“We cannot direct the wind,
but we can adjust the sails.”

(Folklore)
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Datacenters (“hyper-scale”)

Interconnecting networks:
a critical infrastructure
of our digital society.

Traffic
Growth

Source: Facebook
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Datacenters (“hyper-scale”)

Interconnecting networks:
a critical infrastructure
of our digital society.
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Network equipment reaching
capacity limits

— Transistor density rates stalling
— “End of Moorefs Law in networking”

Hence: more equipment,
larger networks

Resource intensive and:
inefficient

Gbps/€

[1] Source: Microsoft, 2019




How to interconnect?
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Root Cause

Fixed and Demand-Oblivious Topology

Many flavors,
but in common:
fixed and

oblivious to
actual demand.




Root Cause

Fixed and Demand-Oblivious Topology
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Many flavors,
but in common:
fixed and

oblivious to
actual demand.

Highway which ignores

actual traffic:

frustrating!
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A Vision

Flexible and Demand-Aware Topologies

1 23 456 78

new
demand:

Self-Adjusting
Networks
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Empirical studies:

traffic matrices sparse and skewed
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non-temporal complexity
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Traffic is also clustered:

Small Stable Clusters

reordering based on
bicluster structure

Opportunity: exploit with little reconfigurations!

Forster et al., Analyzing the Communication Clusters
in Datacenters. WWW 2023



Sounds Crazy?
Emerging Enabling
Technology.

Photonics

H2020:

“Photonics one of only five
key enabling technologies
for future prosperity.”

US National Research Council:
“Photons are the new
Electrons.”



-» Spectrum of prototypes
— Different sizes, different reconfiguration times
— From our ACM SIGCOMM workshop OptSys

Prototype 1

Prototype 2

Prototype 3
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Spectrum of prototypes
— Different sizes, different reconfiguration times
— From our ACM SIGCOMM workshop OptSys

Prototype 1

Moving antenna (ms)

Prototype 2

Moving mirrors (mus)

Prototype 3

Changing lambdas (ns)



-» Optical Circuit Switch rapid adaption of physical layer

— Based on rotating mirrors

Fixed
Mirror

/
L X

Rotate Mirror =N

Optical Circuit Switch

By Nathan Farrington, SIGCOMM 2010



Systems

Jupiter evolving: Reflecting on Google’s data
center network transformation

August 24, 2022

Amin Vahdat
VP & GM, Systems and Services Infrastructure




Flexibility

Structure

Self-Adjusting
Networks

Now is the time!

Efficiency
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Our focus:
in hardware

Everywhere, but mainly
in software

Algorithmic trading
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©
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Recommender systems
NETFLIX

Neural networks
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A first insight: entropy of the demand.
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-» Idea for algorithm:
— Union of trees
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-» Idea for algorithm:
— Union of trees
— Reduce degree
— But keep distances

-> 0k for sparse demands
— Not everyone gets tree
— Helper nodes




-» Idea for algorithm:
— Union of trees
— Reduce degree
— But keep distances

-> 0k for sparse demands
— Not everyone gets tree
— Helper nodes




Traditional BST Demand-aware BST Self-adjusting BST

More structure: improved access cost >
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Traditional BST Demand-aware BST Self-adjusting BST
(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST,
Q)

BST; 1
&)

More structure: improved access cost / shorter codes >
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Similar benefits? >
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Traditional BST Demand-aware BST Self-adjusting BST
(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST; BST,.
Q) @

Generalize methodology:
... and transfer
entropy bounds and
algorithms of data-
structures to networks.

First result:
Demand-aware networks
of asymptotically
optimal route lengths.

Reduced expected route lengths! >
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Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges
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Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

cost 1
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Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

MLA is NP-hard
— .. and so is our problem!
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Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

MLA is NP-hard
— .. and so is our problem!

But what about A>2?

