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Abstract. Self-adjusting networks (SANs) have the ability to adapt to
communication demand by dynamically adjusting the workload (or de-
mand) embedding, i.e., the mapping of communication requests into the
network topology. SANs can thus reduce routing costs for frequently
communicating node pairs by paying a cost for adjusting the embedding.
This is particularly beneficial when the demand has structure, which the
network can adapt to. Demand can be represented in the form of a de-
mand graph, which is defined by the set of network nodes (vertices) and
the set of pairwise communication requests (edges). Thus, adapting to
the demand can be interpreted by embedding the demand graph to the
network topology. This can be challenging both when the demand graph
is known in advance (offline) and when it revealed edge-by-edge (online).
The difficulty also depends on whether we aim at constructing a static
topology or a dynamic (self-adjusting) one that improves the embedding
as more parts of the demand graph are revealed. Yet very little is known
about these self-adjusting embeddings.
In this paper, the network topology is restricted to a line and the demand
graph to a ladder graph, i.e., a 2ˆn grid, including all possible subgraphs
of the ladder. We present an online self-adjusting network that matches
the known lower bound asymptotically and is 12-competitive in terms of
request cost. As a warm up result, we present an asymptotically optimal
algorithm for the cycle demand graph. We also present an oracle-based
algorithm for an arbitrary demand graph that has a constant overhead.

Keywords: Ladder graph · Self-adjusting networks · Traffic patterns ·
online algorithms.

1 Introduction

Traditional networks are static and demand-oblivious, i.e., designed without con-
sidering the communication demand. While this might be beneficial for all-to-
all traffic, it doesn’t take into account temporal or spatial locality features in
demand. That is, sets of nodes that temporarily cover the majority of commu-
nication requests may be placed diameter-away from each other in the network
topology. This is a relevant concern as studies on datacenter network traces have
shown that communication demand is indeed bursty and skewed [3].

Self-adjusting networks (SANs) are optimized towards the traffic they serve.
SANs can be static or dynamic, depending on whether it is possible to reconfigure
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the embedding (mapping of communication requests to the network topology)
in between requests, and offline or online, depending on whether the sequence of
communication requests is known in advance or revealed piece-wise. In the online
case, we assume that the embedding can be adjusted in between requests at a
cost linear to the added and deleted edges, thus, bringing closer frequently com-
municating nodes. Online algorithms for SANs aim to reduce the sum of routing
and reconfiguration (re-embedding) costs for any communication sequence.

We can express traffic in the form of a demand graph that is defined by the
set of nodes in the network and the set of pairwise communication requests (edge
set) among them. Knowing the structure of the demand graph could allow us to
further optimize online SANs, even though the demand is still revealed online.
That is, by re-embedding the demand graph to the network we optimize the use
of network resources according to recent patterns in demand.

To the best of our knowledge, the only work on demand graph re-embeddings
to date is [2], where the network topology is a line and the demand graph is also a
line. The authors presented an algorithm that serves m “ Ωpn2q requests at cost
Opn2 log n`mq and showed that this complexity is the lower bound. The problem
is inspired by the Itinerant List Update Problem [11] (ILU). To be more precise,
the problem in [2] appears to be the restricted version of the online Dynamic
Minimum Linear Arrangement problem, which is another reformulation of ILU.

Contributions. In this work, we take the next step towards optimizing
online SANs for more general demand graphs. We restrict the network topology
to a line, but assume that the demand graph is a ladder, i.e., a 2 ˆ n grid. We
assume that before performing a request, we can re-adjust the line graph by
performing several swaps of two neighbouring nodes, paying one for each swap.
We present a 12-competitive online algorithm that embeds a ladder demand
graph to the line topology, thus, asymptotically matching the lower bound in
[2]. This algorithm can be applied to any demand graph that is a subgraph of
the ladder graph and that when all edges of the demand graph are revealed the
topology is optimal and no more adjustments occur. We also optimally solve the
case of cycle demand graphs, which is a simple generalization of the line demand
graph, but is not a subcase of the ladder due to odd cycles. Finally, we provide
a generic algorithm for arbitrary demand graphs, given an oracle that computes
an embedding with the cost of requests bounded by the bandwidth.

A solution for the ladder is the first step towards the n ˆ m grid demand
graph. Moreover, a ladder (and a cycle) has a constant bandwidth, i.e., a minimum
value over all embeddings onto a target line graph of a maximal path between
the ends of an edge (request). It can be shown that given a demand graph G the
best possible complexity per request is the bandwidth.

Related work. Avin et al. [2], consider a fixed line (host) network and a
line demand graph. Their online algorithm re-embeds the demand graph to the
host line graph with minimum number of swaps on the embedding. Both [1,6]
present constant-competitive online algorithms for a fixed and complete binary
tree, where nodes can swap and the demand is originating only from the source.
However, these two works do not consider a specific demand graph. Moreover,
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[5] studied optimal but static and bounded-degree network topologies, when the
demand is known. Self-adjusting networks have been formally organized and
surveyed in [7]. Other existing online SAN algorithms consider different models.
The most distinct difference is our focus on online re-embedding while keeping a
fixed host graph (i.e., a line) compared to other works that focus on changing the
network topology. The latter is what, for example, SplayNet [12] is proposing,
where tree rotations change the form of the binary search tree network, without
optimizing for a specific family of demand patterns.

Online demand graph re-embedding also relates to dynamically re-allocating
network resources to follow traffic patterns. In [4], the authors consider a fixed
set of clusters of bounded size, which contain all nodes and migrate nodes online
according to the communication demand. But more broadly, [8] assumes a fixed
grid network and migrates tasks according to their communication patterns.

Also, relevant problems, from a migration point of view, are the classic list
update problem (LU) [13], the related Itinerant List Update (ILU) problem [11],
and the Minimum Linear Arrangement (MLA) problem [10]. In contrast to those
problems, we study an online problem where requests occur between nodes.

Roadmap. Section 2 describes the model and background. Section 3 con-
tains the summary of our three contributions (ladder, cycle, general demand
graph) and their high-level proofs. Section 4 presents the algorithm and analysis
for ladder demand graphs. Some technical details are deferred to the appendix.

2 Model and Background

Let us introduce the notation that we are going to use throughout the paper.
Let V pHq and EpHq be the sets of vertices and edges in graph H, respectively.
Sometimes, we just use V and E if the graph H is obvious from the context. Let
dHpu, vq be the distance between u and v in graph H.

Let N be the network topology and σ be a sequence of pairwise commu-
nication requests between nodes in N . Let the demand graph G be the graph
built over the nodes in N and the pairs of nodes that appear in σ, i.e. G “

pV pNq, tσi “ psi, diq |σi P σuq. We assume that the demand graph is of a certain
type and our overall goal will be to embed the demand graph G onto the ac-
tual network topology N at a minimum cost. This is non-trivial as requests are
selected from G by an online adversary and G is not known in advance. In the
following, we formalize demand graph embedding and topology reconfiguration.

A configuration (or an embedding) of G (the demand graph) in a graph N
(the host network) is an injection of V pGq into V pNq; CGÑN denotes the set of all
such configurations. A configuration c P CGÑN is said to serve a communication
request pu, vq P EpGq at the cost dN pcpuq, cpvqq. A finite communication sequence
σ “ pσ1, . . . , σmq is served by a sequence of configurations c0, c1, . . . , cm P CGÑN .
The cost of serving σ is the sum of serving each σi in ci plus the reconfiguration
cost between subsequent configurations ci and ci`1. The reconfiguration cost
between ci and ci`1 is the number of migrations necessary to change from ci to
ci`1; a migration swaps the images of two neighbouring nodes u and v under c
in N . Moreover, Ei “ tσ1, . . . , σiu denotes the first i requests of σ interpreted



4 V. Aksenov et al.

as a set of edges on V . We present algorithms for an online self-adjusting linear
network: a network whose topology forms a 1-dimensional grid, i.e., a line.

Definition 1 (Working Model). Let G be the demand graph, n be the number
of vertices in G, N “ pt1, . . . , nu, tp1, 2q, p2, 3q, . . . , pn´ 1, nqu be a line (or list)
graph Ln (host network), c be a configuration from CGÑN , and σ be a sequence
of communication requests. The cost of serving σi “ pu, vq P σ is given by
|cpuq ´ cpvq|, i.e., the distance between u and v in N . Migrations can occur
before serving a request and can only occur between nodes configured on adjacent
vertices in N .

In the following we introduce notions relevant to our new results.

Definition 2. A correct embedding of a graph G into graph N is an injective
mapping ϕ : V pGq Ñ V pNq that preserves edges, i.e.

#

@u, v P V pGq with u ‰ v ñ ϕpuq ‰ ϕpvq

pu, vq P EpGq ñ pϕpuq, ϕpvqq P EpNq

Definition 3 (Bandwidth). Given a graph G, the Bandwidth of an embedding
c P CGÑLn is equal to the maximum over all edges pu, vq P E of |cpuq´cpvq|, i.e.,
the distance between u and v on Ln. BandwidthpGq is the minimum bandwidth
over all embeddings from CGÑLn

.

Remark 1 The Bandwidth computation of an arbitrary graph is an NP-hard
problem [9].

To save the space, we typically omit the proofs of lemmas and theorems in
this paper and put them in Appendix C. Here we define the 2ˆn grid or ladder
graph for which we get the main results of our paper.

Definition 4. A graph Laddern “ pV,Eq is represented as follows. The vertices
V are the nodes of the grid 2ˆn — tp1, 1q, p1, 2q, . . . , p1, nq, p2, 1q, p2, 2q, . . . , p2, nqu.
There is an edge between vertices px1, y1q and px2, y2q iff |x1´x2|`|y1´y2| “ 1.

Lemma 1. BandwidthpLaddernq “ 2.

Proof. The bandwidth is greater than 1, because
there are nodes of degree three. The bandwidth
of 2 can be achieved via the “level-by-level” enu-
meration as shown on the figure.

Fig. 1: Optimal ladder numera-
tion.

Lemma 2. For each subgraph S of a graph G, BandwidthpSq ď BandwidthpGq.

2.1 Background

Let us overview the previous results from [2]. In that work, both the demand
and the host graph (network topology) were the line graph Ln on n vertices. It
was shown that there exists an algorithm that performs Opn2 log nq migrations
in total, while serving the requests themselves in Op1q. By that, if the number
of requests is Ωpn2 log nq then each request has Op1q amortized cost.
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Theorem 1 (Avin et al. [2]). Consider a linear network Ln and a linear
demand graph. There is an algorithm such that the total time spent on migrations
is Opn2 log nq, while each request is performed in Op1q omitting the migrations.

We give an overview of this algorithm. At each moment in time, we know
some subgraph of the line demand graph. For each new communication request,
there are two cases: 1) the edge from the demand graph is already known —
then, we do nothing; 2) the new edge is revealed. In the second case, this edge
connects two connected components. We just move the smallest component on
the line network closer to the largest component. The move of each node in one
reconfiguration does not exceed n. Since, the total number of reconfigurations
in which the node participates does not exceed log n, we have Opn2 log nq upper
bound on the algorithm. From [2], Ωpn2 log nq is also the lower bound on the total
cost. Thus, the algorithm is asymptotically optimal in the terms of complexity.

Corollary 1. If |σ| “ Ωpn2 log nq the amortized service cost per request is Op1q.

The algorithms are not obliged to perform migrations at all, but the sum of
costs for Θpn2q requests can be lower-bounded with Ωpn2 log nq.

Theorem 2 (Lower bound, Avin et al. [2]). For every online algorithm ON
there is a sequence of requests σON of length Θpn2q with the demand graph being
a line, such that costpONpσON qq “ Ωpn2 log nq.

That implies Ωplog nq optimality factor since any offline algorithm knowing
the whole request sequence σ in advance can simply reconfigure the network to
match the (line) demand graph by paying Θpn2q in the worst case.

3 Summary of contributions

In this work we present self-adjusting networks with a line topology for a de-
mand graph that is either a cycle, or a 2ˆn grid (ladder), or an arbitrary graph.
We study offline and online algorithms on how to best embed the demand graph
on the line graph, such that the embedding cost is minimized. The online case
is more challenging, as the demand graph is revealed edge-by-edge and the em-
bedding changes, with a cost. The result for the cycle follows from [2] almost
directly. However the result for the ladder is non-trivial and requires new tech-
niques; it is not simple to reconfigure a subgraph on a 2ˆ n grid after revealing
a new edge in order to get Opn2 log nq cost of modifications in total. We give an
overview of each case below.

3.1 Cycle demand graph
We start with the following observation. Let Cn be a cycle graph on n vertices,
i.e., EpCnq “ tp1, 2q, . . . , pn´1, nq, pn, 1qu. Then, BandwidthpCnq “ 2. We give a
brief description of how the algorithm works. We start with the same algorithm
as for the line (Section 2.1): while the number of revealed edges is not more than
n´ 1, we can emulate the algorithm for the line. When the last edge appears we
restructure the whole embedding in order to get bandwidth 2, which is the cycle
bandwidth. For the whole restructuring using swaps, we pay no more than Opn2q.
This cost is less than the total time spent on the reconstruction Ωpn2 log nq.
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Theorem 3. Suppose the demand graph is Cn. There is an algorithm such that
the total cost spent on the migrations is Opn2 log nq and each request is performed
in Op1q. In particular, if the number of requests is Ωpn2 log nq each request has
Op1q amortized cost.

The full proof appears in Appendix A.

Remark 2 The lower bound with Ωpn2 log nq that was presented for a line de-
mand graph still holds in the case of a cycle, since the cycle contains the line as
the subgraph. Thus, our algorithm is optimal.

3.2 Ladder demand graph

Now, we state the main result of the paper — the algorithm for the case when
the demand graph is an ladder.

Theorem 4. Suppose a demand graph is an ladder. There is an algorithm such
that the total cost spent on the migrations is Opn2 log nq and each request is
performed in Op1q. In particular, if the number of requests is Ωpn2 log nq each
request has Op1q amortized cost.

We provide a brief description of the algorithm. We say that an ladder has
n levels from left to right: i.e., the nodes p1, xq and p2, xq are on the same level
x (see Figure 1). On a high-level, we use the same algorithmic approach as in
Theorem 1 for the line demand graph. The main difference is that instead of
embedding the demand graph right away onto the line network, at first, we
“quasi-embed” the graph onto the 2n-ladder graph, which then we embed onto
the line. By “quasi-embedding” we mean a relaxation of the embedding defined
earlier: at most three vertices of the demand graph are mapped on each level
of the ladder.

Suppose for a moment that we have a dynamic algorithm that quasi-embeds
the graph onto the 2n-ladder. Given this quasi-embedding we can then embed
the 2n-ladder onto the line Ln. We consequently go through from level 1 to level
2n of our ladder and map (at most three) vertices from the level to the line in
some order (see Theorem 1). Such a transformation from the ladder to the line
costs only a constant multiplication overhead.

We explain briefly how to design a dynamic quasi-embedding algorithm with
the desired complexity. At first, we present a static quasi-embedding algorithm,
i.e., we are given a subgraph of the ladder and we need to quasi-embed it. This
algorithm consists of three parts: embed a tree, embed a cycle, embed everything
together. To embed a tree we find a special path in it, named trunk. We embed
this trunk from left to right: one vertex per level. All the subgraphs connected
to trunk are pretty simple and can be easily quasi-embedded in parallel to the
trunk (see Figure 2). To embed a cycle we just have to decide which orientation
it should have. To simplify the algorithm we embed only the cycles of length at
least 6, omitting the cycles of length 4. This decision increases the multiplicative
constant of the cost. Finally, we embed the whole graph: we construct its cycle-
tree decomposition and embed cycles and trees one by one from left to right.

Now, we give a high-level description of our dynamic algorithm. We main-
tain the invariant that all the components are quasi-embedded. When an already
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served request appears, we do nothing. The complication comes from a newly
revealed edge-request. There are two cases. The first one is when the edge con-
nects nodes in the same component — thus, there is a cycle. We redo only the
part of the quasi-embedding of the component around the new cycle; the rest of
the component remains. In the second case, the edge connects two components.
We move the smaller component to the bigger one as in Theorem 1. The bigger
component does not move and we redo the quasi-embedding of the smaller one.

