are used to maintain sisie, minimize reconfiguratio

Selected
References

On the Complexity of Traffic Traces and Implications

Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid.

ACM SIGMETRICS, Boston, Massachusetts, USA, June 2020.

Survey of Reconfigurable Data Center Networks: Enablers, Algorithms, Complexity
Klaus-Tycho Foerster and Stefan Schmid.

SIGACT News, June 2019.

Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks (Editorial)
Chen Avin and Stefan Schmid.

ACM SIGCOMM Computer Communication Review (CCR), October 2018.

Dynamically Optimal Self-Adjusting Single-Source Tree Networks

Chen Avin, Kaushik Mondal, and Stefan Schmid.

14th Latin American Theoretical Informatics Symposium (LATIN), University of Sao Paulo, Sao Paulo, Brazil, May 2020.
Demand-Aware Network Design with Minimal Congestion and Route Lengths

Chen Avin, Kaushik Mondal, and Stefan Schmid.

38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.

Distributed Self-Adjusting Tree Networks

Bruna Peres, Otavio Augusto de Oliveira Souza, Olga Goussevskaia, Chen Avin, and Stefan Schmid.

38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.

Efficient Non-Segregated Routing for Reconfigurable Demand-Aware Networks

Thomas Fenz, Klaus-Tycho Foerster, Stefan Schmid, and Anais Villedieu.

IFIP Networking, Warsaw, Poland, May 2019.

DaRTree: Deadline-Aware Multicast Transfers in Reconfigurable Wide-Area Networks
Long Luo, Klaus-Tycho Foerster, Stefan Schmid, and Hongfang Yu.

IEEE/ACM International Symposium on Quality of Service (IWQoS), Phoenix, Arizona, USA, June 2019.
Demand-Aware Network Designs of Bounded Degree

Chen Avin, Kaushik Mondal, and Stefan Schmid.

31st International Symposium on Distributed Computing (DISC), Vienna, Austria, October 2017.

SplayNet: Towards Locally Self-Adjusting Networks

Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016. Early version: IEEE IPDPS 2013.
Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures
Klaus-Tycho Foerster, Monia Ghobadi, and Stefan Schmid.

ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Ithaca, New York, USA, July 2018.

Bonus Material

Hogwarts Stair

Jupiter Evolving: Transforming Google’s Datacenter
Network via Optical Circuit Switches and
Software-Defined Networking

Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukarram Tariq,
Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Conner, Steve Gribble,
Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu, Karthik Nagaraj,
Jason Ornstein, Samir Sawhney, Ryohei Urata, Lorenzo Vicisano, Kevin Yasumura,
Shidong Zhang, Junlan Zhou, Amin Vahdat
Google
sigcomm-jupiter-evolving@google.com

ABSTRACT

We present a decade of evolution and production experience
with Jupiter datacenter network fabrics. In this period Jupiter
has delivered 5x higher speed and capacity, 30% reduction in
capex, 41% reduction in power, incremental deployment and
technology refresh all while serving live production traffic. A
key enabler for these improvements is evolving Jupiter from a
Clos to a direct-connect topology among the machine aggrega-
tion blocks. Critical architectural changes for this include: A
datacenter interconnection layer employing Micro-Electro-
Mechanical Systems (MEMS) based Optical Circuit Switches

KEYWORDS

Datacenter network, Software-defined networking, Traffic
engineering, Topology engineering, Optical circuit switches.
ACM Reference Format:

Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukar-
ram Tariq, Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick
Conner, Steve Gribble, Rishi Kapoor, Stephen Kratzer, Nanfang Li,
Hong Liu, Karthik Nagaraj, Jason Ornstein, Samir Sawhney, Ryohei
Urata, Lorenzo Vicisano, Kevin Yasumura, Shidong Zhang, Junlan
Zhou, Amin Vahdat Google sigcomm-jupiter-evolving@google.com
. 2022. Jupiter Evolving: Transforming Google’s Datacenter Net-

wwrnvls wia Natinal Nivanit Quritahan and Cafhurava NMafinad Nataraels

Bonus Material

EI IEEE

I SPECTRUM Topics ~ Reports ~ Blogs ~ Multimedia ~ Magazine ~ Resources « Search ~

07 May 2021|16:55 GMT

Reconfigurable Optical Networks
Will Move Supercomputer Data
100X Faster

Newly designed HPC network cards and software that
reshapes topologies on-the-fly will be key to success

By Michelle Hampson

In HPC

- Traffic matrices of two different distributed
ML applications
— GPU-to0-GPU

- Traffic matrices of two different distributed
ML applications
— GPU-to0-GPU

More uniform More structure

-> Two different ways to generate same traffic matrix:
— Same non-temporal structure

- Which one has more structure?