— Embedding problem still hard

— But we have a new degree of
freedom!
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— Self-adjusting networks may be really useful to serve large

hop routing

avoiding multi-

flows (elephant flows)
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— Self-adjusting networks may be really useful to serve large
flows (elephant flows): avoiding multi-hop routing
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— However,

requires optimization and adaption, which takes time
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— Self-adjusting networks may be really useful to serve large
flows (elephant flows): avoiding multi-hop routing

— However, requires optimization and adaption, which takes time
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Diverse patterns:

— Shuffling/Hadoop:
all-to-all

— All-reduce/ML: ring or

tree traffic patterns
— Elephant flows

— Query traffic: skewed
— Mice flows
— Control traffic: does not evolve

but has non-temporal structure

Diverse requirements:

— ML is bandwidth hungry,
small flows are latency-
sensitive

Delay
sensitive

2]
Telemetry

/ control

15



Diverse topology components:
— demand-oblivious and
demand-aware

Demand - Demand -
oblivious aware

16



Dynamic

Diverse topology components:

— demand-oblivious and
demand-aware

— static vs dynamic

Demand - Demand -
oblivious aware

Static
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Opportunity: Tech Diversity

Dynamic

Diverse topology components:
— demand-oblivious and

demand-aware

— static vs dynamic

[

Demand-
oblivious

e.g., RotorNet
(SIGCOMM“17),
Opera (NSDI‘290),
Sirius
(SIGCOMM“20)

e.g., Clos
(SIGCOMM‘08),
Slim Fly
(SC€14), Xpander
(SIGCOMM‘17)

\

(

e.g., FireFly
(SIGCOMM‘14),
ProjecToR

(SIGCOMM‘16),

J

SplayNet (ToN‘16)

Static

16
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Opportunity: Tech Diversity

Diverse topology components:

— demand-oblivious and
demand-aware

— static vs dynamic

Demand-
oblivious

Demand-
Aware

Dynamic
N\
Rotor
N\
\
Static
_J

Static

Demand -
aware
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Dynamic

Diverse topology components:
— demand-oblivious and

demand-aware « N « )
— static vs dynamic Rotor Demand-
Aware
\_ O\ _J
Demand- Demand-
oblivious aware
~ R
Static
\_ J

Static

16



Dynamic

Diverse topology components:
— demand-oblivious and

demand-aware « N « h
— static vs dynamic Rotor Demand-
Aware
\_ O\ _J
Demand- Demand-
oblivious aware
~ R
Static
\_ _J
As always in CS: Static

It depends..

16



Rack Interconnect

Optical Switches

2@8| [E@3 |2©8| [2@3] |2©@8| |2©@3] [2©@8| [2©3
(=] o (=] (=] (=] (=] (=] (=]
1 2 3 4 5 6 7 8

Typical rack internconnect: ToR-Matching-ToR (TMT) model
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Rack Interconnect
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Typical rack internconnect:

ToR-Matching-ToR (TMT) model
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Details: Switch Types

Periodic Switch (aka Rotor Switch)

Rotor switch: periodic matchings (demand-oblivious)

- BHSSHR

[
»

time
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Details: Switch Types

Demand-Aware Switch

Demand-aware switch: optimized matchings

- BRRARE

»  time

19



Static switches: combine for optimized static topology

S1:

(j/gl\t{i) e.g, tree, expander

20



Design Tradeoffs (1)

The “Awareness-Dimension”

a4 ) @ )
Demand-
Rotor
Aware
\ ) \— _J
Demand- Demand-
oblivious aware
Good for all-to-all traffic! Good for elephant flows!
— oblivious: very fast — optimizable toward traffic
periodic direct connectivity — but slower

— no control plane overhead

21



N O

Demand-
Rotor
Aware
) \—
Demand- Demand-
oblivious aware
Good for all-to-all traffic! Good for elephant flows!
— oblivious: very fast — optimizable toward traffic
periodic direct connectivity — but slower

— no control plane overhead

Compared to static networks: latency tax!

21



Design Tradeoffs (2)

The “Flexibility-Dimension”

Dynamic
. 4
Good for high throughput!
: L Rotor /
— direct connectivity saves
. . Demand-
bandwidth along links
Aware
\
Good for low latency! a4
— no need to wait for
reconfigurable links Clos
— compared to dynamic: _

bandwidth tax (multi-hop)

Static

22



Good for high throughput!
— direct connectivity saves
bandwidth along links

Good for low latency!