Fig. 2: Quasi-correct embedding of a tree

Now, we briefly calculate
the complexity of the dy-
namic algorithm. For the re-
quests of the first case, if the
nodes are on the cycle for the
first time (this event happens
only once for each node), we pay Opnq for it. Otherwise, there are already nodes
in the cycle. In this case we make sure to re-embed the existing cycle in a way
that all the nodes are moved for a Op1q distance. As for the neighboring nodes,
it can be shown that each node is moved only once as a part of the cycle neigh-
borhood, so we also bound this movement with Opnq cost. This gives us Opn2q
complexity in total — each node is moved by at most Opnq. For the requests
of the second case, we always move the smaller component and, thus, we pay
Opn2 log nq in total: each node can be moved by Opnq at most Oplog nq times, i.e.,
any node can be at most log n times in the “smaller” component. Our algorithm
matches the lower bound, since the ladder contains Ln as a subgraph.

3.3 General graph

We finish the list of contributions with a general result; the case where the de-
mand graph is an arbitrary graph G. The full proofs are available at Appendix D.

Theorem 5. Suppose we are given a (demand) graph G and an algorithm B,
that for any subgraph S of G outputs an embedding c P CSÑL|V pGq|

with bandwidth
less than or equal to λ ¨ BandwidthpGq for some λ. Then, for any sequence of
requests σ with a demand graph G there is an algorithm that serves σ with a
total cost of Op|EpGq| ¨ |V pGq|2 ` λ ¨ BandwidthpGq ¨ |σ|q. In particular, if the
number of requests is Ωp|EpGq| ¨ |V pGq|2q each request has Opλ ¨BandwidthpGqq
amortized cost.

Here we give a brief description of the algorithm. Suppose that the current
configuration ci is the embedding of the current demand graph Gi onto L|V pGq|
after i requests. Now, we need to serve a new request in λ ¨BandwidthpGiq ď λ ¨
BandwidthpGq. If the corresponding edge already exists in the demand graph, we
simply serve the request without the reconfiguration. Now, suppose the request
reveals a new edge and we get the demand graph Gi`1. Using the algorithm
B we get the configuration (embedding) ci`1 that has λ ¨ BandwidthpGi`1q ď

λ ¨BandwidthpGq. To serve the request fast, we should rebuild the configuration
ci into the configuration ci`1. By using the swap operations on the line we can
get from ci to ci`1 in Op|V pGq|2q operations: each vertex moves by at most
V pGq. After the reconfiguration we can serve the request with the desired cost.
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A new edge appears at most |EpGq| times while the reconfiguration costs
|V pGq|2. Each request is served in λ ¨ BandwidthpGq. Thus, the total cost of
requests σ is Op|EpGq| ¨ |V pGq|2 ` λ ¨ BandwidthpGq ¨ |σ|q.

Lemma 3. Given a demand graph G. For each online algorithm ON there is a
request sequence σON such that ON serves each request from σON for a cost of
at least BandwidthpGq.

4 Embedding a ladder demand graph

We present our algorithms for embedding a demand graph that is a subgraph of
the ladder graph (2ˆn-grid) on the line graph. We first present the offline case,
where the demand graph is known in advance (Section 4.1). Then we present
the dynamic case, where requests are revealed online, revealing also the demand
graph and thus possibly changing the current embedding (Section 4.2). Finally,
we discuss the cost of the dynamic case in Section 4.3.

Though our final goal is to embed a demand graph into the line, we will first
focus on how to embed a partially-known demand graph into LadderN , where
N is large enough to make the embedding possible, i.e., not more then 2n. When
we have such an embedding one might construct an embedding from LadderN
into Linen, simply composing it with a level by level (see the proof of Lemma
1) embedding of LadderN to Line2N and then by omitting empty images we get
Linen. Such a mapping of LadderN to Line2N enlarges the bandwidth for at
most a factor of 2, but significantly simplifies the construction of our embedding.

Definition 5. An ladder graph l consists of two line-graphs on n vertices l1 and
l2 with additional edges between the lines: tpl1ris, l2risq | i P rnsu, where ljris is
the i-th node of the line-graph lj. We call the set of two vertices, tl1ris, l2risu,
the i-th level of the ladder and denote it as levelLaddernpiq or just levelpiq if it is
clear from the context. We refer to l1ris and l2ris as levelpiqr1s and levelpiqr2s,
respectively. We say that levelxvy “ i for v P V pLaddernq if v P levelLaddernpiq.
We refer to l1 and l2 as the sides of the ladder.

4.1 Static quasi-embedding

We start with one of the basic algorithms — how to quasi-embed on LadderN
with large N any graph that can be embedded in Laddern. We present a tree
and cycle embedding and then we show how to to combine them in embedding
a general component (by first doing a cycle-tree decomposition). The whole
algorithm is presented in Appendix B.1.

Tree embedding In this case, our task is to embed a tree on a ladder graph.
We start with some definitions and basic lemmas.

Definition 6. Consider some correct embedding ϕ of a tree T into Laddern.
Let r “ arg max

vPV pT q
levelxϕpvqy and l “ arg min

vPV pT q
levelxϕpvqy be the “rightmost”

and “leftmost” nodes of the embedding, respectively. The trunk of T is a path in
T connecting l and r. The trunk of a tree T for the embedding ϕ is denoted with
trunkϕpT q.
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Definition 7. Let T be a tree and ϕ be its correct embedding into Laddern. The
level i of Laddern is called occupied if there is a vertex v P V pT q on that level,
i.e., ϕpvq P levelLaddernpiq.

Statement 1 For every occupied level i there is v P trunkϕpT q such that v P
levelpiq.

Proof. By the definition of the trunk, an image goes from the minimal occupied
level to the maximal. It cannot skip a level since the trunk is connected and the
correct embedding preserves connectivity.

The trunk of a tree in an embedding is a useful concept to define since
the following hold for it. The proofs for the lemmas in this section appear in
Appendix C.

Lemma 4. Let T be a tree correctly embedded into Laddern by some embedding
ϕ. Then, all the connected components in T z trunkϕpT q are line-graphs.

Lemma 5. For the tree T and for each node v of degree three (except for maxi-
mum two of them) we can verify in polynomial time if for any correct embedding
ϕ, trunkϕpT q passes through v or not.

Support nodes are the nodes of two types: either a node of degree three with-
out neighbours of degree three or a node that is located on some path between
two nodes with degree three. The path through passing through all support
nodes is called trunk core. We denote this path for a tree T as trunkCorepT q.
Intuitively, the trunk core consists of vertices that lie on a trunk of any em-
bedding. It can be proven that the support nodes appear in the trunk of every
correct embedding (proof appears in the appendix).

Definition 8. Let T be a tree. All the connected components in T z trunkCorepT q
are called simple-graphs of tree T .

Lemma 6. The simple-graphs of a tree T are line-graphs.

Definition 9. The edge between a simple-graph and the
trunk core is called a leg. The end of a leg in the simple-
graph is called a head of the simple-graph. The end of a
leg in the trunk core is called a foot of the simple-graph.
If you remove the head of a simple-graph and it falls
apart into two connected components, such simple-graph
is called two-handed and those parts are called its hands.
Otherwise, the graph is called one-handed, and the sole
remaining component is called a hand. If there are no
nodes in the simple-graph but just a head it is called zero-
handed.

Fig. 3: Hands, Legs,
and Trunk core.

Definition 10. A simple-graph connected to some end node of the trunk core is
called exit-graph. A simple-graph connected to an inner node of the trunk core
is called inner-graph.
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Please note that the next definition is about a much larger ladder graph,
LadderN , rather than Laddern. Here, N is equal to 2n to make sure that we
have enough space to embed.

Definition 11. An embedding ϕ : V pGq Ñ V pLadderN q of a graph G into
LadderN is called quasi-correct if:

– pu, vq P EpGq ñ pϕpuq, ϕpvqq P EpLadderN q, i.e., images of adjacent vertices
in G are adjacent in the grid.

– There are no more than three nodes mapped into each level of LadderN ,
i.e., the two grid nodes on each level are the images of no more than three
nodes.

We can think of a quasi-correct embedding as an embedding into levels of
the grid with no more than three nodes embedded to the same level. Then, we
can compose this embedding with an embedding of a grid into the line which is
the enumeration level by level. More formally if a node u is embedded to level i
and a node v is embedded to level j and i ă j then the resulting number of u
on the line is smaller than the number of v, but if two nodes are embedded to
the same level, we give no guarantee.

Lemma 7. Any graph mapped into the ladder graph by the quasi-correct embed-
ding described above can be mapped onto the line level by level with the property
that any pair of adjacent nodes are embedded at the distance of at most five.

Assume, we are given a tree T that can be embedded into Laddern. Further-
more, there are two special nodes in the tree: one is marked as R (right) and
another one is marked as L (left). It is known that there exists a correct embed-
ding of T into Laddern with R being the rightmost node, meaning no node is
embedded more to the right or to the same level, and L being the leftmost node.

We now describe how to obtain a quasi-correct embedding of T onto LadderN
with R being the rightmost node and L being the leftmost one while L is mapped
to ImageL — some node of the LadderN . Moreover, our embedding obeys the
following invariant.

Invariant 1 (Septum invariant) For each inner simple-graph, its foot and its
head are embedded to the same level and no other node is embedded to that level.

Fig. 4: Example of a quasi-correct em-
bedding

We embed a path between L and
R simply horizontally and then we ori-
ent line-graphs connected to it in a
way that they do not violate our de-
sired invariant. It can be shown that it
is always possible if T can be embed-
ded onto Laddern. The pseudocode is
in Appendix Algorithm 1.

Suppose now that not all informa-
tion, such as R, L, and ImageL, is
provided. We explain how we can em-
bed a tree T . We first get the trunk
core of the given tree. This can be



Self-Adjusting Linear Networks with Ladder Demand Graph 11

done by following the definition. Now the idea would be to first embed the
trunk core and its inner line-graphs using a tree embedding presented earlier
with R and L to be the ends of the trunk core. Then, we embed exit-graphs
strictly horizontally “away” from the trunk core. That means, that the hands of
exit-graphs that are connected to the right of the trunk core are embedded to
the right, and the hands of those exit-graphs that are connected to the left of the
trunk core are embedded to the left. An example of the quasi-correct embedding
is shown in Figure 4.

If a tree does not have a trunk core, then its structure is quite simple (in
particular it has no more than two nodes of degree three). Such a tree can be
embedded without conflicts. The pseudocode appears in Appendix Algorithm 2.

Cycle embedding Now, we show how to embed a cycle into LadderN . First,
we give some important definitions and lemmas.

Definition 12. A maximal cycle C of a graph G is a cycle in G that cannot be
enlarged, i.e., there is no other cycle C 1 in G such that V pCq Ĺ V pC 1q.

Definition 13. Consider a graph G and a maximal cy-
cle C of G. A whisker W of C is a line graph inside G
such that: 1) V pW q ‰ H and V pW q X V pCq “ H. 2)
There exists only one edge between the cycle and the
whisker pw, cq for w P V pW q and c P V pCq. Such c
is called a foot of W . The nodes of W are enumer-
ated starting from w. 3) W is maximal, i.e., there is no
W 1 in G such that W 1 satisfies previous properties and
V pW q Ĺ V pW 1q.

Fig. 5: Cycle and its
Whiskers.

Definition 14. Suppose we have a graph G that can be correctly embedded into
Laddern by ϕ and a cycle C in G. Whiskers W1 and W2 of C are called adjacent
(or neighboring) for the embedding ϕ if @i ď minp|V pW1q|, |V pW2q|q pϕpW1risq,
ϕpW2risqq P EpLaddernq.

Lemma 8. Suppose we have a graph G that can be correctly embedded into
Laddern and there exists a maximal cycle C in G with at least 6 vertices with
two neighbouring whiskers W1 and W2 of C, i.e., pfootpW1q, footpW2qq P EpGq.
Then, W1 and W2 are adjacent in any correct embedding of G into LadderN .

Definition 15. Assume we have a graph G and a
maximal cycle C of length at least 6. The frame for
C is a subgraph of G induced by vertices of C and
tW1ris,W2ris | i ď minp|V pW1q|, |V pW2q|qu for each
pair of adjacent whiskers W1 and W2. Adding all the
edges tpW1ris,W2risq | i ď minp|V pW1q|, |V pW2q|qu for
each pair of adjacent whiskers W1 and W2 makes a
frame completed.

Fig. 6: Cycle, its frame,
and edges (dashed) to
make the frame com-
pleted

Given a cycle C of length at least six and its special nodes L,R P V pCq, we
construct a correct embedding of C into LadderN with levelxLy ď levelxuy ď
levelxRy @u P V pCq, while L is mapped into the node ImageL.
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We first check if it is possible to satisfy the given constraints of placing the
L node to the left and a R node to the right. If it is indeed possible, we place
L to the desired place ImageL and then we choose an orientation (clockwise or
counterclockwise) following which we could embed the rest of the nodes, keeping
in mind that R must stay on the rightmost level. The pseudocode appears in
Appendix Algorithm 3.

Now, suppose that not all information, such as R, L, and ImageL, is pro-
vided. We reduce this problem to the case when the missing variables are known.
This subtlety might occur since there are inner edges in the cycle. In this case,
we choose missing L{R more precisely in order to embed an inner edge vertically.
For more intuition, please see Figures 7a and 7b. A dashed line denotes an inner
edge. The pseudocode appears in the Appendix (Algorithm 4).

(a) Incorrect cycle embedding (b) Correct cycle embedding

Fig. 7: Cycle embeddings.

Embedding a connected component of the demand graph Combining the
previous results, we can now explain how to embed onto LadderN a connected
component S that can be embedded onto Laddern.

Definition 16. By the cycle-tree decomposition of a graph G we mean a set of
maximal cycles tC1, . . . Cnu of G and a set of trees tT1, . . . , Tmu of G such that

–
Ť

iPrns

V pCiq Y
Ť

iPrms

V pTiq “ V pGq

– V pCiq X V pCjq “ H @i ‰ j
– V pTiq X V pTjq “ H @i ‰ j
– V pTiq X V pCjq “ H @i P rms, j P rns
– @i ‰ j @u P V pTiq @v P V pTjq pu, vq R EpGq

We start with an algorithm on how to make a cycle-tree decomposition of
S assuming no uncompleted frames. To obtain a cycle-tree decomposition of a
graph: 1) we find a maximal cycle; 2) we split the graph into two parts by logically
removing the cycle; 3) we proceed recursively on those parts, and, finally, 4) we
combine the results together maintaining the correct order between cycle and
two parts (first, the result for one part, then the cycle, and then the result for
the second part). Since we care about the order of the parts, we say that it is
a cycle-tree decomposition chain. The decomposition pseudocode appears in the
Appendix Algorithm 5.

We describe how to obtain a quasi-correct embedding of S. We preprocess
S: 1) we remove one edge from cycles of size four; 2) we complete uncompleted
frames with vertical edges. Then, we embed parts of S from the cycle-tree decom-
position chain one by one in the relevant order using the corresponding algorithm
(either for a cycle or for a tree embedding) making sure parts are glued together
correctly. The pseudocode appears in Appendix Algorithm 6.
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4.2 Online quasi-embedding

In the previous subsection, we presented an algorithm on how to quasi-embed
a static graph. Now, we will explain how to operate when the requests are re-
vealed in an online manner. The full version of the algorithm is presented in
Appendix B.2.

There are two cases: a known edge is requested or a new edge is revealed. In
the first case the algorithm does nothing since we already know how to quasi-
correctly embed the current graph and, thus, we already can embed into the
line network with constant bandwidth. Thus, further, we will consider only the
second case.

We describe how one should change the embedding of the graph after the
processing of a request in an online scenario. At each moment some edges of the
demand graph Laddern are already revealed, forming connected components.
After an edge reveal we should reconfigure the target line graph. For that, instead
of line reconfiguration we reconfigure our embedding to LadderN that is then
embedded to the line level by level and introduces a constant factor. So, we
can consider the reconfiguration only of LadderN and forget about the target
line graph at all. When doing the reconfiguration of an embedding we want to
maintain the following invariants:
1. The embedding of any connected component is quasi-correct.
2. For each tree in the cycle-tree decomposition its embedding respects Septum

invariant 1.
3. There are no maximal cycles of length 4.
4. Each cycle frame is completed with all “vertical” edges even if they are not

yet revealed.
5. There are no conflicts with cycle nodes, i.e., each cycle node is the only node

mapped to its image in the embedding to LadderN .
For each newly revealed edge there are two cases: either it connects two nodes

from one connected component or not. We are going to discuss both of them.

