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Abstract
We consider the following online optimization problem. We
are given a graph G and each vertex of the graph is assigned
to one of ` servers, where servers have capacity k and we
assume that the graph has ` · k vertices. Initially, G does
not contain any edges and then the edges of G are revealed
one-by-one. The goal is to design an online algorithm ONL,
which always places the connected components induced by
the revealed edges on the same server and never exceeds
the server capacities by more than εk for constant ε > 0.
Whenever ONL learns about a new edge, the algorithm is
allowed to move vertices from one server to another. Its
objective is to minimize the number of vertex moves. More
specifically, ONL should minimize the competitive ratio:
the total cost ONL incurs compared to an optimal offline
algorithm OPT.

The problem was recently introduced by Henzinger et
al. (SIGMETRICS’2019) and is related to classic online
problems such as online paging and scheduling. It finds
applications in the context of resource allocation in the cloud
and for optimizing distributed data structures such as union–
find data structures.

Our main contribution is a polynomial-time randomized
algorithm, that is asymptotically optimal: we derive an
upper bound of O(log ` + log k) on its competitive ratio
and show that no randomized online algorithm can achieve
a competitive ratio of less than Ω(log ` + log k). We also
settle the open problem of the achievable competitive ratio
by deterministic online algorithms, by deriving a competitive
ratio of Θ(` log k); to this end, we present an improved lower
bound as well as a deterministic polynomial-time online
algorithm.

Our algorithms rely on a novel technique which com-
bines efficient integer programming with a combinatorial ap-
proach for maintaining ILP solutions. More precisely, we use
an ILP to assign the connected components induced by the
revealed edges to the servers; this is similar to existing ap-
proximation schemes for scheduling algorithms. However,
we cannot obtain our competitive ratios if we run the ILP
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after each edge insertion. Instead, we identify certain types
of edge insertions, after which we can manually obtain an
optimal ILP solution at zero cost without resolving the ILP.
We believe this technique is of independent interest and will
find further applications in the future.

1 Introduction

Distributed cloud applications generate a significant
amount of network traffic [22]. To improve their effi-
ciency and performance, the underlying infrastructure
needs to become demand-aware: frequently communi-
cating endpoints need to be allocated closer to each
other, e.g., by collocating them on the same server or
in the same rack. Such optimizations are enabled by
the increasing resource allocation flexibilities available
in modern virtualized infrastructures, and are further
motivated by rich spatial and temporal structure fea-
tured by communication patterns of data-intensive ap-
plications [9].

This paper studies the algorithmic problem under-
lying such demand-aware resource allocation in sce-
narios where the communication pattern is not known
ahead of time. Instead, the algorithm needs to learn
a communication pattern in an online manner, dynam-
ically collocating communication partners while mini-
mizing reconfiguration costs. It has recently been shown
that this problem can be modeled by the following on-
line graph partitioning problem [18]: Let k and ` be
known parameters. We are given a graph G which ini-
tially does not contain any edges. Each vertex of the
graph is assigned to one of ` servers and each server has
capacity k, i.e., stores k vertices. Next, the edges of
G are revealed one-by-one in an online fashion and the
algorithm has to guarantee that every connected compo-
nent is placed on the same server (cc-condition). This
is possible, as it is guaranteed that there always exists
an assignment of the connected components to servers
such that no connected component is split across mul-
tiple servers. Thus after each edge insertion, the on-
line algorithm has to decide which vertices to move
between servers to guarantee the cc-condition. Each
vertex move incurs a cost of 1/k. The optimal offline
algorithm knows all the connected components, com-
putes, dependent on the initial placement of the ver-
tices, the minimum-cost assignment of these connected
components to servers and moves the vertices to their
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final servers after the first edge insertion. It requires
no further vertex moves. To measure the performance
of an online algorithm ONL we use the competitive ra-
tio: the total cost of ONL divided by the total cost of
the optimal offline algorithm OPT. In this setting, no
deterministic online algorithm can have a competitive
ratio better than Ω(` · k) even with unbounded compu-
tational resources [18, 23]. In fact, even assigning the
connected components to the servers such that the ca-
pacity constraints are obeyed is already NP-hard and
this holds even in the static setting when the connected
components do not change [4].