0 500 1000 1500
Time

-> Two different ways to generate same traffic matrix:
— Same non-temporal structure

- Which one has more structure?

Original

JWT]

Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”

Original Randomize rows Uniform

»

Increasing complexity (systematically randomized) >

< More structure (compresses better)

Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”

Original Randomize rows Uniform

»

Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”

Original Randomize rows Uniform

Zh
y

Shuffle

Compress U

»

iEEi!!!!!liiiiiiii

e“\Q
oNe

\ J \ J
| |

Difference in size Difference in size
(entropy)? (entropy)?

Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”

Original Randomize rows Uniform

? % ;
» o x,e“\‘)ova » oNe
N (W
?\e“\o ?\e
Can be used to define

2-dimensional

Compress U U O complexity map!

Shuffle

\ J \ J
| |

Difference in size Difference in size
(entropy)? (entropy)?

non-temporal complexity

bursty uniform

No structure

bursty & skewed

skewed

temporal complexity

NSTLITIIT

non-temporal complexity

bursty uniform
pF
CNS
Multi
Grid
L@ NN
bursty & skewed
skewed

temporal complexity

Nops.
.5 BEREEEES

i

No structure

[

uniform

bursty

{IEAI
Rl
@
)
v
0
>
i)
)
x
()
—~ s
a
£ 5
S B
©
— 5
a o
a8
o g RREELEEEN
= e
7] (0]
~ +
0
o3
>
i)
vi
C
S
)

A31x31dwod TedJodwail-uou

y

R

On the Complexity of Traffic Traces and Implications

CHEN AVIN, School of Electrical and Computer Engineering, Ben Gurion University of the Negev, Israel
MANYA GHOBADI, Computer Science and Artificial Intelligence Laboratory, MIT, USA

CHEN GRINER, School of Electrical and Computer Engineering, Ben Gurion University of the Negev,
Israel

STEFAN SCHMID, Faculty of Computer Science, University of Vienna, Austria

This paper presents a systematic approach to identify and quantify the types of structures featured by packet
traces in communication networks. Our approach leverages an information-theoretic methodology, based on
iterative randomization and compression of the packet trace, which allows us to systematically remove and
measure dimensions of structure in the trace. In particular, we introduce the notion of trace complexity which
approximates the entropy rate of a packet trace. Considering several real-world traces, we show that trace
complexity can provide unique insights into the characteristics of various applications. Based on our approach,
we also propose a traffic generator model able to produce a synthetic trace that matches the complexity levels
of its corresponding real-world trace. Using a case study in the context of datacenters, we show that insights
into the structure of packet traces can lead to improved demand-aware network designs: datacenter topologies
that are optimized for specific traffic patterns.

CCS Concepts: » Networks — Network performance evaluation; Network algorithms; Data center
networks; + Mathematics of computing — Information theory;

Additional Key Words and Phrases: trace complexity, self-adjusting networks, entropy rate, compress, com-
plexity map, data centers

ACM Reference Format:

Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. 2020. On the Complexity of Traffic Traces and
Implications. Proc. ACM Meas. Anal. Comput. Syst. 4, 1, Article 20 (March 2020), 29 pages. https://doi.org/10.
1145/3379486

1 INTRODUCTION

Packet traces collected from networking applications, such as datacenter traffic, have been shown
to feature much structure: datacenter traffic matrices are sparse and skewed [16, 39], exhibit

~» Classic problem: find sparse, distance-preserving
(low-distortion) spanner of a graph

-> But:

- Spanners aim at low distortion among all pairs;
in our case, we are only interested in the
local distortion, 1-hop communication neighbors

~> We allow auxiliary edges (not a subgraph): similar to
geometric spanners

-» We require constant degree

-» Yet, can leverage the connection to spanners sometimes!

Theorem: If demand matrix is regular and uniform, and if we
can find a constant distortion, linear sized (i.e.,
constant, sparse) spanner for this request graph: then we
can designh a constant degree DAN providing an optimal
expected route length (i.e., O(H(X|Y)+H(Y[|X)).

. Constant degree
r-regular and Sparse, 1irregular g

K optimal DAN (ERL
. tant N
uniform demand: (constant) spanner at most log r):

» »

auxiliiary edges

-» Yet, can leverage the connection to spanners sometimes!

Theorem: If demand matrix is regular and uniform, and if we
can find a constant distortion, linear sized (i.e.,
constant, sparse) spanner for this request graph: then we
can designh a constant degree DAN providing an optimal
expected route length (i.e., O(H(X|Y)+H(Y[|X)).

r-regular and
uniform demand:

»

Sparse, irregular
(constant) spanner:

isubgraph!

Our degree reduction
trick again!

ZL////’

Constant degree
optimal DAN (ERL

at most log r): —=——

LN

auxiliiary edges

Why optimal:
in r-regular graphs,
conditional entropy
is log r.