Edge in one component The pseudocode appears in Appendix Algorithm 8.
If the new edge is already known or it forms a maximal cycle of length four,
we simply ignore it. Otherwise, it forms a cycle of length at least six, since two
connected nodes are already in one component. We then perform the following
steps:

1. Get the completed frame of a (possibly) new cycle.
2. Logically “extract” it from the component and embed maintaining the ori-

entation (not twisting the core that was already embedded in some way).
3. Attach two components appeared after an extraction back into the graph,

maintaining their relative order.

Edge between two components The pseudocode appears in Appendix Al-
gorithm 9. In order to obtain an amortization in the cost, we always “move” the
smaller component to the bigger one. Thus, the main question here is how to
glue a component to the existing embedding of another component. The idea is
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to consider several cases of where the smaller component will be connected to
the bigger one. There are three possibilities:

1. It connects to a cycle node. In this case, there are again two possibilities.
Either it “points away” from the bigger component meaning that the cycle
to which we connect is the one of the ends in the cycle-tree decomposition
of the bigger component. Here, we just simply embed it to the end of the
cycle-tree decomposition while possibly rotating a cycle at the end.

Or, the smaller component should be placed somewhere between two cycles
in the cycle-tree decomposition. Here, it can be shown that this small graph
should be a line-graph, and we can simply add it as a whisker, forming a
larger frame.

2. It connects to a trunk core node of a tree in the cycle-tree decomposition. It
can be shown that in this case the smaller component again must be a line-
graph. Thus, our only goal is to orient it and possibly two of its inner simple-
graphs neighbours to maintain the Septum invariant 1 for the corresponding
tree from the decomposition.

3. It connects to an exit graph node of an end tree of the cycle-tree decomposi-
tion. In this case, we straightforwardly apply a static embedding algorithm
of this tree and the smaller component from scratch. Please, note that only
the exit graphs of the end tree will be moved since the trunk core and its
inner graphs will remain.

4.3 Complexity of the online embedding

Now, we calculate the cost of our online algorithm (a more detailed discussion
on the cost of the algorithm appears at Appendix C.5): how many swaps we
should do and how much we should pay for the routing requests. Recall that we
first apply the reconfiguration and, then, the routing request.

We start with considering the routing requests. Their cost is Op1q since they
lie pretty close on the target line network, i.e., by no more than 12 nodes apart.
This bound holds because the nodes are quasi-correctly embedded on LadderN ,
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two adjacent nodes at G are located not more than four levels apart (in the worst
case, when we remove an edge of a cycle with length four) where each level of
the quasi-correct embedding has at most three images of nodes of G. Thus, on
the target line graph, if we enumerate level by level, the difference between any
two adjacent nodes of G is at most 12.

Then, we consider the reconfiguration. We count the total cost of each case
of the online algorithm before all the edges are revealed.

In the first case, we add an edge in one component. By that, either a new
frame is created or some frame was enlarged. In both cases, only the nodes, that
appear on some frame for the first time, are moved. Since, a node can be moved
only once to be mapped on a frame and it is swapped at most N “ Opnq times
to move to any position, the total cost of this type of reconfiguration is at most
Opn2q. Also, there are several adjustments that could be done: 1) the “old” frame
can rotate by one node, and 2) possibly, we should flip the first inner-graphs of
two components connected to the frame. In the first modification, each node at
the frame can only be “rotated” once, thus, paying Opnq cost in total. In the
second modification, inner-graph can change orientation at most once in order
to satisfy the Septum invariant (Invariant 1), thus, paying Opn2q cost in total —
each node can move by at most N “ Opnq.

In the second case, we add an edge in between two components. At first,
we calculate the time spent on the move of the small component to the bigger
one: each node is moved at most Oplog nq times since the size of the component
always grows at least two times, the number of swaps of a vertex is at most
N “ Opnq to move to any place, thus, the total cost is Opn2 log nq. Secondly,
there are two more modification types: 1) a rotation of a cycle, and 2) some
simple-graphs can be reoriented. The cycle can be rotated only once, thus, we
should pay at most Opnq there. At the same time, each simple-graph can be
reoriented at most once to satisfy the Septum invariant (Invariant 1), thus, the
total cost is Opn2q for that type of a reconfiguration.

To summarize, the total cost of requests σ is Opn2 log nq for the whole re-
configuration plus Op|σ|q per requests. This matches the lower bound that was
obtained for the line demand graph. The same result holds for any demand graph
that is the subgraph of the ladder of size n.

Theorem 6. The online algorithm for embedding the ladder demand graph of
size n on the line graph has total cost Opn2 log n ` |σ|q for a sequence of com-
munication requests σ.

5 Conclusion

We presented methods for statically or dynamically re-embedding a ladder de-
mand graph (or a subgraph of it) on a line, both in the offline and online case.
As side results, we also presented how to embed a cycle demand graph and a
meta-algorithm for a general demand graph. Our algorithms for the cycle and
the ladder cases match the lower bounds. Our work is a first step towards a
tight bound on dynamically re-embedding more generic demand graphs, such as
arbitrary grids.
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A The algorithm for the Cycle

We start with the most simple generalization result — when the demand graph
is the cycle on n vertices.

Theorem 3. Suppose the demand graph is Cn. There is an algorithm such that
the total cost spent on the migrations is Opn2 log nq and each request is performed
in Op1q. In particular, if the number of requests is Ωpn2 log nq each request has
Op1q amortized cost.

Proof. The idea of the algorithm is to act as in the algorithm described in [2]
for the list demand graph until revealed edges do not form a cycle. Once they
do we perform a total reconfiguration enumerating nodes of Cn with

#

iÑ 2i´ 1, if i ď rn2 s

iÑ 2pn´ i` 1q, otherwise

so, for each pair of adjacent nodes the difference of their numbers is at most 2.
The enumeration can be seen on Figure 8.

More formally. Let Gi “ pV,Eiq — the demand graph after i requests, and
G0 “ pV,Hq. We want to maintain the invariant that each Gi is embedded in a
way that all adjacent nodes are at a distance of at most 2. Moreover, if there is a
line subgraph of Gi then it is embedded as a line, i.e., the embedding preserves
edges. We present an algorithm that maintains this invariant by induction.

Fig. 8: Cycle enumeration with Band-
width 2

This invariant holds for G0. We assume
that the invariant holds for Gi´1 and a new
request σi arrives. If σi is already present
in EpGi´1q then the invariant holds, we do
not reconfigure, and pay at most 2.

If now Gi is a cycle we perform a total
reconfiguration with the enumeration with
bandwidth 2 described above. For that we
pay Opn2q that is less than Opn2 log nq,
and, thus, our complexity lies inside our
bounds. Note that once Gi becomes a cycle
we need no further reconfigurations since
all the edges are known and the invariant
is maintained.

The last case is when σi is a new edge
and Gi still consists of several connected components. We use the algorithm
presented in [2]. σi connects two different connected components, say L1 and
L2 forming a new list subgraph L. Suppose that |V pL1q| ď |V pL2q|. Our strat-
egy would be to “drag” L1 towards L2 that is if L1 “ tu1, . . . , ulu, V pL2q “

tv1, . . . , vku, σi “ pvk, u1q. By the invariant L2 is embedded with vp at q ` p for
some q and we want nodes of L1 to be embedded with up Ñ q`k´1`p. So, we
bring each node of L1 to its position performing required number of swaps. Note,
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that this reconfiguration brings the embedding that supports the invariant. Now,
we analyze the cost of the algorithm processing the requests.

Due to the invariant each request is served with a cost of at most 2. As for
the reconfiguration cost: a node can move a distance Θpnq during processing one
request and it moves no more than Oplog nq times: we either form a cycle or
merge two components. Thus, the total cost does not exceed Opn2 log nq.

B Full algorithm for the ladder

B.1 Static quasi-embedding

Tree embedding Assume, we are given a tree T that can be embedded into
Laddern. Furthermore, there are two marked nodes in the tree: one is marked
right and the left. It is known that there is a correct embedding of T with right
being the right-most node, meaning no node is embedded higher or to the same
level, and left being the left-most node.

We now describe how to obtain a quasi-correct embedding of T with right
being the right-most node and left being the left-most one and left mapped to
leftImage. Moreover, this embedding obeys the following invariant:

Invariant 2 (Septum invariant) For each inner simple-graph its foot and its
head are embedded to the same level and no other node is embedded to that level.

We embed the left ´ right path strictly vertically and then we orient line-
graphs connected to it in the way that they do not violate septum invariant.

See Algorithm 1.

Algorithm 1 Left-Right tree embedding

procedure RightLeftTreeEmbedding(T , left, right, leftImage)
P Ð path from left to right
leftSideÐ sidepleftImageq
leftLevelÐ levelxleftImagey
Embed P ris Ñ levelpleftLevel ´ 1` iqrleftSides
LÐ line-graphs connected to P
SeptaÐ tlevelxfootplqy | l P Lu Y tlevelxlefty, levelxrightyu
for l P L do

iÐ levelxfootplqy
Embed headplq Ñ levelpiqrotherpleftSideqs
Orient l ensuring no nodes of lztheadplqu are embedded to any of levels from

Septa

We now proceed with an embedding of a tree T where right, left and
leftImage might or might not be given. In the case the variable is not given we
denote its value with None.
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The idea here would be to first embed the trunk core and its inner line-
graphs using Left-Right tree embedding and then to embed exit-graphs strictly
vertically ”away” from the trunk core. That means that the hands of exit-graphs
that are connected to to the right of the trunk core are embedded increasingly
and hands of those exit-graphs which are connected to the left of the trunk core
are embedded decreasingly.

If a tree does not have a trunk core, that means that its structure is rather
simple (in particular it has no more than two nodes of degree three), so we do
not care about conflicts.

See Algorithm 2.

Algorithm 2 Tree quasi-correct embedding

procedure TreeQuasiCorrectEmbedding(T , left, right, leftImage)
if leftImage “ None then

leftImageÐ levelp1qr1s

if pleft ‰ Noneq ^ pright ‰ Noneq then
LeftRightTreeEmbedding(T , left, right, leftImage)
return

else if pleft ‰ Noneq ^ pright “ Noneq then
if T has a trunk core then

u, v Ð ends of a trunk core
if u between v and left then

trunkRightÐ v
else

trunkRightÐ u

etÐ exit-graphs connected to trunkRight
S1 Ð Szet
LeftRightTreeEmbedding(S1, left, trunkRight, leftImage)
for e P et do

lvlÐ levelxtrunkRighty
sideÐ sideptrunkRightq
Embed headpeq Ñ levelplvl ` 1qrsides
for h P handspeq do

for i P rlengthphqs do
Embed hrjs Ñ levelplvl ` 1` iqrsides

else
rightÐ arbitrary node of degree 1
LeftRightTreeEmbedding(T , left, right, leftImage)

else if pleft “ Noneq ^ pright ‰ Noneq then
if T has a trunk core then

u, v Ð ends of a trunk core
if u between v and right then

trunkLeftÐ v
else

trunkLeftÐ u
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ebÐ exit-graphs connected to trunkLeft
S1 Ð Szeb
leftImageLevelÐ levelxleftImagey
leftImageSideÐ sidepleftImageq
vShiftÐ max

ePeb
max

hPhandspeq
lengthphq

trunkLeftImageÐ levelpleftImageLevel`vShiftqrleftImageSides
LeftRightTreeEmbedding(S1, left, right, trunkLeftImage)
for e P eb do

lvlÐ levelxtrunkLefty
sideÐ sideptrunkLeftq
Embed headpeq Ñ levelplvl ´ 1qrsides
for h P handspeq do

for i P rlengthphqs do
Embed hrjs Ñ levelplvl ´ 1´ iqrsides

else
leftÐ arbitrary node of degree 1
LeftRightTreeEmbedding(T , left, right, leftImage)

else
if T has a trunk core then

trunkRight, trunkLeftÐ ends of a trunk core
etÐ exit-graphs connected to trunkRight
ebÐ exit-graphs connected to trunkLeft
S1 Ð Szetzeb
leftImageLevelÐ levelxleftImagey
leftImageSideÐ sidepleftImageq
vShiftÐ max

ePeb
max

hPhandspeq
lengthphq

trunkLeftImageÐ levelpleftImageLevel`vShiftqrleftImageSides
LeftRightTreeEmbedding(S1, left, right, trunkLeftImage)
for e P et do

lvlÐ levelxtrunkRighty
sideÐ sideptrunkRightq
Embed headpeq Ñ levelplvl ` 1qrsides
for h P handspeq do

for i P rlengthphqs do
Embed hrjs Ñ levelplvl ` 1` iqrsides

for e P eb do
lvlÐ levelxtrunkLefty
sideÐ sideptrunkLeftq
Embed headpeq Ñ levelplvl ´ 1qrsides
for h P handspeq do

for i P rlengthphqs do
Embed hrjs Ñ levelplvl ´ 1´ iqrsides

else
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right, leftÐ furthest nodes of degree 1
P Ð path from left to right
Embed P strictly monotone placing left to leftImage
if there is a line-graph left then

lÐ left line-graph
pu, vq Ð pu, vq P EpT q s.t. u P P, v P l
Embed v to the same level, opposite side to u.
Embed l to the opposite side to the side of P preserving connec-

tivity and correctness

Cycle embedding Given a cycle C of length ě 6 and nodes left, right P
V pCq we construct a correct embedding of C into Ladder8 with levelxlefty ď
levelxuy ď levelxrighty @u P V pCq and left placed to leftImage.

For convenience we assume that for every node v there is a local consecutive
numeration starting at v. The number of node u P V pCq in this numeration is
referenced with numbervpuq. The node with number i in local numeration of v
is referenced with Cvris.

We first check if it is possible to satisfy the given constraints of placing
the left node to left and a right node to the right. If it is indeed possible,
we place left to desired place and then choose an orientation (clockwise or
counterclockwise) following which we would embed the rest of the nodes, keeping
in mind that right must stay on the highest level. See Algorithm 3.

Algorithm 3 Left-Right cycle embedding

procedure LeftRightCycleEmbedding(C, left, right, leftImage)
hÐ lengthpCq

2

Ensure: numberleftprightq P th, h` 1, h` 2u
leftLevelÐ levelxleftImagey
leftSideÐ sidepleftImageq
if pnumberleftprightq “ hq _ pnumberleftprightq “ h` 1q then

for i P rhs do
Embed Cleftris Ñ levelpleftLevel ` i´ 1qrleftSides

for i P rhs do
Embed Cleftrh` is Ñ levelpleftLevel ` h´ iqrotherpleftSideqs

else
Embed leftÑ leftImage
for i P rhs do

Embed Cleftri` 1s Ñ levelpleftLevel ` i´ 1qrotherpleftSideqs

for i P rh´ 1s do
Embed Cleftrh` 1` is Ñ levelpleftLevel ` h´ iqrleftSides

Now, suppose that not all information, such as right, left, and LeftImage,
is provided. We will reduce this problem to the case when the missing variables
are known. Though the subtlety might occur due to the fact that there are inner
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edges in the cycle. In this case we choose missing left{right more precisely in
order to embed inner edge vertically. See Algorithm 4.

Algorithm 4 Cycle embedding

procedure CycleEmbedding(C, left, right, leftImage)
hÐ lengthpCq

2

if pleft ‰ Noneq ^ pright ‰ Noneq then
Ensure: numberleftprightq P th, h` 1, h` 2u

if leftImage “ None then
leftImageÐ levelp1qr1s

if pleft “ Noneq ^ pright “ Noneq then
leftÐ arbitrary node of C
if C has an inner edge then

Choose right out of tCleftrhs, Cleftrh` 2su to respect the inner edge
else

Choose right out of tCleftrhs, Cleftrh` 2su arbitrary

else if pleft ‰ Noneq ^ pright “ Noneq then
if C has an inner edge then

Choose right out of tCleftrhs, Cleftrh` 2su to respect the inner edge
else

Choose right out of tCleftrhs, Cleftrh` 2su arbitrary

else if pleft “ Noneq ^ pright ‰ Noneq then
if C has an inner edge then

Choose left out of tCleftrhs, Cleftrh` 2su to respect the inner edge
else

Choose left out of tCleftrhs, Cleftrh` 2su arbitrary

LeftRightCycleEmbedding(C, left, right, leftImage)

Component embedding Right now we explain on how to embed onto LadderN
a connectivity component S that can be embedded onto Laddern.