Thus, we relax the server capacity requirement for
the online algorithm: Specifically, the online algorithm
is allowed to place up to (1 + ε)k vertices on a server
at any point in time. We call this problem the online
graph partitioning problem.

Henzinger et al. [18] studied this problem and
showed that the previously described demand-aware re-
source allocation problem reduces to the online graph
partitioning problem: vertices of the graph G corre-
spond to communication partners and edges correspond
to communication requests; thus, by collocating the
communication partners based on the connected com-
ponents of the vertices, we minimize the network traf-
fic (since all future communications among the revealed
edges will happen locally). They also showed how to
implement a distributed union–find data structure with
this approach. Algorithmically, [18] presented a deter-
ministic exponential-time algorithm with competitive
ratio O(` log ` log k) and complemented their result with
a lower bound of Ω(log k) on the competitive ratio of
any deterministic online algorithm. While their derived
bounds are tight for ` = O(1) servers, there remains a
gap of factor O(` log `) between upper and lower bound
for the scenario of ` = ω(1). Furthermore, their lower
bound only applies to deterministic algorithms and thus
it is a natural question to ask whether randomized al-
gorithms can obtain better competitive ratios.

1.1 Our Contributions Our main contribution is a
polynomial-time randomized algorithm for online graph
partitioning which achieves a polylogarithmic competi-
tive ratio. In particular, we derive an O(log ` + log k)
upper bound on the competitive ratio of our algorithm,
where ` is the number of servers and k is the server
capacity. We also show that no randomized online al-
gorithm can achieve a competitive ratio of less than
Ω(log `+log k). The achieved competitive ratio is hence
asymptotically optimal.

We further settle the open problem of the competi-
tive ratio achievable by deterministic online algorithms.
To this end, we derive an improved lower bound of

Ω(` log k), and present a polynomial-time determinis-
tic online algorithm which achieves a competitive ratio
of O(` log k). Thus, also our deterministic algorithm is
optimal up to constant factors in the competitive ratio.

These results improve upon the results of [18] in
three respects: First, our deterministic online algorithm
has competitive ratio O(` log k) and polynomial run-
time, while the algorithm in [18] has competitive ra-
tio O(` log ` log k) and requires exponential time. Sec-
ond, we present a significantly higher and matching
lower bound of Ω(` log k) on the competitive ratio of
any deterministic online algorithm. Third, we initi-
ate the study of randomized algorithms for the online
graph partitioning problem and show that it is possi-
ble to achieve a competitive ratio of O(log ` + log k)
and we complement this result with a matching lower
bound. Note that the competitive ratio obtained by our
randomized algorithm provides an exponential improve-
ment over what any deterministic algorithm can achieve
in terms of the dependency on the parameter `.

We further show that for ε > 1 (i.e., the servers can
store at least (2 + ε′)k vertices for some ε′ > 0), our
deterministic algorithm is O(log k)-competitive.

Technical Novelty. We will now provide a brief
overview of our approach and its technical novelty.
Since our deterministic and our randomized algorithms
are based on the same algorithmic framework, we will
say our algorithm in the following.

Our algorithm keeps track of the set of connected
components induced by the revealed edges. We will
denote the connected components as pieces and when
two connected components become connected due to an
edge insertion, we say that the corresponding pieces are
merged.