— no need to wait for
reconfigurable links

— compared to dynamic:
bandwidth tax (multi-hop)

Dynami

C

(

Rotor
Demand-
Aware

Static

Clos

22



-»> Observation 1: Different topologies provide
different tradeoffs.

-> Observation 2: Different traffic requires different
topology types.

~> Observation 3: A mismatch of demand and topology
can increase flow completion times.

23
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Shuffling
Dynamic
‘ Demand -
Rotor
e Aware
Delay Telemetry
sensitive / control
Demand - Demand-
oblivious aware
Demand
Static
Static

Topology
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Dynamic
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Aware
Delay Telemetry
sensitive / control
Demand - Demand-
oblivious aware
Demand
Static
Serving mice flows on demand-aware? Static

Topology
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Shuffling

Dynamic

Demand -
Aware
Delay Telemetry
sensitive / control
Demand - Demand-
oblivious aware
Demand
Static
Serving mice flows on demand-aware? Static

Bad idea! Latency tax.

Topology
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Shuffling

Dynamic

' Demand-
2 — Aware
Delay Telemetry
sensitive / control
Demand-
aware

Demand
Static

Serving elephant flows on static? Static
Bad idea! Bandwidth tax.

Topology
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Dynamic

ey

Shuffling

Demand -
aware

Demand-
oblivious

]

Delay Telemetry
sensitive / control

Static

We have a first approach:
Cerberus* serves traffic on the “best topology”! (Optimality open)

* Griner et al., ACM SIGMETRICS 2022



On what should topology type depend? We argue: flow size.

25



On what should topology type depend? We argue:

flow size.
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-> Observation 1: Different apps have different flow size distributions.
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Flow transmission time (40Gbps)
100ns 1us  10us 100us 1ms 10ms 100ms 1s

+ A
=0= \Websearch- 2010
0.751
=/ Datamining- 2011
05 == Hadoop- 2015
== Pareto distribution

00 ot 105 108 107 108 109 10
Flow size (bytes)

CDF of bytes

-> Observation 1: Different apps have different flow size distributions.
-> Observation 2: The transmission time of a flow depends on its size.
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Flow Size Matters

Flow transmission time (40Gbps)
100ns 1us 10us 100us 1Ims 10ms 100ms 1s

T T T
= A
] —O— Websearch- 2010
£ 0.75
o =/ Datamining- 2011
©
LDL 05 Hadoop- 2915 |
O == Pareto distribution A
L m]
0.25 //{://
A \,’D
COTARS A Mo\ L D’ |

O AA == A AALONOLNLLDE

103 104 10° 10° 107 108 100 10
Flow size (bytes)

Observation 1: Different apps have different flow size distributions.
Observation 2: The transmission time of a flow depends on its size.
Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.
Observation 4: For large flows, reconfiguration time may amortize.
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Flow Size Matters

Flow transmission time (40Gbps)
100ns  lus 10us  100us Ims 10ms 100ms Is

T T T

Static Rotor Demand—aware

z o
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= Y . ~ e
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. |oe -
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O 5 5

0.25F =
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Flow size (bytes)

Observation 1: Different apps have different flow size distributions.
Observation 2: The transmission time of a flow depends on its size.
Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.
Observation 4: For large flows, reconfiguration time may amortize.
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Cerberus

Optical Switches
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Cerberus

—
K K. Kq
static rotor demand-aware
switches switches switches
/
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Cerberus

K K. Kq
static rotor demand-aware
switches switches switches

_

2@3 |23 [E@8 |E@3 [E©3| |2©@3| |2@3| |2E©3
a a [ [ | 0 [ [ | a
1 2 3 4 5 6 7 8

Scheduling: Small flows go via static switches..
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Cerberus

S K r |

static roton\!/

switches switcheas
N

Kq
demand-aware
switches

_

Scheduling: ..