We start with an algorithm on how to make a cycle-tree decomposition chain
of S assuming no uncompleted frames. To obtain a cycle-tree decomposition
of a graph: 1) we find a maximal cycle; 2) we split the graph into two parts
by logically removing the cycle; 3) we proceed recursively on those parts, and,
finally, 4) we combine the results together maintaining the correct order of the
chain components. See the Algorithm 5.

Now, we describe how to obtain a quasi-correct embedding of S. We prepro-
cess S: 1) we remove one edge from cycles of size four; 2) we complete uncom-
pleted frames with vertical edges. After this preprocessing, we embed parts of S
from the cycle-tree decomposition chain one by one in the relevant order using
the corresponding algorithm (either for a cycle or for a tree embedding) making
sure parts are glued together correctly.
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Algorithm 5 Cycle-Tree decomposition chain

function CycleTreeDecompositionChain(S)
Ensure: S has no uncompleted frames

if S is empty then
return rs

else if S is a tree then
return rSs

else
C Ð arbitrary maximal cycle in S
S1, S2 Ð connectivity components of SzC
C1 Ð CycleTreeDecompositionChainpS1q

C2 Ð CycleTreeDecompositionChainpS2q

if C2 is empty then
return rCs ` C1

else
if Du P V pC2r0sq, v P V pCq, s.t. pu, vq P EpSq then

return C1 ` rSs ` C2

else
return C2 ` rSs ` C1

As before, we have additional variables left, right and leftImage which
might or might not be given.

Algorithm 6 Connectivity component quasi-correct embedding

procedure Preprocess(S)
C Ð maximal cycles of length 4 in S
for c P C do

remove arbitrary edge of c from S

F Ð cycle frames in S
for f P F do

complete F

procedure ComponentEmbeddingLeftFixed(S, left, right, leftImage)
if S is a tree then

TreeQuasiCorrectEmbedding(S, left, right, leftImage)
return

if S is a cycle then
CycleEmbedding(S, left, right, leftImage)
return

Preprocess(S)
C Ð CycleTreeDecompositionChainpSq
if left ‰ None then

Reverse C in the way that left P Cr1s

if right ‰ None then
Reverse C in the way that right P CrlengthpCqs

for i P rlengthpCqs do
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if i “ 1 then u, v Ð pu, vq P EpSq, s.t. pu P V pCr1sqq^pv P V pCri`1sq
if Cr1s is a tree then

cur Ð Cr1s Y pu, vq
TreeQuasiCorrectEmbedding(cur, left, v, leftImage)

else
CycleEmbedding(Cr1s, left, u, leftImage)

else if i “ lengthpCq then
u, v Ð pu, vq P EpSq, s.t. pu P V pCri´ 1sqq ^ pv P V pCrisq
leftLevelÐ levelxuy ` 1
leftSideÐ sidepuq
localLeftImageÐ levelpleftLevelqrleftSides
if Cris is a cycle then

CycleEmbedding(Cris, v, right, localLeftImage)
else

TreeQuasiCorrectEmbedding(Cris, v, right, localLeftImage)

else
u1, v1 Ð pu, vq P EpSq, s.t. pu P V pCri´ 1sqq ^ pv P V pCrisq
leftLevelÐ levelxu1y ` 1
leftSideÐ sidepu1q
localLeftImageÐ levelpleftLevelqrleftSides
u2, v2 Ð pu, vq P EpSq, s.t. pu P V pCrisqq ^ pv P V pCri` 1sq
if Cris is a cycle then

CycleEmbedding(Cris, v1, u2, localLeftImage)
else

cur Ð Cris Y pu2, v2q
TreeQuasiCorrcetEmbedding(Cris, v1, v2, localLeftImage)

We finally notice that having a procedure to embed a component with a fixed
leftImage it is easy to obtain a procedure which embeds with rightImage fixed.
We simply apply the ”left” procedure and then flip the result.

Algorithm 7 Component embedding right fixed

procedure ComponentEmbeddingRightFixed(S, left, right, rightImage)
ComponentEmbeddingLeftFixed(S, right, left, rightImage)
Flip the image of S over horizontal axis maintaining the position of right

B.2 Dynamic algorithm

We describe how one should change the embedding of the graph after the pro-
cessing of a request in an online scenario. At each moment we have some edges
of a Laddern already revealed forming connectivity components. After an edge
reveal we should reconfigure the target line graph. For that, instead of line re-
configuration we reconfigure our embedding to LadderN that is then embedded
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to the line line by line and introduce some constant factor. So, we can consider
the reconfiguration only of LadderN and forget about the target line graph at
all. When doing the reconfiguration of an embedding we want to maintain the
following invariants:

1. The embedding of any connectivity component is quasi-correct.
2. For each tree in the cycle-tree decomposition its embedding respects Septum

invariant 1.
3. There are no maximal cycles of length 4.
4. Each cycle frame is completed with all “vertical” edges even if they are not

yet revealed.
5. There are no conflicts with cycle nodes, i.e., two nodes of a cycle do not map

to same node of LadderN .

For each newly revealed edge there are two cases: either it connects two nodes
from one connectivity component or not. We are going to discuss both of them.

Edge in one component If the new edge is already known or it forms a
maximal cycle of length four, we simply ignore it. Otherwise, it forms a cycle of
length at least six, since two connected nodes are already in one component.

We then perform the following steps:

1. Get the completed frame of a (possibly) new cycle.
2. Logically “extract” it from the component and embed maintaining the ori-

entation (not twisting the core that was already embedded in some way).
3. Attach two components appeared after an extraction back into the graph,

maintaining their relative order.

Algorithm 8 Process Edge In One Component

procedure ProcessEdgeOneComponent(S, pu, vq)
if Edge pu, vq already exists then

return
if Edge pu, vq forms a maximal cycle of length 4 then

return
C Ð maximal cycle containing u, v
F Ð completed frame of C
S1, S2 Ð connectivity components of SzF
u1, v1 Ð u, v : u P V pF q, v P V pS1q, pu, vq P EpSq
u2, v2 Ð u, v : u P V pF q, v P V pS2q, pu, vq P EpSq
if levelxu1y ą levelxu2y then

SwappS1, S2q, Swappu1, u2q, Swappv1, v2q

CycleEmbedding(F , u1, u2, None)
ComponentEmbeddingTopFixed(S1, None, u1, imagepu1q)
ComponentEmbeddingBotFixed(S2, u2, None, imagepu2q)
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Edge between two components In order to obtain an amortization in the
cost, we always “move” the smaller component to the bigger one. Thus, the main
question here is how to glue a component to the existing embedding of another
component.

The idea is to consider several cases of where the smaller component will be
connected to the bigger one. There are three possibilities:

1. It connects to a cycle node. In this case there are again two possibilities.
Either it “points away” from the bigger component meaning that the cycle
to which we connect is the one of the ends in the cycle-tree decomposition
of the bigger component. Here, we just simply embed it to the end of the
cycle-tree decomposition while possibly rotating a cycle at the end.

Or, the smaller component should be placed somewhere between two cycles
in the cycle-tree decomposition. Here, it can be shown that this small graph
should be a line-graph, and we can simply add it as a whisker, forming a
larger frame.

2. It connects to a trunk core node of a tree in the cycle-tree decomposition. It
can be shown that in this case the smaller component again must be a line-
graph. Thus, our only goal is to orient it and possibly two of its inner simple-
graphs neighbours to maintain the Septum invariant 1 for the corresponding
tree from the decomposition.

3. It connects to an exit graph node of an end tree of the cycle-tree decomposi-
tion. In this case, we straightforwardly apply a static embedding algorithm
of this tree and the smaller component from scratch. Please, note that only
the exit graphs of the end tree will be moved since the trunk core and its
inner graphs will remain.
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Algorithm 9 Process edge between two components

procedure AddInnerWhisker(S, C, W , pu, vq)
S Ð S YW Y pu, vq
F Ð completed frame of C
S1, S2 Ð connectivity components of SzF
if S1 is embedded above S2 then

SwappS1, S2q

s1, t1 Ð s, t : s P V pF q, t P V pS1q, ps, tq P EpSq
s2, t2 Ð s, t : s P V pF q, t P V pS2q, ps, tq P EpSq
CycleEmbedding(F , s1, s2, None)
ComponentEmbeddingTopFixed(S1 Y ps1, t1q, None, s1, imageps1q)
ComponentEmbeddingBotFixed(S2 Y ps2, t2q, s2, None, imageps2q)

procedure ProcessEdgeTwoComponents(S1, S2, pu, vq)
Ensure: u P V pS1q, v P V pS2q

if V pS1q ă V pS2q then
SwappS1, S2q, Swappu, vq

DC1 Ð CycleTreeDecompositionpS1q

Reverse DC1 in a way DCris is embeded under DCri` 1s @i
A, iÐ DC1ris, i : u P V pDC1risq
if A is a cycle then

if lengthpDC1q “ 1 then
if A has an inner edge then

if u is a top node then
botÐ arbitrary bottom node of A
ComponentEmbeddingBotFixed(S1 Y S2 Y pu, vq, bot, None,

None)
else

topÐ arbitrary top node of A
ComponentEmbeddingTopFixed(S1YS2Ypu, vq, None, top,

None)

else
ComponentEmbeddingBotFixed(S1 Y S2 Y pu, vq, None, None,

None)

else if i “ 1 then
p, q Ð p, q : p P V pDC1risq, q P V pDC1ri` 1sq, pp, qq P EpS1q

if pu, pq P EpS1q then AddInnerWhisker(S1, A, S2, pu, vq)
else

if u is not a bottom node of A then
Flip A over diagonal containing p

ComponnetEmbeddingTopFixed(S2, None, u, imagepuq)

else if i “ lengthpDC1q then
p, q Ð p, q : p P V pDC1risq, q P V pDC1ri´ 1sq, pp, qq P EpS1q

if pu, pq P EpS1q then AddInnerWhisker(S1, A, S2, pu, vq)
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else
if u is not a top node of A then

Flip A over diagonal containing p

ComponnetEmbeddingBotFixed(S2, u, None, imagepuq)

elseAddInnerWhisker(S1, A, S2, pu, vq)

if A is a tree then
if u P extended trunk core of A then

Embed v Ñ oppositepuq
l1, l2 Ð u neighbouring inner simple-graphs
Orient S2, l1, l2 to maintain Septum invariant in A

else if u P inner simple-graph then
S1 Ð S1 Y S2 Y pu, vq
lÐ inner simple graph containing u
Orient l to maintain Septum invariant in A

else if u P exit-graph then
if i “ 1 then

if lengthpDC1q “ 1 then
pÐ arbitrary highest node of S1

q Ð additional temporary node
else

p, q Ð p, q : p P V pDC1risq, q P V pDC1ri`1sq, pp, qq P EpS1q

ComponentEmbeddingTopFixed(AYS2Ypp, qq, None, q, imagepqq)
else if i “ lengthpDC1q then

p, q Ð p, q : p P V pDC1risq, q P V pDC1ri´ 1sq, pp, qq P EpS1q

ComponentEmbeddingBotFixed(AYS2Ypp, qq, q, None, imagepqq)

C Proofs and Analysis

C.1 Strategy

At the very beginning there are no requests and we don’t know any request-
edges. Requests come one at a time, possibly, revealing new edges. Known edges
form connectivity components which are all subgraphs of the request graph.
Our strategy would be to maintain such enumeration σ of vertices that for each
connectivity component S

max
pu,vqPEpSq

|σpuq ´ σpvq| ď 12 (1)

We call this property of an enumeration the proximity property.

So, if we receive the request which was already known, we do nothing since the
property persists. But if the new edge comes, we might perform a re-enumeration
σ on the vertices to maintain the property.
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C.2 Bandwidth of subgraphs

Definition 17. Consider two connected graphs S and G. The correct embedding
of S into G is a mapping ϕ : V pSq Ñ V pGq such that:

– ϕ is injective
– pu, vq P EpSq Ñ pϕpuq, ϕpvqq P EpGq

If ϕ is not injective, i.e. there are nodes u, v, s.t. ϕpuq “ ϕpvq, we say that
there is a conflict between u and v.

Lemma 2. For each subgraph S of a graph G, BandwidthpSq ď BandwidthpGq.

Proof. Let ϕ be a correct embedding of S into G. And let σ be the enumeration
on G with which the bandwidthpGq is achieved.

Let U be the finite set of unique natural numbers. For v P U we define
ordU pvq “ |tu | u P U, u ď vu|.

We now define the enumeration σS of S as follows:

U “ tσpϕpvqq | v P Su

σSpvq “ ordU pσpϕpvqqq

We state that max
pu,vqPEpSq

|σSpuq ´ σSpvq| ď bandwidthpGq. This follows from

two facts:

– For every pu, vq P EpSq

|σpϕpuqq ´ σpϕpvqq| ď bandwidthpGq

since pϕpuq, ϕpvqq P EpGq
– If U is a set of unique natural numbers than for every u, v P U

|ordU puq ´ ordU pvq| ď |u´ v|

Then, for each edge pu, vq P EpSq we get the following inequalities:

|σSpuq ´ σSpvq| “ |ordU pσpϕpuqqq ´ ordU pσpϕpvqqq|

ď |σpϕpuqq ´ σpϕpvqq| ď bandwidthpGq

We know that all the graphs that appear during the requests processing
(revealing the edges) are subgraphs of Laddern. Thus, by Lemma 2 we conclude
that their bandwidth ď 2. And we can use the embedding function from this
Lemma to enumerate each subgraph S of Laddern with σS .

Remark 1. We do not need to worry about the top and bottom bounds of
Laddern when performing an embedding. In fact, we can perform an embedding
of S into the Ladder8 and, since S is connected and the embedding preserves
connectivity, the whole image of S will be within some Ladderm (for m ě n)
which is enough to obtain a requested bandwidth ď 2.
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C.3 Connectivity component structure

Requests come with time possibly revealing new edges of a request graph and
forming connectivity components which are subgraphs of the request graph.

One connectivity component can be decomposed into cycles and trees. Let
us now provide some statements about tree and cycle embedding.

Tree embedding

Definition 6. Consider some correct embedding ϕ of a tree T into Laddern.
Let r “ arg max

vPV pT q
levelxϕpvqy be the “rightmost” node of the embedding and

l “ arg min
vPV pT q

levelxϕpvqy be the “leftmost” node of the embedding. The trunk of

T is a path in T connecting l and r. The trunk of a tree T for the embedding ϕ
is denoted with trunkϕpT q.

Definition 7. Let T be a tree and ϕ be its correct embedding into Laddern.
The level i of Laddern is called occupied if there is a vertex v P V pT q : ϕpvq P
levelLaddernpiq.

Statement 1 For every occupied level i there is v P trunkϕpT q such that v P
levelpiq.

Proof. By the definition of the trunk, an image goes from the minimal occupied
level to the maximal. It cannot skip a level since the trunk is connected and the
correct embedding preserves connectivity.

The trunk of a tree in an embedding is an useful concept to define since the
following holds for it.

Lemma 4. Let T be a tree correctly embedded into Laddern by some embedding
ϕ. Then, all the connected components in T ztrunkϕpT q are line-graphs.

Proof. Suppose that it is not true and then there should exist a subgraph S of
T such that V pSq X V ptrunkϕpT qq “ H and S contains a node of degree three.
Since there is a node of degree three in S we can state that there are two nodes
of S, say u and v with the same level (levelxϕpvqy “ levelxϕpuqy). But the image
of the tree trunk passes through all occupied levels of the grid by Statement 1.
Hence, either u or v P trunkϕpT q which contradicts the assumption.

The bad thing about the trunk is that it depends on the embedding. And
there can be several correct embeddings of the same tree giving different trunks.
So, we introduce the concept of a trunk core which alleviates this issue. But at
first, we prove some technical statements.

Statement 2 For the tree T , disregarding the correct embedding ϕ, the trunkϕpT q
must pass through a node of degree three if it has no neighbours of degree three.
If there are two adjacent nodes with degree three, the trunk must pass through at
least one of them.
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Proof. First, consider the case of a node with no neighbours of degree three.
Let’s call it a. To prove by contradiction we assume that the trunk does not pass
through a. Let’s call a-s neighbours b, c and d. W.l.o.g assume that

ϕpaq “ levelpiqr1s (2)

ϕpbq “ levelpi´ 1qr1s (3)

ϕpcq “ levelpiqr2s (4)

ϕpdq “ levelpi` 1qr1s (5)

Since the trunk does not pass through a and by Statement 1 it passes through
the level i it should pass through c. If c has degree one, the trunk contains
one node from level i, and does not contain any node from i ` 1, thus, this
trunk cannot contain the topmost node. If c has degree two, we say that its
second neighbour is mapped to levelpi ´ 1qr2s. The case when it is mapped to
levelpi`1qr2s is symmetric. But then trunk does not pass through the i`1 level
which contradicts the Statement 1.