The algorithm maintains an assignment of the
pieces onto the servers which we call a schedule. We will
make sure that the schedule is valid, i.e., that every piece
is assigned to some server and that the capacities of the
servers are never exceeded by more than the allowed
additive εk. To compute valid schedules, we solve an
integer linear program (ILP) using a generic ILP solver
and show how the solution of the ILP can be trans-
formed into a valid schedule. We ensure that the ILP is
of constant size and can, hence, be solved in polynomial
time. Next, we show that when two pieces are merged
due to an edge insertion, the schedule does not change
much, i.e., we do not have to move “too many” pieces
between the servers. We do this using a sensitivity anal-
ysis of the ILP, which guarantees that when two pieces
are merged, the solution of the ILP does not change by
much. Furthermore, we prove that this change in the
ILP solution corresponds to only slightly adjusting the
schedules, and thus only moving a few pieces.
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However, the sensitivity analysis alone is not
enough to obtain the desired competitive ratio. In-
deed, we identify certain types of merge-operations for
which the optimal offline algorithm OPT might have
very small or even zero cost. In this case, adjusting
the schedules based on the ILP sensitivity would be too
costly: the generic ILP solver from above could poten-
tially move to an optimal ILP solution which is very dif-
ferent from the current solution and, thus, incur much
more cost than OPT. Hence, to keep the cost paid by
our algorithm low, we make sure that for these spe-
cial types of merge-operations, our algorithm sticks ex-
tremely close to the previous ILP solution, incurs zero
cost for moving pieces and still obtains an optimal ILP
solution. The optimality of the algorithm’s solution af-
ter such merge-operations is crucial as otherwise, we
could not apply the sensitivity analysis after the subse-
quent merge-operations. To the best of our knowledge,
our algorithm is the first to interleave ILP sensitivity
analysis with manual maintenance of optimal ILP solu-
tions.

More specifically, we assume that each server has
a unique color and consider each vertex as being col-
ored by the color of its initial server. In our analysis we
identify two different types of pieces: monochromatic
and non-monochromatic ones. In the monochromatic
pieces, “almost all” of the vertices have the same color,
i.e., were initially assigned to the same server, while
the non-monochromatic pieces contain “many” vertices
which started on different servers. We show that we
have to treat the monochromatic pieces very carefully
because these are the pieces for which OPT might have
very small or even no cost. Hence, it is desirable to
always schedule monochromatic pieces on the server of
the majority color. Unfortunately, we show that this is
not always possible. Indeed, the hard instances in our
lower bounds show that an adversary can force any de-
terministic algorithm to create schedules with extraor-
dinary servers. Informally, a server s is extraordinary if
there exists a monochromatic piece p for which almost
all of its vertices have the color of s but p is not sched-
uled on s (see Section 4 for the formal definition). All
other servers are ordinary servers. Note that we have to
deal with extraordinary servers carefully: we might have
to pay much more than OPT for their monochromatic
pieces that are scheduled on other servers.

Thus, to obtain a competitive algorithm, we need
to minimize the number of extraordinary servers. We
achieve this with the following idea: We equip our ILP
with an objective function that minimizes the number
of extraordinary servers and we show that the number
of extraordinary servers created by the ILP gives a
lower bound on the cost paid by OPT. We use this

fact to argue that we can charge the algorithm’s cost
when creating extraordinary servers to OPT to obtain
competitive results.

The previously described ideas provide a determin-
istic algorithm with competitive ratio O(` log k). We
also provide a matching lower bound of Ω(` log k). The
lower bound provides a hard instance which essentially
shows that an adversary can force any deterministic al-
gorithm to make each of the ` servers extraordinary at
some point in time. More generally, the adversary can
cause such a high competitive ratio whenever it knows
which servers are extraordinary. Hence, to obtain an
algorithm with competitive ratio O(log `+log k) we use
randomization to keep the adversary from knowing the
extraordinary servers.

Our strategy for picking the extraordinary servers
randomly is as follows. First, we show that our algo-
rithm experiences low cost (compared to OPT) when
two pieces assigned to an ordinary server are merged,
while the cost for merging pieces that are assigned to ex-
traordinary servers is large (compared to OPT). Next,
we reduce the problem of picking extraordinary servers
to a paging problem, where the pages correspond to
servers such that pages in the cache correspond to ordi-
nary servers and pages outside the cache correspond to
extraordinary servers. Now when two pieces are merged,
we issue the corresponding page requests: A merge of
pieces assigned to an ordinary server corresponds to a
page request of a page which is inside the cache, while
merging two pieces with at least one assigned to an ex-
traordinary server corresponds to a page request of a
page which is not stored in the cache. This leads the
paging algorithm to insert and evict pages into and from
the cache and our algorithm always changes the types
of the servers accordingly. For example, when a page
corresponding to an ordinary server is evicted from the
cache, we make the corresponding server extraordinary.
We conclude by showing that since the randomized pag-
ing algorithm of Blum et al. [10] allows for a polylog-
arithmic competitive ratio, we also obtain a polyloga-
rithmic competitive ratio for our problem.