medium flows via rotor

switches...
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Cerberus

/ \ﬁ
K K. Kq
static rotor demand-awaré
\

switches switches Jk switches J J

\ \

2@3 |23 [E@8 |E@3 [E©3| |2©@3| |2@3| |2E©3
a a [ [ | 0 [ [ | a
1 2 3 4 5 6 7 8

Scheduling: .. and large flows via demand-aware switches
(if one available, otherwise via rotor).
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Demand Matrix

123 4568678
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Metric: throughput

of a demand matrix..
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Demand Matrix

123 4568678
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u
“u

00 N OV R oW N R

. 1s the maximal scale
down factor by which
traffic is feasible.

Metric: throughput
of a demand matrix..
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Demand Matrix
12 3 456 7 8 K, K. Kqg
static rotor || demand -aware
switches switches switches

)
T x0T > s
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) h h .. 1s the maximal scale .
Metric: throughput — 4,.n factor by which Throughput of network 6*:

of a demand matrix.. . ccil s feasible. worst case T
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Throughput Analysis
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Demand Matrix
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Worst demand matrix for static

and rotor:

permutation. Best
case for demand-aware!
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Throughput Analysis

Demand Matrix
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Worst demand matrix for static

and rotor: permutation. Best
case for demand-aware!

o ¥ ® ¥ ® © € ©
expander-net | rotor-net | CERBERUS ) mm e By D mim

BW-Tax v v X s03| [o3| [o3| [o3| [o3 [po3 [po3 [pos

LT-Tax X v v = == == ===

o(T) Thm 2 Thm 3 Thm 5

0" 0.53 0.45 Open

Datamining 0.53 0.6 0.8 (+33%)

Permutation 0.53 0.45 ~ 1(+88%)

Case Study 0.53 0.66 0.9 (+36%)
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Throughput Analysis

Demand Matrix

12345678

K K, Kq
1 static rotor demand-aware
switches switches switches
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1 2 3 4 5 6

Worst demand matrix for static

and rotor: permutation. Best
case for demand-aware!
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Datamining 0.53 0.6 Vo w371

Permutation 0.53 0.45 ~ 1(+88%)

Case Study 0.53 0.66 0.9 (+36%)
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-> Opportunity: structure in demand and reconfigurable networks

-> How to measure demand? A first metric: entropy

-> New algorithmic problem: demand-aware and self-adjusting graphs

— At least for sparse demands we know how
— Open questions: What about general demand? Load? Distributed algorithms? Hybrid
networks (i.e., demand-aware on top of a fixed Clos topology)?

-» Cerberus aims to assign traffic to its best topology

— Depending on flow size
— Open questions: Analysis of throughput? Optimality?

29



-» So far: tip of the iceberg

~» Many more challenges
— Shock wave through Layers:
impact on routing and congestion control?
— Scalability of control in dynamic graphs:
Local algorithms? Greedy routing?

-» Complexity of demand-aware graphs
(pure vs hybrid, e.g., SplayNet)

— Application-specific self-adjusting networks:
e.g., for AI, or similar to active dynamic
networks (independent sets, consensus, ..)

- etc.

Thank you!

29



Online Video Course
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self-adjusting datacenter selF adjusting bridge

We cannot direct the wind,
but we can adjust the sails.

(Folklore)
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SELF-ADJUSTING NETWORKS Project Overview

RESEARCH ON SELF-ADJUSTING DEMAND-AWARE NETWORKS

AdjustNet

Breaking new ground with demand-aware self-adjusting networks

self-adjusting
Networks

EEEEEE

Soeceececsecsssncnee

oo e

Download Slides

http://self-adjusting.net/
Project website

O b0 AT @araa’v:

AND DC NETWDRK TRACE

The following table lists the traces used in the publication: On the Complexity of Traffic Traces and Implications