Now, coming to the case with two adjacent nodes of degree three, we have
two adjacent nodes a and b of degree three. And let c, d be the rest neighbours of
a and e, f be the rest neighbours of b. If a and b are embedded to the same level,
then by Statement 1 the trunk passes through at least one of them. Suppose
now that a and b are on different levels, say

ϕpaq “ levelpiqr1s (6)

ϕpbq “ levelpi` 1qr1s (7)

ϕpcq “ levelpiqr2s (8)

ϕpdq “ levelpi´ 1qr2s (9)

ϕpeq “ levelpi` 1qr2s (10)

ϕpfq “ levelpi` 2qr1s (11)

Since the edge pa, bq is a bridge between two connected components of a
tree and the trunk contains nodes form both components the trunk should pass
through the edge pa, bq, so it passes through both a and b.

Lemma 5. For the tree T for each node v of degree three (except for maximum
two of them) we can verify in polynomial time if for any correct embedding ϕ
trunkϕpT q passes through v or not.

Proof. We call a pair of adjacent nodes of degree three “paired” nodes. We call
a node of degree three with no neighbours of degree three “single”.

If the tree contains not more than two nodes of degree three, the statement
is trivial. So, we suppose that there exist at least three nodes of degree three.

The trunk passes through the single nodes by Statement 2. Thus we are
interested in paired nodes. Consider such pair. Let’s call its nodes a and b. By
the Statement 2 we know that either a or b is in the trunk.

By the assumption there exist either another single node or other paired
nodes. If there is a single node, let’s call it c, we know that it is in the trunk. c
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is reachable from a and b and since we have tree either a is on path from b to c
or b is on path from a to c. W.l.o.g. assume b is on a path from a to c. But this
implies that b is in the trunk, because if not, a is, and, thus, there are two paths
from a to c — the trunk and the one containing b. Thus, we have a cycle, which
is impossible since we have a tree.

If there are no single nodes, there are paired nodes. We denote them with u
and v. u and v are reachable from a, thus, w.l.o.g. we can assume that u is on
the path from a to v. If now b is on the path from a to u, we have the following:
a Ñ b ù u Ñ v. By Statement 2 we know that the trunk must pass through
either u or v. Denote the one the trunk passes through with c. We can reduce
this case to the previous one, if we take any c “ u or c “ v. Applying the same
reasoning we deduce that b must be in the trunk.

Support nodes are the nodes of two types: either it is a single node, or it is
a node that is located on the path between two other nodes with degree three.
This Lemma shows that the support nodes appear in the trunk of every correct
embedding.

We make a path P through support nodes. For any inner node of this path
which is paired there is no chance for its pair to be in a trunk if it is not in P
already, because the trunk is a path. So, the only uncertainty remains about at
most one node in the pairs of end nodes.

Definition 18. Path P constructed in Lemma 5 is called trunk core. We de-
note this path for a tree T as trunkCorepT q. Note that it can be embedded into
Laddern.

Definition 19. The embedding ϕ of a line-graph l on the grid is called monotone
if the nodes ϕplrisq and ϕplrjsq are on the same level of the grid only when they
are adjacent on T .

Lemma 9. If a line graph is embedded preserving edges into Laddern with no
self-intersections non-monotonically then one of the end-points shares a level
with a node of a path it is not adjacent with.

Proof. Denote a line graph l. Let’s say i is the smallest index such that lris shares
level with some other non-adjacent node lrjs, |i ´ j| ą 1. W.l.o.g. let’s assume
that lris is embedded to levelpkqr1s. Since i was chosen the smallest j ą i. Let us
assume that lri´1s is embedded to levelpk´1qr1s. Then, since lrjs is embedded
to levelpkqr2s, lri`1s is embedded into levelpk`1qr1s. We also state that lrj´1s
is embedded to levelpk ` 1qr2s, since if it is embedded into levelpk ´ 1qr2s, the
path should go from lri` 1s to lrj´ 1s (note that i` 1 ă j´ 1) without passing
through level k which is impossible. So we have the following embeddings:

lris Ñ levelpkqr1s (12)

lri´ 1s Ñ levelpk ´ 1qr1s (13)

lrjs Ñ levelpkqr2s (14)

lrj ` 1s Ñ levelpk ´ 1qr2s (15)
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It is easy to see that lrj ` 2s has no other options but to be embedded to
levelpk ´ 2qr2s. But then lri´ 3s should be embedded to levelpk ´ 3qr1s and so
on lrj ` ts Ñ levelpk ´ tqr2s and lri ´ ts Ñ levelpk ´ tqr2s in general. We now
take t “ minpi´ 1, lengthppq´ jq so either lri´ ts or lrj` ts is an end nodes and
they both exist. They share level, so the lemma is proved.

Lemma 10. The trunk core of a tree T is always embedded in the monotone
manner.

Proof. Trunk core connects nodes of degree three which cannot be embedded
with any other nodes of the trunk to the same level since then either a cycle
appears or we obtain a conflict. Thus, by the Lemma 9 trunk core must be
embedded monotonically.

From now on we assume that every mentioned tree can be embedded into
the Laddern.

Definition 20. Let T be a tree. All the connectivity components in T z trunkCorepT q
are called simple-graphs of tree T .

Lemma 6. Simple-graphs of a tree T are line-graphs.

Proof. Note that all the nodes of degree three in T are either in the trunk core
or they are adjacent to the trunk core. Hence after removing the nodes of the
trunk core no nodes of degree three are left and, thus, all the graphs left are
line-graphs.

Definition 9. The edge between a simple-graph and the trunk core is called a
leg.

The end of a leg in the simple-graph is called a head of the simple-graph.
The end of a leg in the trunk core is called a foot of the simple-graph.
If you remove the head of a simple-graph and it falls apart into two connected

components, such simple-graph is called two-handed and those parts are called
its hands. Otherwise, the graph is called one-handed, and the sole remaining
component is called a hand. If there are no nodes in the simple-graph but just a
head it is called zero-handed.

Definition 10. A simple-graph connected to the end nodes of the trunk core is
called exit-graph.

Definition 10. A simple-graphs connected to the inner nodes of the trunk core
is called inner-graph.

Please note that the next definition is about a much larger ladder LadderN
rather than Laddern. N should be approximately equal to 2 ¨ n.
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Definition 11. An embedding ϕ : V pGq Ñ V pLadderN q of a graph G into
LadderN is called quasi-correct if:

– pu, vq P EpGq ñ pϕpuq, ϕpvqq P EpLadderN q, i.e., images of adjacent vertices
in G are adjacent in the grid.

– There are no more than three nodes mapped into each level of LadderN ,
i.e., the two grid nodes on each level are the images of no more than three
nodes.

We might think of a quasi-correct embedding as an embedding into levels of
the grid with no more than three nodes embedded to the same level. We then
can compose this embedding with an embedding of a grid into the line which
is the enumeration level by level. More formally if a node u is embedded to the
level i and a node v is embedded to the level j and i ă j then the resulting
number of u on the line is smaller then the number of v, but if two nodes are
embedded to the same level, we give no guarantee.

Lemma 7. For any graph mapped into the ladder graph by the quasi-correct
embedding as described above can be mapped onto the line level by level with the
property that any pair of adjacent nodes are embedded at the distance of at most
five.

Proof. Since two adjacent vertices are embedded to the levels with a number
difference of at most 1, we can state that there are no more than 4 nodes between
them in the line, since there are no more than 3 nodes per level.

Tree embedding strategy We start with the discussion on how to embed a
tree with |V ptrunkCorepT qq| ď 1. Such tree can have ď 3 nodes of degree three,
since, otherwise, there are at least four nodes of degree three and the trunk core
has at least two nodes:

– ě 2 single nodes. In this case, they are both in the trunk core.
– at least one single node and at least one paired nodes. In this case, one node

from a pair and a single node are in the trunk core.
– at least two disjoint paired nodes. In this case, for each pair we know for

certain the member who is in the trunk, thus we again have at least two
nodes in the trunk core.

Further, we analyse the cases depending on the number of nodes of degree
three. We need the following technical Lemma.

Lemma 10. If there is a tree with three nodes of degree three a, b, and c and
there are edges pa, bq and pb, cq, then the third neighbour of b is of degree one and
for any correct embedding a, b, and c are embedded to the different levels.

Proof. Consider a correct embedding ϕ. Say ϕpbq “ levelpiqr1s. If now ϕpaq “
levelpiqr2s, both levelpi ` 1qr2s and levelpi ´ 1qr2s are occupied by neighbours
of a, so no matter where we embed c, say to levelpi` 1qr1s there would be only
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one spare slot, levelpi ` 2qr1s in this case, for two neighbours of c. Recall that
we have a tree so a and c can’t share more then one neighbour.

So the only possible embedding up to the symmetry is
$

’

&

’

%

ϕpbq “ levelpiqr1s

ϕpaq “ levelpi´ 1qr1s

ϕpcq “ levelpi` 1qr1s

(16)

In this case levelpi˘1qr2s are occupied by neighbours of a and c, so the third
neighbour of b cannot have any neighbours except for b since there is no place
for them.

Now, we consider the possible cases for the amount of nodes with degree
three.

– There are no nodes of degree three. In this case our tree is just a line-graph
l and we embed it the following way:

ϕ : V plq Ñ Laddern (17)

ϕplrisq “ levelpiqr1s (18)

Remember that right now we allow to choose any n, arbitrary large.
– There is one node of degree three. We can think of it as two line graphs l1

and l2 with additional edge pl1ris, l2r1sq for some i. We embed the tree in the
following way:

ϕ : V pl1q Y V pl2q Ñ Laddern (19)

ϕpl1rjsq “ levelpjqr1s (20)

ϕpl2rjsq “ levelpi` j ´ 1qr2s (21)

– There are two nodes of degree three. Since |V ptrunkCorepT q| ď 1, we con-
clude that those two nodes are paired, since otherwise they would be single
nodes and therefore be in the trunk core by Lemma 5. So, in this case we
can present T as two line-graphs l1 and l2 with additional edge pl1ris, l2rjsq
for some i and j. We embed T in the following way:

ϕ : V pl1q Y V pl2q Ñ Laddern (22)

ϕpl1rksq “ levelpkqr1s (23)

ϕpl2rksq “ levelpi` k ´ jqr2s (24)

– There are three nodes of degree three. Since |V ptrunkCorepT q| ď 1, we
conclude that there is no single node, otherwise, it is in the trunk core and
one of the other two is also in the trunk core, contradicting the assumption.
So, with our three nodes of degree three, say a, b and c we must have edges
pa, bq and pb, cq. By the Lemma 10 none of a, b, c can be embedded into the
same level, and the third neighbour of b is of degree one. Denote the line-
graphs connected to a with l1a and l2a (they are line-graphs since we have
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only three nodes of degree three) and the line-graphs connected to c with l1c
and l2c . Denote the third neighbour of b with d. We embed as follows:

ϕpbq “ levelp2qr1s (25)

ϕpdq “ levelp2qr2s (26)

ϕpaq “ levelp1qr1s (27)

ϕpcq “ levelp3qr1s (28)

ϕpl1arisq “ levelp1´ iqr1s (29)

ϕpl2arisq “ levelp2´ iqr2s (30)

ϕpl1c risq “ levelp3` iqr1s (31)

ϕpl2c risq “ levelp2` iqr2s (32)

– There are no other cases, since we showed that if there are four nodes with
degree three then the size of the trunk core should be bigger than one.

Now, we discuss how to embed a more generic tree with |V ptrunkCorepT qq| ě
2 into the grid. We call our embedding as ϕ̃.

1. ϕ̃ptrunkCorepT qrisq “ levelpiqr1s

2. Suppose l is a simple-graph connected to the inner node with number i of
the trunk core by its j-th node, so the leg of l is ptrunkCoreris, lrjsq. We
embed lrjs to the opposite of trunkCoreris, i.e. ϕ̃plrjsq “ levelpiqr2s.

We also want to reserve nodes levelp|V ptrunkCorepT qq|qr2s and levelp1qr2s
for exit-graphs, so we say we embed phantom nodes there for algorithm not
to use them on Step 3.

3. We now want to embed hands of simple-graphs connected to the inner trunk
core nodes. Suppose we have such simple graph l and we’ve embedded its
head to levelpiqr2s on Step 2.

If l is zero-handed, it is already embedded on Step 2.

If l is two-handed, denote its hands with h1 and h2 and choose the one of
embeddings from

»

—

—

—

—

–

#

ϕ̃ph1rjsq “ levelpi` jqr2s

ϕ̃ph2rjsq “ levelpi´ jqr2s
#

ϕ̃ph1rjsq “ levelpi´ jqr2s

ϕ̃ph2rjsq “ levelpi` jqr2s

(33)

which does not map nodes from V ph1q Y V ph2q to the place nodes were
mapped to on step 2.

If l is one-handed, denote its hand with h and consider two cases:
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trunkCorepT qri` 1s is an inner node and it is a foot of another
one-handed or zero-handed simple-graph l2
with hand (possibly empty) h2

mphrjsq “ levelpi´ jqr2s maps some nodes of h to the place
where nodes were placed on step 2

(34)

(35)

In this case we define ϕ̃ for l and l2 at a time the following way:
#

ϕ̃phrjsq “ levelpi` jqr2s

ϕ̃ph2rjsq “ levelpi` 1´ jqr2s
(36)

– The symmetric case is when
$
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trunkCorepT qri´ 1s is an inner node and it is a foot of another
one-handed or zero-handed simple-graph l2
with hand (possibly empty) h2

mphrjsq “ levelpi` jqr2s maps some nodes of h to the place
where nodes were placed on step 2

(37)

(38)

In this case we define ϕ̃ for l and l2 at a time the following way:
#

ϕ̃phrjsq “ levelpi´ jqr2s

ϕ̃ph2rjsq “ levelpi´ 1` jqr2s
(39)

– If the previous two cases don’t come true we act pretty much the similar
as we did for two-handed simple-graph, namely denote hand of l with h
and choose one of the following definitions of ϕ̃ which doesn’t map nodes
of h to the places already used on step 2:

„

ϕ̃phrjsq “ levelpi` jqr2s
ϕ̃phrjsq “ levelpi´ jqr2s

(40)

4. The last case is to consider an exit-graph.
Denote the end-node of the trunk core, to which the exit-graph is connected
by i. i is either |V ptrunkCorepT qq| or 1.

– If i “ |V ptrunkCorepT qq|. There are two line-graphs connected to i, say
l1 and l2. Note that they can’t both be two-handed, since that means we
have three nodes of degree three in a row, the middle one is the end node
of the trunk core, but then the middle one by Lemma 10 must have the
third neighbour of degree one which is not the case since it is a trunk
core node and trunk core nodes are all of degree ě 2.
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So let’s assume that l1 is one-handed. We embed it with

ϕ̃pl1rjsq “ levelpi` jqr1s (41)

If l2 is one-handed we embed it with

ϕ̃pl2rjsq “ levelpi` j ´ 1qr2s (42)

If l2 instead has two hands h1 and h2 and it connects to i with the node
l2rjs. Then we define

ϕ̃pl2rjsq “ levelpiqr2s (43)

ϕ̃ph1rksq “ levelpi` kqr2s (44)

ϕ̃ph2rksq “ levelpi` kqr2s (45)

– If i “ 1 we do everything symmetrically. Remember we don’t care if
we go out Laddern top or bottom borders, if it happens, we can just
enlarge our grid to Ladderm for some large enough m to accommodate
the image.

Definition 21. The definition of ϕ on the hand(s) of the simple-graph connected
to the inner trunk core node is called the orientation of that simple-graph.

Definition 22. We say that two inner simple-graphs are neighbours if there are
no other simple-graphs connected to the trunk core in between their foots.

Lemma 11. The resulting embedding of this strategy exists and it is quasi-
correct.

Before diving into prove let us discuss what does the Lemma give to us. There
are three key points about the described quasi-correct embedding.

First of all, we should emphasise that such embedding can be efficiently
computed.

Not only that, but it also can be recomputed easily while remaining quasi-
correctness when the new vertices come, which is relevant to the online scenario.

And last but not least, recall that each two adjacent nodes are embedded at
the distance at most five (see Lemma 7) so we are not worried about serving the
same request many times.