Future Directions. While the algorithms pre-
sented in this paper are asymptotically optimal (i.e.,
our upper and lower bounds on the competitive ratios
match), our work opens interesting avenues for future
research. A first intriguing question for future research
regards the study of scenarios without the cc-condition.
In this setting, Avin et al. [8, 5] provided a determinis-
tic O(k log k)-competitive algorithm, Crep, for servers
with capacity (2 + ε)k and complemented this result
with a Ω(k) lower bound for deterministic algorithms;
while Crep had a super-polynomial runtime, Forner et
al. [17] recently demonstrated a polynomial-time im-

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited



plementation, pCrep, which monitors the connectivity
of communication requests over time, rather than the
density as in Crep, and this enables a faster runtime.
However, nothing is known for randomized algorithms
and it would be exciting to determine whether poly-
logarithmic competitive ratios are achievable. Second,
the competitive ratios of our algorithms depend expo-
nentially on 1/ε (see the discussions after Theorems 5.1
and 6.1). It would be interesting to obtain tight com-
petitive ratios with only a polynomial dependency on ε,
as this might yield more practical algorithms. To realize
this goal, it seems that one first has to come up with
a PTAS for scheduling on parallel identical machines in
the offline setting, where the dynamic program (DP)
or the ILP formulation has only poly(1/ε) DP cells or
variables, respectively. In particular, this rules out us-
ing the technique by Hochbaum and Shmoys [19], that
our algorithm relies on.

1.2 Related Work The online graph partitioning
problem considered in this paper is generally related
to classic online problems such as competitive paging
and caching [15, 21, 25, 29, 2, 12], k-server [16], or
metrical task systems [11]. However, unlike these
existing problems where requests are typically related
to specific items (e.g., in paging) or locations in a graph
or metric space (e.g., the k-server problem and metrical
task systems), in our model, requests are related to
pairs of vertices. The problem can hence also be seen
as a symmetric version of online paging, where each
of the two items (i.e., vertices in our model) involved
in a request can be moved to either of the servers
currently hosting one of the items (or even to a third
server). The offline problem variant is essentially a k-
way partitioning or graph partitioning problem [27, 1].
The balanced graph partitioning problem is related
to minimum bisection [13], and known to be hard to
approximate [4, 20]. Balanced clustering problems have
also been studied in streaming settings [26, 3].

Our model is also related to dynamic bin packing
problems which allow for limited repacking [14]: this
model can be seen as a variant of our problem where
pieces (resp. items) can both be dynamically inserted
and deleted, and it is also possible to open new servers
(i.e., bins); the goal is to use only an (almost) minimal
number of servers, and to minimize the number of piece
(resp. item) moves. However, the techniques of [14] do
not extend to our problem.

Another related problem arises in the context of
generalized online scheduling, where the current server
assignment can be changed whenever a new job arrives,
subject to the constraint that the total size of moved
jobs is bounded by some constant times the size of

the arriving job. While the reconfiguration cost in
this model is fairly different from ours, the sensitivity
analysis of our ILP is inspired by the techniques used in
Hochbaum and Shmoys [19] and Sanders et al. [24].

Our work is specifically motivated by the online
balanced (re-)partitioning problem introduced by Avin
et al. [8, 5]. In their model, the connected components
of the graph G can contain more than k vertices
and, hence, might have to be split across multiple
servers. They presented a lower bound of Ω(k) for
deterministic algorithms. They complemented this
result by a deterministic algorithm with competitive
ratio of O(k log k). This problem was also studied when
the graph G follows certain random graphs models [6, 7].
For a scenario without resource augmentation, i.e., ε =
0, there exists an O(`2 · k2)-competitive algorithm [5]
and a lower bound of Ω(` · k) [23].

1.3 Organization Section 2 introduces our notation
and Section 3 gives an overview of the algorithmic
framework. We explain the deterministic algorithm in
detail, including the ILP, in Section 4 and analyze it in
Section 5. Section 6 presents the randomized algorithm.
Our lower bounds are presented in Section 7. Due to
lack of space, omitted proofs can be found in the full
verion of the paper on arxiv.