To reference this website, please use: bibtex

File Name

exact_Boxl b MG C Large. 1024 csv Troces 17547800 1513MB  Download

‘exact BoxLb.CNS. NoSpec. Large. 1024 csv Traces 1108068  93MB  Downioad

casar_Nekbana_ 1024 csv Trces 21745229 1840MB  Download

CECOLLECI'IQN Publication  Team  Download Traces

Contact Us

https://trace-collection.net/

Trace collection website
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Static DAN

Overview: Models

Static Optimality

Chen Avin  Kaushik Mondal  Stefan Schmid

Abstract Traditionally, networks such as datacenter
interconneets are designed to optimize worst-case per-
formance under arbitrary traffic patterns. Such network
designs can however be far from optimal when consider-
ing the actual worklaads and traffic patterns which they
serve. This insight led to the development of demand-
aware datacenter interconnects which can be reconfig-
ured depending on the worklond

Mativated by these trends, this paper initintes the
algorithmic study of demand-aware networks (DANs),
and in particular the design of bounded-degree net-
works. The inputs to the network design problem are a
diserete communication request distribution, D, defined
over communicating pairs from the node set V', and a
bound, 4, on the maximum degree. Tn turn, our ob-
jective is to design an (undirected) demand-aware net-
work N = (V. E) of hounded-degree A, which provide
short routing paths between frequently communicating
nodes distributod across N. In particular, the designed
network should minimize the ezpected path length on N

(with resnact to D) _which ic a_husic measure of the

Demand-Aware Network Designs of Bounded Degree

1 Introduction

The problem studied in this paper is motivated by the
advent of more flexible datacenter interconnects, such
as ProjocToR [20,31]. These interconects aim to over-
come a fundamental drawhack of traditional datacenter
notwork desigus: the fact that network designes must
decide m advance on how much capacity to provision
betwoen clectrical packet switches, e.g., between Top-
of-Rack (ToR) switchies in datacenters. This leads to
an undesirable tradeoff 42
provisioned and therefore the interconnect expensive
(e.g.. a fat-tree provides full-bisection bandwidth), or
one may risk congestion, resulting in a poor cloud appli-
cation performance. According
jecToR provide a roconfigurabl
to establish links flexibly and in a demand-aware man-
ner. For example, diroct links or at least short comumu-
nication paths can be established between frequently
commuuicating ToR switches. Such links can be
plemented using a bounded munber of lasers, mirrors,
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ABSTRACT

‘The physical topology is emerging as the next frontier in an
ongoing effort to render communication networks more flex-
lblc Whﬂe first emplnta! results mdlcnle that these flexibili-

imize the network

Sowaid the workload it serves and &g, providiag the same
bandwidth at lower infrastructure cost, only little is known
today about the fundamental algorithmic problems underly-
ing the design of reconfigurable networks. This paper it
ates the study of the theory of demand-aware, self-adjusting
networks. Our main position is that self-adjusting networks
should be seen through the lense of self-adjusting datas-
tructures. Accordingly, e present a taxonomy classifying
khe dlﬂuem llgonthmlc models al'dmum‘l oblivious, fixed

Figure 1: Taxonomy of topology optimization

design of efficient datacenter networks has received much
attention over the last years. The topologies underlying mod-
ern datacenter networks range from trees (7, 8] over hyper-
cubes [9, 10] to expander networks [11] and provide high
at low cost [1].

d- networks,
introduce a roml model, and identify objectives and evalua-
tion metrics We al by examples. the inherent

Until now, these networks also have in common that their
topology is fixed and oblivious to the actual demand (

Robust DAN
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Abstract

We currently witness the emergence of interesting new network topologies optimized towards the
traffic matrices they serve, such as demand-aware datacenter interconnects (e.g.. PrajecToR) and
demand-aware peer-to-peer overlay networks (e.s., SplayNets). This paper introduces a formal
framework and approach to reason about and design robust demand-aware networks (DAN). In
particular, we establish a connection between the communication frequency of two nodes and
the path length between them in the network, and show that this relationship depends on the
entropy of the communication matrix. Our main contribution is a novel robust, yet sparse, family
of networks, short rDANs, which guarantee an expected path length that is proportional to the

entropy of the communication patterns.