Proof. The lemma is obvious for the trees with |V ptrunkCorepT qq| ď 1, since
we can do a correct embedding.

Denote the resulting embedding with ϕ̃. We know that a correct embedding
exists, denote it ϕ.

– The described embedding of the trunk core meets no constraints, so it always
exists.
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– Let top :“ |V ptrunkCorepT qq|.
The described embedding of the exit-graphs does not have any constraints, so
it exists. Let us now focus on the exit-graphs connected to trunkCorepT qrtops.
For each node u of those exit-graphs it is true that ϕ̃puq is on the levelptopq
or higher. There are no more than three nodes of exit-graphs per level.
Simple-graphs connected to the inner trunk core nodes are not allowed to
pass through levelptopq, so since they are connected, no nodes from simple
graphs are embedded into levels ě top. There are no nodes of the trunk core
higher than top and on levelptopq there are only one node from our exit-
graphs. The exit graphs connected to the trunkCorepT qr1s are all embed-
ded to the levels ď 1, so they can’t interfere with the exit-graphs connected
to the trunkCorepT qrtops. Thus we conclude that nodes of exit-graphs con-
nected to the trunkCorepT qrtops do not violate quasi-correctness since there
are no more than three nodes on their levels. The same for the exit-graphs
connected to the trunkCorepT qr1s.

– Now to the two-handed inner simple-graphs. The leg of each such simple-
graph for any correct embedding must be embedded horizontally, i.e. ϕpfootq
and ϕpheadq must be on the same level. This is since we know that the trunk
core image is monotone by Lemma 10 and it can’t be if ϕpfootq and ϕpheadq
are on the different levels:
Say ϕpfootq “ levelpiqr1s and ϕpheadq “ levelpi`1qr1s. Then levelpi`1qr2s
and levelpi ` 2qr1s are occupied by head neighbours since it is of degree
three. The foot is also of degree three because it is an inner trunk core node
with a simple-graph connected to it. Thus levelpi´ 1qr1s and levelpiqr2s are
occupied with its neighbours, trunk core nodes. But the node mapped to
levelpiqr2s can’t be the end node of the trunk core since then it is of degree
three and the node mapped to levelpi`1qr2s is its neighbour thus we obtain a
cycle ϕ´1ptlevelpiqr1s, levelpi`1qr1s, levelpi`1qr2s, levelpiqr2suq. So there is
another trunk core node after it and it is inevitably mapped to levelpi´1qr2s
violating monotone property of the trunk core embedding.
Now denote the hands of our two-handed graph with h1 and h2 and let’s say
that ϕpfootq “ levelpiqr1s, ϕpheadq “ levelpiqr2s and ϕph1r1sq “ levelpi `
1qr2s. Then ϕph1r2sq must be levelpi` 2qr2s since levelpi` 1qr1s is occupied
by the foot trunk core neighbour next (remember foot is inner). If now
next is of degree three we obtain a conflict or a cycle, since next1s neighbour
occupies levelpi ` 2qr2s. If not, next is an inner trunk core node and we
continue with the levelpi`3qr2s for the h1r3s and levelpi`3qr1s for the next
trunk core node of next. So we do until we ran out of h1 nodes. We now say
that there are no nodes of degree three in

ttrunkCorepT qri` js | j P r|V ph1q|su (46)

since if there is j such that trunkCorepT qri` js is of degree three, we obtain
a conflict between the third neighbour of trunkCorepT qri ` js and h1rjs.
That means that ϕ̃ph1rjsq “ levelpi ` jq will not place a node to the slot
already occupied on step 2 of the strategy. The same for h2. We call this line
of reasoning the inductive argument.
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So we proved that for each two-handed simple-graph connected to the inner
node of a trunk core one of its orientations will not face conflicts with a
neighbours of a trunk core nodes of degree three. Or in other words two-
handed inner graphs can’t violate the existence of the described embedding.

– We’ve shown that the quasi-correctness can’t be violated on the levels ě top
and ď 1. So now we need to proof that it is not violated in between.
To violate the quasi-correctness we need to obtain at least four nodes per
level. Since on each level between top and 1 there is a node from the trunk
core and there are no nodes from exit-graphs we conclude that there must
be at least three nodes of an inner-simple graphs. And note also that they
must be from the different simple-graphs since we don’t embed more than
one node from one inner simple-graph per level. Denote those simple-graphs
with a, b, c. Their foots are somehow ordered in the trunk core, say footpbq
is between footpaq and footpcq. Since simple-graphs hands conflict at some
node, we conclude that either hand of a crosses the headpbq or a hand of c
crosses the headpbq, otherwise a and c just don’t share nodes. W.l.o.g. hand
of a crosses headpbq. But this is only possible when b and a are one-handed
graphs with adjacent foots and in this case their hands are oriented contrary
and they only have two conflicts: handpaqr1s is embedded to the same node
as headpbq and handpbqr1s is embedded to the same node as headpaq. So
c can possibly participate in that conflict only if c is a one-handed graph
with a foot adjacent to footpbq. That is because by our strategy two-handed
simple-graphs do not cross other simple-graphs heads at all and the one-
handed do only if their foots are adjacent. Our goal now is to show that in
such setting c can be oriented the other direction to avoid conflict with b.
Note that we have three nodes of degree three and edges
pfootpaq, footpbqq, pfootpbq, footpcqq. This is exactly the statement of Lemma
10, so we conclude that we have the following structure up to symmetry:

ϕpfootpbqq “ levelpiqr1s (47)

ϕpfootpaqq “ levelpi´ 1qr1s (48)

ϕpfootpcqq “ levelpi` 1qr1s (49)

ϕpheadpbqq “ levelpiqr2s (50)

(51)

and we know that b in fact consists of one node.
We still have two possibilities for headpcq, namely levelpi`1qr2s or levelpi`
2qr1s.
If ϕpheadpcqq “ levelpi ` 1qr2s, then ϕpcr2sq “ levelpi ` 2qr2s and by the
inductive argument applied to the handpcq there are no nodes of degree
three in

ttrunkCorepT qri` 1` js | j P r|V phandpcqq|su (52)

so

ϕ̃phandpcqrjsq “ levelpi` 1` jqr2s (53)
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won’t place nodes of c to the slots already occupied on step 2 of the strategy.
If on the other hand ϕpheadpcqq “ levelpi` 2qr1s then
ϕptrunkCorepi`2qq must be levelpi`1qr2s. Thus trunkCorepi`2q can’t be
the end of the trunk core since then it is of degree three but levelpiqr2s is occu-
pied by headpbq. So we say that trunkCorepi`3q exists and ϕptrunkCorepi`
3qq “ levelpi ` 2qr2s and it is also not the end node since it can’t be of de-
gree three since levelpi`2qr1s is occupied by the assumption by the headpcq.
We now apply the inductive argument obtaining that there are no nodes of
degree three in

ttrunkCorepT qri` 2` js | j P r|V pcq|su (54)

We also showed that trunkCorepT qri` 2s is not of degree three, so we state
that ϕ̃phandpcqrjsq “ levelpi ` 1 ` jq won’t place nodes of c to the slots
already occupied on step 2 of the strategy.
This completes the proof of quasi-correctness of the embedding.

– So the last thing to show is that the described embedding exists for one-
handed inner graphs.
Suppose we have a one-handed inner graph l with hand h connected to the i-
th node of the trunk core. Suppose also that w.l.o.g. ϕpfootplqq “ levelpiqr1s.
The only constrainted case in our strategy is when the following doesn’t hold:
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trunkCorepT qri` 1s is an inner node and it is a foot
of another one-handed or zero-
handed simple-graph l2 with
hand (possibly empty) h2

mphrjsq “ levelpi´ jqr2s maps some nodes of h to the
place where nodes were placed
on step 2
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trunkCorepT qri´ 1s is an inner node and it is a foot
of another one-handed or zero-
handed simple-graph l2 with
hand (possibly empty) h2

mphrjsq “ levelpi` jqr2s maps some nodes of h to the
place where nodes were placed
on step 2

p2q

(55)

For the proof by contradiction assume now that both ϕ̃phrjsq “ levelpi`jqr2s
and ϕ̃phrjsq “ levelpi ´ jqr2s map the nodes of h to the places already
used on step 2. By the inductive argument that means that there exist such
j1, j2 ď |V phq| that trunkCorepi` j1q and trunkCorepi´ j2q are of degree
three. But that means that ϕpheadplqq ‰ levelpiqr2s since in that case by the
inductive argument ϕphrjsqmust be either levelpi´jqr2s or levelpi`jqr2s but
in the first case we obtain a conflict with a neighbour of trunkCorepi` j1q
and in the second case we obtain a conflict with trunkCorepi´ j2q.
So, ϕpheadplqq is either levelpi ` 1qr1s or levelpi ´ 1qr1s. Let’s consider the
case levelpi` 1qr1s, the second is totally symmetric.
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The trunk core nodes adjacent to footplq are trunkCorepT qri ´ 1s and
trunkCorepT qri`1s they are mapped by ϕ to levelpi´1qr1s and levelpiqr2s.
We consider the case where ϕptrunkCorepT qri ´ 1sq “ levelpi ´ 1qr1s and
ϕptrunkCorepT qri`1sq “ levelpiqr2s and we show that in this case (1) holds.
Symmetrically ϕptrunkCorepT qri´1sq “ levelpiqr2s and ϕptrunkCorepT qri`
1sq “ levelpi´ 1qr1s will lead to (2).

We now prove that trunkCorepT qri` 1s can’t be the end node of the trunk
core.

In Lemma 5 we make a path through the support nodes. If
trunkCorepT qri` 1s is not a support node, it can’t be the end node of the
trunk core since the trunk core connects to support nodes. It is neither a
single node, since it a has a neighbour trunkCorepT qris of degree three. So,
since it is in the trunk core, we deduce that it is of degree three and there are
nodes a and c of degree three s.t. there is a path aÑ trunkCorepT qri`1s ù

c. If a is different from trunkCorepT qris then we have three consecutive
nodes trunkCorepT qris, trunkCorepT qri`1s and a of degree three, so by the
Lemma 10 ϕptrunkCorepT qrisq is on the same side as ϕptrunkCorepT qri `
1sq, which contradicts the assumption of ϕptrunkCorepT qrisq “ levelpiqr1s
and ϕptrunkCorepT qri ` 1sq “ levelpiqr2s. So there is a node c of degree
three which is not adjacent to trunkCorepT qri ` 1s and there is a path
trunkCorepT qris Ñ trunkCorepT qri ` 1s ù c. But then either c or its
pair (if it is paired) is in the trunk core meaning that the trunk core passes
through trunkCorepT qri` 1s so it is inner.

Thus the trunkCorepT qri ` 2s exists and it has no other options but to
be embedded to levelpi ` 1qr2s since if it is embedded to levelpi ´ 1qr2s it
is embedded to the same level as trunkCorepT qri ´ 1s and it violates the
trunk core monotone property stated by Lemma 10. So we are now able to
apply the inductive argument deducing that there are no nodes of degree
three in ttrunkCorepT qri` 1` js | j P r|V plq|su. Recall that by our proof by
contradiction assumption we have that mapping m : mphrjsq “ levelpi`jqr2s
maps some nodes of h to the place where nodes were placed on step 2 meaning
that there is a node of degree three in ttrunkCorepT qri` js | j P r|V phq|su.
But this implies that the node trunkCorepT qri ` 1s is of degree three, it is
inner, so we have an inner simple-graph connected to it, moreover this simple
graph is a one-handed graph since otherwise we have three nodes of degree
three: trunkCorepT qris, trunkCorepT qri`1s and head of that simple-graph,
implying by Lemma 10 that trunkCorepT qris and trunkCorepT qri` 1s are
mapped to the same side of the grid which as we know is not the case.

So we have that m : mphrjsq “ levelpi ` jqr2s maps some nodes of h to
the place where nodes were placed on step 2 and that there is a one-handed
inner simple-graph connected tot he trunkCorepT qri ` 1s which is exactly
the case (1).

Embedding with Cycles
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Definition 12. A maximal cycle C of a graph G is a cycle in G that cannot be
enlarged, i.e., there is no other cycle C 1 in G such that V pCq Ĺ V pC 1q.

Definition 13. Consider a graph G and a maximal cycle C of G. The whisker
W of C is a line graph inside G such that:

– V pW q ‰ H, and V pW q X V pCq “ H.
– There exists only one edge between the cycle and the whisker pw, cq for w P
V pW q and c P V pCq. Such c is called a foot of W . The nodes of W are
enumerated starting from w.

– W is maximal, i.e., there is no W 1 in G such that W 1 satisfies previous
properties and V pW q Ĺ V pW 1q.

Definition 14. Suppose we have a graph G that can be correctly embedded into
Laddern by ϕ and a cycle C in G. Whiskers W1 and W2 of C are called adjacent
for the embedding ϕ if

@i P rminp|V pW1q|, |V pW2q|s pϕpW1risq, ϕpW2risqq P EpLaddernq

Statement 3 For any correct embedding of a cycle C into Laddern each level
of Laddern is either occupied with two nodes of C or not occupied at all.

Proof. Suppose the contradictory, and there exists a correct embedding ϕ of C
such that there is only one node of C, say a, on some level i, i.e., levelpiqr1s.
a has two neighbours in C, which we call b and c. W.l.o.g. we say that ϕpbq “
levelpi ´ 1qr1s and ϕpcq “ levelpi ` 1q. We define nextabpxq for the node x P
V pCqztau as the next node in C for x in the direction ab. It is easy to see that
if levelxϕpxqy ą i then levelxϕpnextabpxqqy ą i since it cannot be less than i
and due to the connectivity of the cycle image and it cannot be equal to i since
then nextabpxq “ a and then x “ c but levelxϕpcqy “ i ´ 1. levelxϕpbqy “
i ` 1 Ñ levelxϕpnextabpbqqy ą i Ñ levelxϕpnextabpnextabpbqqqy ą i Ñ . . . Ñ
levelxϕpcqy ą i which is a contradiction.

Lemma 8. Suppose we have a graph G that can be correctly embedded into
Laddern and there exists a maximal cycle C in G with at least 6 vertices with
two neighbouring whiskers W1 and W2 of C, i.e., pfootpW1q, footpW2qq P EpGq.
Then, W1 and W2 are adjacent in any correct embedding of G into LadderN .

Proof. At first, we show that for every correct embedding footpW1q and footpW2q

are embedded to the same level of the grid. Suppose not. So there exists a
correct embedding ϕ of G s.t. ϕpfootpW1qq “ levelpiqr1s and ϕpfootpW2qq “
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levelpi´ 1qr1s. By the Statement 3 levelpiqr2s and levelpi´ 1qr2s are also occu-
pied with nodes from cycle. So we deduce that ϕpW1r1sq “ levelpi ` 1qr1s and
ϕpW2r1sq “ levelpi´2qr1s. But by Statement 3 it means that there are no nodes
of C mapped to the levels i` 1 and i´ 2 and so due to connectivity of the cycle
image there are no more nodes of the cycle, but then there are only four nodes
in C.

Now we want to show that W1r1s and W2r1s are embedded to the same level
of the grid for any correct embedding of G. Suppose not. So there exists a correct
embedding ϕ of G s.t.

ϕpfootpW1qq “ levelpiqr1s (56)

ϕpfootpW2qq “ levelpiqr2s (57)

ϕpW1r1sq “ levelpi` 1qr1s (58)

ϕpW2r1sq “ levelpi´ 1qr2s (59)

But this by Statement 3 implies that there are no nodes of C mapped to
levels i ` 1 and i ´ 1 and thus there are no more nodes of C at all due to the
connectivity of the cycle image. Contradiction, since there are at least 6 nodes
in C, not 2.

So for every correct mapping ϕ of G we know that up to symmetry it does
the following:

ϕpfootpW1qq “ levelpiqr1s (60)

ϕpfootpW2qq “ levelpiqr2s (61)

ϕpW1r1sq “ levelpi` 1qr1s (62)

ϕpW2r1sq “ levelpi` 1qr2s (63)

So there is no other option for W1r2s and W2r2s but to be embedded to
levelpi ` 2qr1s and levelpi ` 2qr2s respectively and so until we reach the end of
either W1 or W2. In other words for any correct embedding ϕ

@i P rminp|V pW1q|, |V pW2q|s pϕpW1risq, ϕpW2risqq P EpLaddernq (64)

Remark 2. Due to Lemma 8 if the cycle is of length ě 6 we can forget about an
embedding while talking about adjacent whiskers.

Definition 15. Assume we have a graph G and a maximal cycle C of length
at least 6. The frame for C is a subgraph of G induced by vertices of C and
tW1ris,W2ris | i P rminp|V pW1q|, |V pW2q|qsu for each pair of adjacent whiskers
W1 and W2. Adding all the edges tpW1ris,W2risq | i P rminp|V pW1q|, |V pW2q|qsu

for each pair of adjacent whiskers W1 and W2 makes frame completed.

Lemma 12. If we have a cycle of length at least 6 in a graph which is a subgraph
of the request graph then its end nodes of the frame are adjacent in the request
graph.
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Fig. 9: Cycle, its frame, and edges (dashed) to make the frame completed

Proof. This is because by Lemma 8 they are adjacent for every embedding and
in particular for the original embedding of the cycle into the request graph.

Remark 3. Due to Lemma 12 we can “extend” each maximal cycle to the ends
of its frame, so, we we do not have any adjacent whiskers, i.e., one whisker is
embedded fully.

Lemma 13. Assume we have a graph G which can be embedded into Laddern
and a maximal cycle C of length at least 6 of G has no adjacent whiskers. Then,
there are at most two nodes connected to C (i.e. pv, cq P EpGq , such that v P
V pGqzV pCq ^ c P V pCq).

Moreover, these two connecting nodes are not adjacent.

Proof. Consider a correct embedding ϕ of G into Laddern. The cycle occupies
level from i to j, i ă j (it can’t make a gap due to the connectivity of the image
and by the Lemma 3 it occupies the whole level). So the possible places for v
are levelpi´ 1q Y levelpj ` 1q.

For the proof by contradiction assume that there are at least three nodes
connected to C. Then by the pigeon hole principle there are two of them on the
same level, say v1 and v2. There can’t be an edge between v1 and v2 since then
the cycle can be extended by adding v1 and v2 and thus is not maximal. But if
there is no edge between v1 and v2 they form whiskers and those whiskers are
adjacent. Contradiction.

Trees and cycles

Definition 23. By the cycle-tree decomposition of a graph G we mean a set of
maximal cycles tC1, . . . Cnu of G and a set of trees tT1, . . . , Tmu of G such that

–
Ť

iPrns

V pCiq Y
Ť

iPrms

V pTiq “ V pGq

– V pCiq X V pCjq “ H @i ‰ j
– V pTiq X V pTjq “ H @i ‰ j
– V pTiq X V pCjq “ H @i P rms, j P rns
– @i ‰ j @u P V pTiq @v P V pTjq pu, vq R EpGq

Lemma 14. Assume we have a graph G which can be embedded into Laddern.
Suppose that there is a cycle C and a tree T from cycle-tree decomposition of G,
such that C and T are connected by an edge pc, tq P EpGq, where t P V pT q and
c P V pCq. Then, for any correct embedding ϕ t P trunkϕpT q.
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Proof. By Lemma 3 there is another node of C on the levelxϕpcqy. Let’s say this
level has number i. If ϕptq P levelpi`1q then we know that no nodes of T can be
embedded to the levelpiq (and thus, due to the connectivity of T -s image, below
it) so t is the bottom most node and thus it is in the trunk. Symmetrically, it is
the top most node of T if ϕptq P levelpi´ 1q.

Definition 24. We call a node t from Lemma 14 an end-node of a tree T , and
a node c a foot of a T .

Remark 4. If the tree T is connected to a cycle, then trunkCorepT q can be
extended to an end-node of T .

We call the path connecting the end-node of the trunk core and an end-node
of a tree an extension of the trunk core.

We call a trunk core with two of its possible extensions an extended trunk
core.

The exit-graphs are now simple-graphs connected to the end-nodes of an
extended trunk core.

Note that the end-nodes of the tree might not exist while the end-nodes of
the trunk core are just the end-nodes of the path.

We now define how to embed a tree T from a cycle-tree decomposition.
We include possible foots of a tree with their neighbours in that tree, making

them the end-nodes of the trunk core. We then apply strategy C.3 to the obtained
tree.

Definition 25. We say that such an embedding of a tree respects the strat-
egy C.3.

C.4 Dynamic algorithm

Now, we talk about how we update the embedding with respect to new requests.
In our strategy of edge processing, if an already known edge is requested we

do nothing since the requested nodes are already at the distance at most 12,
because by the assumption the enumeration preserves the proximity property
(see the strategy plan C.1).

But if we obtain a new edge, our enumeration may no longer maintain the
proximity property , so we perform a re-enumeration.

There are two possible cases for the new edge. It may be within the connec-
tivity component or it may connect two different connectivity components. We
analyse these cases separately.

We want to maintain the following five invariants:

1. The embedding of any connectivity component is quasi-correct.
2. For each tree in the cycle-tree decomposition the embedding of that tree

matches the strategy C.3
3. We do not have maximal cycles of length 4
4. Each maximal cycle does not have adjacent whiskers
5. There are no conflicts with cycle nodes
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New edge within one connectivity component Assume we have a con-
nectivity component S with at least one cycle (call it CS) and a quasi-correct
embedding ϕ1 of S preserving all the invariants from C.4.

Assume the new edge connects nodes u and v. Since u and v are already in a
one connectivity component we conclude that there is now a cycle C 1 containing
u and v. We consider a maximal cycle C containing C 1.

We call a graph S with an edge pu, vq as S`.

If C is of length 4, for every two nodes a and b of C |levelxϕ1paqy´levelxϕ1pbqy| ď
3 since the distance in S between a and b is at most 3 and ϕ1 preserves connec-
tivity. Thus, since there are no more than 3 nodes per level, we conclude that the
difference between numbers of a and b is at most 12, so, the proximity property
is maintained and we do nothing.

If C is now of length at least 6 (note that if a cycle can be embedded into
Laddern its length must be even) we consider its frame F stating that it is in
fact a cycle by Lemma 12 and that it has at most two nodes connected to it by
Lemma 13.

Lemma 15. Consider a graph G embedded into Laddern with some embedding
ϕ that respects invariants C.4. Consider a frame of a maximal cycle C in G
embedded by ϕ into levels from i to j (i ă j). Then tv | v P V pGq, levelxϕpvqy ą
ju form a connectivity component.

Proof. By the invariant 4 C.4 and Lemma 13 there is only one node u connected
to C with levelxϕpuqy ą j. So, if some path from a to b (levelxϕpaqy ą j,
levelxϕpbqy ą j) goes through a node v with levelxϕpvqy ď j it must pass through
u twice, meaning we can replace a ù u ù v ù u ù b with a ù u ù b.

We say that a group of nodes is on the same side from a cycle if they are in
a one connectivity component when the cycle is removed.

Lemma 16. If after the removal of F , a connectivity component Si i P t1, 2u
is a line-graph and it connects to F via its end-node then all of its nodes belong
to an exit-graph in S.

Proof. Since by our assumption S has a cycle, we state that each tree has a
non-empty extended trunk core and, thus, each node of the component has only
four options where to belong. It is either in a cycle, an extended trunk core,
an inner-graph, or an exit-graph. So, we now prove that the first three do not
happen here:

– The node remains on a cycle when adding a new edge and the nodes from
Si are not on the cycle in S`, thus, they were not in S.

– Each node in the extended trunk core is either of degree three or has two
edge-disjoint paths to nodes of degree three. Those properties can’t disappear
when adding a new edge and none of them hold in S` for nodes in l thus
did not them in S. So the nodes from l were not in the extended trunk core.
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– As shown in C.3 for every correct embedding nodes of a simple-graphs always
have a node embedded to the same level, namely a node from the trunk core.
But S` has an embedding with all the nodes from Si being single on their
level, and since every embedding for S` induces an embedding for S the
same holds for them in S thus none of them is a node of an inner-graph in
S.

Lemma 17. If a connectivity component l left when removing F is a line-graph
and it connects to F via its inner node u then all of its nodes belong to an
exit-graph in S except possibly u.

Proof. The proof is almost the same as in 16 but with to adjustments:

– The second bullet does not hold for u
– l has an embedding where a node from l is single on its level or with another

node of l and since nodes of l are not the inner trunk core nodes that means
that they are not nodes of inner simple-graphs.

By Lemma 15 there are at most two connectivity components left when
removing F . Let’s call them S1 and S2. We now describe how we embed F , S1

and S2.
So, imagine that we formed F and it has node f of degree three. We first

discuss the case of S1 being a line-graph connected with f with its end-node.
By Lemma 16 we deduce that S1 was a part of an exit-graph in S and thus it
was embedded strictly monotonically. In other words, (let’s set an enumeration
of S1 such that pS1r1s, fq P EpS`q) levelxϕpS1r1sqy ă levelxϕplr2sqy ă . . .. We
then embed F in the way that f is embedded higher then any other node of F ,
say to levelpiqr1s. And we embed S1rjs to levelpi ` jqr1s. If the levels of nodes
of S1 were decreasing we act the same way but embedding f lower then other
nodes of F and embedding S1 in decreasing order.

What if now S1 is a line-graph connected to F via its inner node. By the
Lemma 17 we know that its hands (call them h1 and h2) were exit-graphs and
thus were embedded monotonically, assume increasingly numerating from head.
Assume head of S1 was connected to f P V pF q. We then embed F in a way
that f is embedded higher then any other node of F say to levelpiqr1s. We then
embed

headpS1q Ñ levelpi` 1qr1s (65)

h1rjs Ñ levelpi` 1` jqr1s (66)

h2rjs Ñ levelpi` jqr2s (67)

We act symmetrically if the order on hi was decreasing.
We now want to show that we cannot face incompatibility namely that we

have two line-graphs connected (no matter via their inner or end nodes) to F
both having increasing (decreasing) order on their hands in S. By Lemma 16
those line-graphs were both whiskers in S, so we denote them W1 and W2. If
they both had the same order that means they were in the same tree. To see this
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we first prove that there are at most two trees from the cycle-tree decomposi-
tion of the component can have exit-graphs. Consider the embedding satisfying
invariants C.4. It induces an order on the maximal cycle of the component, since
maximal cycles do not intersect and there for can be enumerated from bottom
to top for example. If the tree is embedded between two consecutive cycles (say,
C1 and C2) it must be connected to both of them. This is because they are
connected with some path connecting nodes c1 and c2 of cycles. We consider
such path that contains just two nodes from cycles, it is straightforward to see
that such path can be obtained if we have an arbitrary one. This path (except c1
and c2) belongs to some tree T in a cycle-tree decomposition. If now some tree
different from T (say, T2) from a cycle-tree decomposition is embedded between
cycles, since the component is connected it has two options: either to be con-
nected to T or to one of the cycles. It can’t be connected to T by the definition
of the cycle-tree decomposition. Neither it can be connected to C1 or C2 since
by the Lemma 15 if that cycle is removed since T and T2 are on the one side of
that cycle they are in the one connectivity component. But this implies that T2
is connected to other cycle which is impossible due to the Lemma 15.

The only way for a tree to have exit-graphs is to be embedded below the low-
est cycle or above the highest. But exit-graphs in the highest tree are embedded
increasingly and the whiskers in the lowest tree are embedded decreasingly.

This means thatW1 and W2 are in the same tree in S, or in other words, they
are both on the same side from CS . But now this cycle is contained in F (since we
only have F,W1,W2) and since W1 and W2 by Lemma 13 are now on the opposite
sides of F they are on the opposite sides to the CS , which is impossible since
then removing CS leaves W1 and W2 in the different connectivity components
which was not the case in S.

Lemma 18. Assume that Si i P t1, 2u connects to F via a node u, u P V pT q
where T is a tree from the cycle-tree decomposition of Si and Si has a node of
degree three. Then all the nodes from an extended trunk core of T are embedded
monotonically in ϕ1.

Proof. All the nodes from a trunk core of T belong to a trunk core in S. This is
because T is contained in some tree TS from a cycle-tree decomposition of S and
thus a trunk core of T is contained in a trunk core of TS since all the support
nodes remain support nodes when extending a tree.

So we consider two extensions of T -s trunk core ext1 and ext2. Let’s say ext1
is the one which extends to F . Note that ext2 was an extension in S and thus
we already have that trunkCorepT q Y ext2 is embedded monotonically by ϕ1.

The ext1 was either a part of an extended trunk core of TS or an exit-graph
in TS . This is because it is obviously couldn’t have been a part of a cycle, since
nodes on cycle remain on cycle when the new edge is added. Neither could
it have been a part of the inner simple-graph since then the end-node of the
trunkCorepT q to which ext1 is connected was an inner node of the trunk core
meaning that there was two edge-disjoint paths from it to two support nodes.
If those support nodes are in T now the end-node of trunkCorepT q is an inner
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trunk core node of T which is nonsense. Otherwise it is not in Si meaning the
path to it goes through ext1 since it is the only path connecting T and F . But
then ext1 belongs to a trunk core in S. So ext1 was either a part of an exit-graph
or a part of the trunkCorepTSq. In both cases it is embedded monotonically with
trunkCorepT q Y ext2.

So assume we have Si i P t1, 2u which connects to f P V pF q via a node
u, u P V pT q where T is a tree from the cycle-tree decomposition of Si and Si

has a node of degree three. Lemma 18 tells us that T -s extended trunk core
was embedded monotonically, say, increasingly starting from u. In this case we
embed F the way that f is embedded higher then every other node from F , say,
to levelpiqr1s, and we embed j-th node of an extended trunk core of T to the
levelpi ` jqr1s. All the other nodes from Si we embed the same as they were
embedded by ϕ1 relatively to the nodes of the extended trunk core of T .

We now analyze if we obtained a conflict of nodes from Si and F and if T is
embedded respecting strategy C.3.

Consider inner simple-graphs of T in order they are connected to the extended
trunk core of T going through the extended trunk core from u. We state that
all of them except possibly the first two were inner simple-graphs in S. This is
because for a foot of such simple-graph there is a support node before it (one of
the foots of first two simple-graphs) and a support node or an end-node after it
(because it is inner in S`). So those simple-graphs can not conflict with nodes of
F since they did not pass through the levels of foots of first two simple-graphs.
They also respect the strategy C.3.

So we only need to orient first two simple-graphs in the way they don’t
conflict with nodes of F and they respect the embedding strategy. This can be
done, since the strategy can be applied to T Y tf and its neighboursu.

Our last goal in analyzing an embedding of a component with a node of degree
three which starts with a tree is to show that we can’t face incompatibility. If
say, S1 is starting with a tree T with increasing order on its extended trunk core
in S then the order on S2 (if one exists) is decreasing (meaning that S2 has a
decreasing order in S on an extended trunk core of a tree it starts with or a
decreasing order in S on its hands if S2 is just a line-graph). Let’s say S1 and
S2 are connected to F with nodes c1 P V pS1q and c2 P V pS2q respectively.

First assume we have S1 starting with a tree T1 and S2 starting with a tree
T2. Both S1 and S2 have a node of degree three. For Ti take a node ui which
is a foot of Ti other then the one in F if such exists or the end of the extended
trunk core other then the one connected to F . Since Si has a node of degree
three, one of those must exist. A shortest path connecting u1 and u2 contain
both extended trunk cores of T1 and T2. Since no path in ϕ1pSq is self-crossing
the path u1´u2 must be monotone by Lemma 9 since no nodes of the path can
be embedded to the same level with u1 and u2 (the neighbour of ui is either a
cycle node or an exit-graph node). Thus paths u1´c1 and c2´u2 have the same
order in ϕ1pSq so the extended trunk cores of T1 and T2 which are contained in
c1 ´ u1 and c2 ´ u2 have opposite order.
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Now consider the case when S1 has a node of degree three and starts with
a tree T and S2 is just a line-graph. Let’s say that S1 connects to f1 P V pF q
and S2 connects to f2 P V pF q. For T take a node u1 which is a foot of T other
then the one in F if such exists or the end of the extended trunk core other then
the one connected to F . Since S1 has a node of degree three, one of those must
exist. And let’s say we have an increasing order on the hands of S2. Consider
the top-most node of a hand of S2 in ϕ1pSq, let’s call it u2. Note that u2 is the
top-most node among all S and can share level only with nodes from exit-graphs.
Now consider the shortest path u1 ´ u2. It contains an extended trunk core of
T . Our goal now is to proof that this path is monotone, that would imply as in
the previous case that T -s extended trunk core and S2-s hands have different
order. To see that it is monotone recall that ϕ1 produces no self-crossing paths
and thus, if the path is not monotone, by Lemma 9 we either have u1 sharing
level with some other node from path which is impossible since it is either a
cycle node or a trunk-core end-node. Or u2 shares level with some other node
from path which is also impossible since u2 is the top-most node with only nodes
from other exit-graphs hands possibly being on its level.