Dynamic DAN

Adsract—Tois paper Wktees the sindy of ecaky s

b pepphoiniedrasiady memcar, e 1o commumication et
Ourvﬁurl-hm-lﬂﬂrihldmin
datastructures nywmmp.mr
Ilmmnﬂlnlhdtlphylmwhkh optimize
Mlpmm--m‘kndllu-dylkhwm).nmk
to minimize the routing cost between arbitrary communication

We introduce u simple model which captures the
We present the SplayNet algorithm and formally analyze its
and prove its in specific we

edge expansion, 1o study the limitations of any demand-optimized
network. Finally, we extend our study to multi-tree networks, and
highlight an intriguing difference between classic and distributed
splay trees.

1. INTRODUCTION

In the 19805, Slcator and Tarjan [22] proposed an appealing
new paradigm to design efficient Binary Search Tree (BST)
datastructures: rather than optimizing traditional metrics such

SplayNet: Towards Locally Self-Adjusting Networks

Stefan Schmid*, Chen Avin®, Christian Scheideler, Michacl Borokhovich, Bernhard Haeupler, Zvi Lotker

toward static metrics, such as the diameter or the length of
the longest route: the self-adjusting paradigm has not spilled
over to distributed networks.

We, in this paper, initiate the study of a distributed general-
ization of self-optimizing datastructures. This is a non-trivial
generalization of the classic splay tree concept: While in clas-
sic BSTs, a lookup request always originates from the same
node. the tree root, distributed datastructures and networks
such as skip graphs (2], [13] have to support ruting requests
between arbilrary pairs (or peers) of communicating nodes; in
other words, both the source as well as the destination of the
requests become variable, Figure 1 illustrates the difference
between classic and distributed binary search trees.

Tn this paper, we ask: Can we reap similar benefits from self-
adjusting entire networks, by adaptively reducing the distance
between frequently communicating nodes?

As a finst step. we explore fully decentralized and self-
adjusting Binary Search Tree networks: in these networks,
nodes are amanged in a binary tree which respects node
identifiers. A BST topology is altractive as it supports greedy
routing: a node can decide locally 1o which port to forward a
request given its destination address.

ReNets: Toward Statically Optimal
Self-Adjusting Networks

Chen Avin'  Stefan Schmid?
! Ben Gurion University, Israel 2 University of Vienna, Austria

Abstract

This paper studies the design of self-adjusting networks whose topol-
ogy dynamically adapts to the workload, in an online and demand-aware
manner. This problem is motivated by emerging optical technologies
which allow to reconfigure the datacenter topology at runtime. Our
‘main contribution is ReNet, a self-adjusting network which maintains a
balance between the benefits and costs of reconfigurations. In partic-
ular, we show that ReNets are statically optimal for arbitrary sparse
communication demands, i.c., perform at least as good as any fixed
demand-aware network designed with a perfect knowledge of the future
demand. Furthermore, ReNets provide compact and local routing, by
leveraging ideas from self-adjusting datastructures.

1 Introduction

Modern datacenter networks rely on efficient network topologies (based on
fat-trees [1], hypercubes [2, 3], or expander [4] graphs) to provide a high
connectivity at low cost [5]. These datacenter networks have in common that
their topology is fired and oblivious to the actual demand (i.e., workload
or communication pattern) they currently serve. Rather, they are designed
for all-to-all communication patterns, by ensuring properties such as full
bisection bandwidth or O(logn) route lengths between any node pair in a
constant-degree n-node network. However, demand-oblivious networks can

be inefficient for more specific demand patterns, as they usually arise in
oo Trvriisinal ‘choudl e ol that +22080 itbaing aft

Concurrent DANs

CBNet: Minimizing Adjustments in
Concurrent Demand-Aware Tree Networks
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Aburuct—Ths poper studos the duden o domandowars  CBNet is based an concepts from el acjsing daa s
atoeck bpsbgties it vort B ayeimicaly m-—tmmuucmmlmcnﬂaynuly-m
toward the demand they currently serve. e logeono

o the network topology toward mm..mh-p::-un

distribution. At the same time. bidirectional semi-splaying and
couaters are used to maintain sisie, minimize reconfiguratio
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ABSTRACT

We present a decade of evolution and production experience
with Jupiter datacenter network fabrics. In this period Jupiter
has delivered 5x higher speed and capacity, 30% reduction in
capex, 41% reduction in power, incremental deployment and
technology refresh all while serving live production traffic. A
key enabler for these improvements is evolving Jupiter from a
Clos to a direct-connect topology among the machine aggrega-
tion blocks. Critical architectural changes for this include: A
datacenter interconnection layer employing Micro-Electro-
Mechanical Systems (MEMS) based Optical Circuit Switches

KEYWORDS

Datacenter network, Software-defined networking, Traffic
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Reconfigurable Optical Networks
Will Move Supercomputer Data
100X Faster

Newly designed HPC network cards and software that
reshapes topologies on-the-fly will be key to success
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ML applications
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-> Two different ways to generate same traffic matrix:
— Same non-temporal structure

- Which one has more structure?
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-> Two different ways to generate same traffic matrix:
— Same non-temporal structure

- Which one has more structure?
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Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”

Original Randomize rows Uniform

»

Increasing complexity (systematically randomized) >

< More structure (compresses better)
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On the Complexity of Traffic Traces and Implications
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This paper presents a systematic approach to identify and quantify the types of structures featured by packet
traces in communication networks. Our approach leverages an information-theoretic methodology, based on
iterative randomization and compression of the packet trace, which allows us to systematically remove and
measure dimensions of structure in the trace. In particular, we introduce the notion of trace complexity which
approximates the entropy rate of a packet trace. Considering several real-world traces, we show that trace
complexity can provide unique insights into the characteristics of various applications. Based on our approach,
we also propose a traffic generator model able to produce a synthetic trace that matches the complexity levels
of its corresponding real-world trace. Using a case study in the context of datacenters, we show that insights
into the structure of packet traces can lead to improved demand-aware network designs: datacenter topologies
that are optimized for specific traffic patterns.

CCS Concepts: » Networks — Network performance evaluation; Network algorithms; Data center
networks; + Mathematics of computing — Information theory;

Additional Key Words and Phrases: trace complexity, self-adjusting networks, entropy rate, compress, com-
plexity map, data centers
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1 INTRODUCTION

Packet traces collected from networking applications, such as datacenter traffic, have been shown
to feature much structure: datacenter traffic matrices are sparse and skewed [16, 39], exhibit




~» Classic problem: find sparse, distance-preserving
(low-distortion) spanner of a graph

-> But:

- Spanners aim at low distortion among all pairs;
in our case, we are only interested in the
local distortion, 1-hop communication neighbors

~> We allow auxiliary edges (not a subgraph): similar to
geometric spanners

-» We require constant degree



-» Yet, can leverage the connection to spanners sometimes!

Theorem: If demand matrix is regular and uniform, and if we
can find a constant distortion, linear sized (i.e.,
constant, sparse) spanner for this request graph: then we
can designh a constant degree DAN providing an optimal
expected route length (i.e., O(H(X|Y)+H(Y[|X)).

. Constant degree
r-regular and Sparse, 1irregular g

K optimal DAN (ERL
. tant N
uniform demand: (constant) spanner at most log r):

» »

auxiliiary edges




-» Yet, can leverage the connection to spanners sometimes!

Theorem: If demand matrix is regular and uniform, and if we
can find a constant distortion, linear sized (i.e.,
constant, sparse) spanner for this request graph: then we
can designh a constant degree DAN providing an optimal
expected route length (i.e., O(H(X|Y)+H(Y[|X)).

r-regular and
uniform demand:

»

Sparse, irregular
(constant) spanner:

isubgraph!

Our degree reduction
trick again!

ZL////’

Constant degree
optimal DAN (ERL

at most log r): —=——

LN

auxiliiary edges

Why optimal:
in r-regular graphs,
conditional entropy
is log r.