So we discussed what to do if Si connects to the F with a node from tree
from its cycle-tree decomposition. The last case is when it connects to F with a
node of a cycle from its cycle-tree decomposition.

So assume S1 connects to a node f1 P V pF q with a cycle C-s node, say u1.
And let’s assume was the top-most node in C the case when it is the bottom-
most is totally symmetric. We embed F the way f1 becomes a bottom-most node
we embed C the way u1 is the top most node and it is under f1. We embed the
rest of S1 relatively to C as it was embedded by ϕ1.

Nothing changed in S1, so the invariants maintain for it. Therefor our only
goal is to show that we don’t face incompatibility with S2.

If S2 starts with a cycle C2 which connects to F via a node u2 then we
conclude that u2 was the bottom-most node of C2 since there is a path in which
connects u1 and u2 without passing through other nodes of C1 and C2.

If S2 starts with a tree we act similarly as we did in previous cases take
such node u2 that the path u1 ´ u2 contains tree-s trunk core/extended trunk
core/hand of an exit graph and we chow that by Lemma 9 path u1 ´ u2 should
be monotone, since no nodes of it can be embedded to the same level as u2
for the same reasons as before and neither can they be embedded to the same
level with u1 since there is a cycle node embedded to the same level as u1. So
if, say, u1 was the top-most node of C in ϕ1pSq then the path is increasing and
thus the trunk core/extended trunk core/hand of an exit graph is also increasing
in ϕ1pSq which is consistent to the fact that it connects to the top-most node of F .

All the actions described above assume that there was a cycle in S already.
If there wasn’t we act as described below.

The new edge pu, vq is in one connectivity component so there is a maximal
cycle containing u and v. Let’s take a frame F of that cycle. There are possibly
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two connectivity components left when removing F from S`, denote them S1

and S2. Let’s say that S1 connects to f1 P V pF q and S2 connects to f2 P V pF q.
Moreover we know that S1 and S2 are trees.

We embed F the way that f1 is the top-most node and f2 is the bottom-most
node. We then embed S1 and S2 the way they match strategy C.3 orienting the
trunk not to conflict with cycle nodes.

C.5 Cost of the algorithm

We now want to analyze the cost of actions performed when serving a new edge
within one component. Note that since the resulting embedding is quasi-correct
the cost of serving the request is Op1q.

To make an amortized analysis we introduce the concept of scenarios. The
scenario is a reason for node to move in the embedding and thus change its
number. Each scenario has two main properties: the number of times it can
happen to a certain node (denoted with SCN ) and a cost payed for that node
movement in this scenario (denoted with SCC). So the total cost payed for node
movements in this terms is bounded with

2n ¨
ÿ

SCPSCENARIOS

SCN ¨ SCC (68)

Where the first factor 2n arises due to the fact that SCN and SCC are defined
for one particular node, but we want the total cost.

We propose that we only need to focus on the relative order changes.

Lemma 19. If we have two enumerations h1 and h2 of graph G then the cost
of obtaining h2 from h1 via swaps is no more than

|tpu, vq | u, v P V pGq, h1puq ă h1pvq ^ h2puq ą h2pvqu| (69)

Proof. We can order nodes of G by h2. h1 can then be viewed as a permutation so
the statement of the Lemma can be reformulated as ”the swap distance between
a permutation p and an identity permutation is less or equal the number of
inversions in p”.

We proof this by induction. The induction would be among the number of
elements in permutations and among the number of inversions in permutations.

The induction base is 0 inversions for each number of elements which is
trivial. We also notice that if there is just one element in the permutation then
this permutation can’t have inversions.

We now assume that our permutation p has n elements and k inversions,
with k ą 0 and n ą 1.

If now pr1s “ 1 then the distance between p and identityn is the distance
between p1 and identityn´1 where p1ris “ pri` 1s´ 1. And since p1 has the same
number of inversions as p then by the inductive assumption it is less or equal to
k which is what we desire.



Self-Adjusting Linear Networks with Ladder Demand Graph 53

If pr1s “ i, i ‰ 1 then we first spend i´ 1 swaps to bring i to the position 1
reducing the number of inversions by i´ 1. And then apply the same idea with
p1 obtaining that the distance from p1 to an identityn´1 is k ´ pi´ 1q and thus
we provided the series of swaps to obtain an identityn from p with ď k.

Lemma 20. Suppose S is a connectivity component with a cycle embedded into
Laddern via ϕ1 which respects invariants C.4. Suppose we have a new edge in
the connectivity component S. We denote S with a new edge by S`. Let’s call the
frame of a maximal cycle containing the ends of the new edge F . The connectivity
components left when removing F from S` are S1 and S2. Suppose that our
algorithm embeds S1 above F .

1. If there is a cycle in F that was present in S then all the nodes from S1 were
above that cycle in ϕ1pSq.

2. If there is a cycle in F that was present in S then there is a node of cycle
that is top-most for both new and old embeddings.

3. For each node u P V pS1q and for each node v P V pS2q levelxϕ
1puqy ą

levelxϕ1pvqy except possibly the first two inner simple-graph nodes of Ti if
Si connects to F with a tree Ti from a cycle-tree decomposition of Si.

Proof. Assume S1 connects to F via edge pf1, c1q, f1 P V pF q, c1 P V pS1q and
S2 connects to F via edge pf2, c2q, f2 P V pF q, c2 P V pS2q

1. We want to prove the following fact: consider component A is connected to
cycle C with edge pa, cq, a P V pAq c P V pCq and it is embedded above C
by ϕ1 and below C by ϕ2. Then for each path in A starting from a which
is monotone for both ϕ1 and ϕ2 it has changed its orientation i.e. if it was
increasing it is now decreasing and vice versa. To see this note that a was a
top-most node and became the bottom-most node of the path or vice versa.
For each type of S1 our new edge processing strategy maintained an ori-
entation of some monotone path in S1 which can be extended remaining
monotone to the node connected to the cycle. Thus by the fact above it
must remain on the same side of the cycle.

2. Denote the cycle in statement by C,. Denote by A the component that was
above C in ϕ1pSq which contains S1. Say it is connected to C via edge pa, cq
a P V pAq c P V pCq. Then by item 1 node c is top-most in both embeddings
of S and S` since there is a monotonically increasing path starting from a
which does not pass through nodes of C.

3. If S1 and S2 are both line-graphs from the proof of compatibility for line-
graphs we know that the must be in the different trees in a cycle-tree de-
composition of S meaning they are separated by cycle and thus their nodes
don’t share levels. Moreover nodes form S1 were in the top-most tree and
nodes from S2 were in the bottom-most tree, so indeed every node from S1

was embedded higher than every node of S2.
For all the other cases on S1 and S2 in the proof of their compatibility
we build a monotone path which passes through c2, f2, f1, c1. This path is
monotonically increasing levels in ϕ1pSq if S1 is embedded above F by our
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algorithm. So levelxϕ1pc2qy ă levelxϕ1pc1qy so our goal now is to analyze what
nodes from S1 can go under levelxϕ1pc1qy (the analysis for S2 is symmetric).
If S1 connects to F with a cycle or S1 is a line-graph no nodes can go under
c1.
To analyze the last case on S1 we need the following fact: if S2 exists then
V pF q contains a node of degree three in S. This is because V pF q contains
two nodes of degree three in S` namely the foots of opposite (non adjacent)
whiskers and those nodes are not adjacent since the cycle is of length at least
6. So one of them must have been of degree three before the new edge.
So assume now S1 connects to F with a tree and contains a node of degree
three. From the analysis of compatibility for such S1 we know that c1 is
either an extended trunk core node or an exit-graph node in S. If it is an
exit-graph node, then S2 does not exists since if it does there is a node of
degree three in V pF q in S and thus there are two disjoint paths from c1 to
nodes of degree three which can’t be for an exit-graph node.
If now c1 is in an extended trunk core node of a tree T . If F contains a
cycle that was present in S then nodes from S1 and S2 were separated by
this cycle then by item 1 all the nodes from S1 were above that cycle and
all the nodes from S2 were bellow so the proposal holds. All the nodes from
an extended trunk core of T were above c1 in S so the only possible nodes
are the nodes to go below c1 are nodes from inner simple-graphs of T . And
the inner simple-graphs starting from the third one can’t cross the first two
graphs heads so they can’t cross c1 as well.

We are now ready to analyze the cost payed by each node when a new edge
in the connectivity component appears.

Scenario 1 (Inner simple-graph reorienting) The node falls into this sce-
nario if it is a part of an inner simple-graph which is being reoriented.

Lemma 21. The “Inner simple-graph reorienting” scenario costs Opnq for a
node and happens only once for a given node.

Proof. Node can’t pay more than 2n so Opnq bound is trivial.
The inner simple-graph has only two possible orientations. We change its

orientation only if the current one violates the invariants C.4 thus we will never
get back to it.

Scenario 2 (First time on a cycle) The node falls into this scenario if it was
not on a cycle before the new edge and after the new edge it is.

Lemma 22. The “First time on a cycle” scenario happens at most once for
each node and costs Opnq.

Proof. Trivial.

Scenario 3 (Cycle in the frame) The node falls in this scenario if it is in
the cycle which is a part of F and is present in S.
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Lemma 23. The “Cycle in the frame” scenario happens Opnq times for each
node and costs Op1q.

Proof. Since we have only Opnq edges the Opnq upper bound is trivial.
If the cycle is embedded respecting invariants C.4 with a node specified to

be the top most (which is the case due to the lemma 20) then we have only two
four possibilities for a cycle to be embedded and for each to of them one can be
transformed to another making each node changing the relative order only with
Op1q nodes from cycle which by Lemma 19 gives us Op1q cost per node.

Note also that by Lemma 20 nodes from cycle do not change relative order
with nodes from S1 or S2 and thus the cost of their inner relative change is the
only cost they need to pay.

So the nodes of F fall into either First time on a cycle scenario or to the
cycle in the frame scenario.

As for the Si nodes we need to consider 2 cases. The nodes are either a part
of first two inner simple-graphs when Si starts from a tree or not.

If yes, and those node change their relative order to the nodes of Si this means
that the reorientation of simple-graphs had been performed thus they fall into
Inner simple-graph reorienting scenario. If they did not change relative order to
Si this means they didn’t change the order with Sj , j P t1, 2uztiu neither with
F so they pay nothing.

As for the nodes from Si that are not the part of first two inner simple-
graphs by the Lemma 20 they didn’t change the relative order with Sj , by the
embedding strategy they didn’t change the relative order with the nodes from Si

(// consider mirroring? //) accept possibly first two inner-simple graphs and also
by the Lemma 20 they didn’t change the relative order with the cycle contained
in F . As for the nodes of F which were not on the cycle we say that they pay
for all the relative order changes.

New edge between two components We now define and analyse the be-
haviour of the algorithm when the edge between two connectivity components
is revealed. The strategy would be to bring the larger component towards the
smaller one.

Scenario 4 (Connectivity component movement) . The node falls in this
scenario if its component is a smaller of two between which the new edge is
revealed.

Lemma 24. The “Connectivity component movement” scenario for a node hap-
pens Oplog nq times and cost Opnq.

Proof. The size of the component is at least doubled.

We now dive into the case analysis.
We first want to distinguish to cases: either the bigger component has a tree

with a non-empty trunk core or not.
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If not that means that there are at most two nodes of degree three. If the
new edge increases the number of degree three nodes from 0 to one, from 1 to 2
or from 2 to three we say that it is an individual scenario and we can allow the
total reconfiguration according to the C.3.

Scenario 5 (New degree three node.) The node falls into this scenario if
the new edge increases the number of the nodes of degree three in the component
from 0 to 1, from 1 to 2 or from 2 to 3.

Lemma 25. The “New degree three node” scenario can happen Op1q times and
costs Opnq.

Proof. Trivial.

We now assume that there is a tree in the bigger component with a non-
empty trunk core or a cycle with an inner edge. The smaller component can
then connect to:

1. The inner node of the trunk core.
2. The inner simple-graph node.
3. The cycle node.
4. The exit-graph node.

In the following analysis the new scenario appear

Scenario 6 (No more an exit-graph.) The node falls into this scenario if it
is no longer a part of an exit-graph.

Lemma 26. The “No more an exit-graph” scenario happens at most once and
costs Opnq.

Proof. The closest node of degree three to the exit-graph node has only one path
to another degree three node.

Let us discuss all the possible cases.

1. If the smaller connectivity component connects to the inner trunk core node
then by Lemma 6 it must be a line-graphs and there for to maintain the quasi-
correctness of the embedding we only to choose its orientation and reorient
its trunk core neighbours. The scenarios engaged here are the connectivity
component movement and inner simple-graph reorienting.

2. For the inner simple-graph node the analysis is basically the same as in the
previous case.

3. Cases:
– Only cycle
– Cycle and a line-graph
– Cycle and a tree with a degree three node

4. Cases:
– Smaller component does not make new nodes of degree three
– It does. Then we reorient the exit-graphs as they are no longer exit-

graphs. This is the no more an exit graph scenario.
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D Embedding a general demand graph on a line graph

Here we propose an online algorithm for a general demand graph G assuming
having an oracle algorithm for solving the Bandwidth problem. Given a long
enough request sequence, namely |σ| “ Ωp|EpGq| ¨ |V pGq|2q the proposed algo-
rithm has an Opλ ¨BandwidthpGqq competitive ratio compared with an optimal
offline algorithm. But there is more to it. We point out that this algorithm is
robust in a sense that its maximal cost for serving a request exceeds the maximal
cost of processing the request (reconfigure + serve) of any online algorithm by at
most the factor of λ. Moreover, this algorithm pays at most Op|EpGq| ¨ |V pGq|2q
for reconfiguration in total.

Theorem 5. Suppose we are given a graph G and an algorithm B, that for any
subgraph S of G outputs an embedding c P CSÑLn

with the bandwidth less than or
equal to λ ¨BandwidthpGq for some λ. Then, for any sequence of requests σ with
demand graph G there is an algorithm that serves σ with total cost Op|EpGq| ¨
|V pGq|2`λ ¨BandwidthpGq¨ |σ|q. If the number of requests is Ωp|EpGq| ¨ |V pGq|2q
each request has Opλ ¨ BandwidthpGqq amortized cost.

Proof. Assume we have processed i requests so far. We get a demand graph built
on edges Ei “ tσ0, . . . , σiu. It induces a subgraph Si of G. We want to maintain
the invariant that each Si is embedded via ci P CSiÑL such that bandwidth
of h is no greater than λ ¨ BandwidthpGq. Suppose now the embedding ci´1

of Si´1 respects the invariant and we get a new request σi. σi is an edge in
G, say pu, vq. We have two possibilities: either σi is already in Si´1 or not. If
pu, vq P EpSi´1q then Si´1 “ Si and since ci´1 respects the invariant we know
that |ci´1puq ´ ci´1pvq| ď λ ¨ BandwidthpGq and hence we take ci “ ci´1. If on
the opposite pu, vq R EpSi´1q we take ci “ BpSiq, as an embedding of Si to the
line, and reconfigure the network from scratch.

Now, we analyse the cost. We perform adjustments only for a new revealed
edge and, thus, there would be no more than |EpGq| reconfigurations. For each
reconfiguration we make at most |V pGq2| migrations, meaning that the total
cost of reconfigurations is at most |EpGq| ¨ |V pGq|2. Since we serve the request
after performing a reconfiguration and each configuration has a bandwidth of at
most λ ¨BandwidthpGq we state that we pay no more than λ ¨BandwidthpGq ¨ |σ|
to serve all the requests.

We now explain how to construct an expensive request sequence, when given
an online algorithm ON to obtain a BandwidthpGq request processing cost lower
bound.

Lemma 3. Given a demand graph G. For each online algorithm ON there is a
request sequence σON such that ON serves each request from σON for a cost of
at least BandwidthpGq.

Proof. Consider the resulting numeration ϕ of V pGq done by ON after serving
r ě 0 requests. By the definition of bandwidth, there are such u, v P V pGq that
|ϕpuq ´ϕpvq| ě BandwidthpGq. So, we let the next request σON rr` 1s be pu, vq
making ON pay at least BandwidthpGq for that request.
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