2 Preliminaries

Let us first re-introduce our model together with some
definitions. We are given a graph G = (V,E) with
|V | = ` · k. In the beginning, E = ∅ and then edges
are inserted in an online manner. Initially, every vertex
v is assigned to one of ` servers such that each server
is assigned exactly k vertices. We call this server the
source server of v. For a server s we call the vertices
which are initially assigned to s the source vertices of s.
For normalization purposes, we consider each vertex to
have a volume vol(v) of 1/k, so that the total volume of
vertices initially assigned to a server is exactly 1.

After each edge insertion, the online algorithm must
re-assign vertices to fulfill the cc-condition, i.e., so that
all vertices of the same connected component of G are
assigned to the same server. To this end, it can move
vertices between servers at a cost of 1/k per vertex
move. As described in the introduction, the optimum
offline algorithm OPT is only allowed to place vertices
with total volume up to 1 onto each server, while the
online algorithm ONL is allowed to place total volume
of total volume of 1 + ε on each server, where ε > 0
is a small constant. For notational convenience, we will
place a total volume of 1+c·ε for some constant c, which
does not affect our asymptotic results as the algorithm
can be started with ε′ = ε/c.
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Formally, the objective is to devise an online al-
gorithm ONL which minimizes the (strict) competitive
ratio ρ defined as ρ = cost(ONL)/ cost(OPT), where
cost(·) denotes the total volume of pieces moved by the
corresponding algorithm. For deterministic online algo-
rithms, the edge insertion order is adversarial; for ran-
domized online algorithms, we assume an oblivious ad-
versary that fixes an adversarial request sequence with-
out knowing the random choices of the online algorithm.

The following definitions and concepts are used in
the remainder of this paper.

Pieces. Our online algorithm proceeds by tracking
the pieces, the connected components of G induced by
the revealed edges. The volume of a piece p, denoted
by |p|, is the total volume of all its vertices. For
convenience, every server has a unique color from the set
{1, . . . , `} and every vertex has the color of the server
it was initially assigned to. For a piece p, we define
the majority color of p as the color that appears most
frequently among vertices of p and, in case of ties, that
is the smallest in the order of colors. We also refer
to the corresponding server as the majority server of
p. Similarly, we define the majority color for a vertex
v to be the majority color of the piece of v. Note
that the latter changes dynamically as the connected
components of G change due to edge insertions.

Size Classes and Committed Volume. To
minimize frequent and expensive moves, our approach
groups the pieces into small and large pieces, and for the
ILP also partitions them into a constant number of size
classes. The basic idea is to “round down” the volume
of a piece to a suitable multiple of 1/k and to call all
pieces of zero rounded volume small. However, pieces
can grow and, thus, change their size class, which in
turn might create cost for the online algorithm. Thus,
we need to use a more “refined” rounding, that gives us
some control over when such a class change occurs.

More formally, let us assume that 1/4 > ε ≥
(10/k)1/4. We choose δ such that 1

2ε
2 ≤ δ ≤ ε2 and

δ = j 1
k for some j ∈ N. In addition, we assume

d1eδ − 1 ≤ δ/2, where d·eδ is the operation of rounding
up to the closest multiple of δ. In the full version of
the paper, we show that we can always find such a δ
provided that k ≥ 10/ε4. We will also use a constant
γ = 2δ < 1.

We partition the volume of a piece into committed
and uncommitted volume. The committed volume will
always be a multiple of δ, while the uncommitted
volume will be rather small (see below). We refer
to the sum of committed and uncommitted volume
as the real volume of the piece. We extend this
definition to vertices: Each vertex is either committed
or uncommitted. Now the committed volume of a piece

is the volume of its committed vertices. For a piece p,
we write |p|c to denote its committed volume and |p|u to
denote its uncommitted volume. Hence, |p| = |p|c+|p|u.

We introduce size classes for the pieces. We say
that a piece is in class i ∈ N if its committed volume is
i · δ (recall that committed volume is always a multiple
of δ). Since the volume of a piece is never larger
than 1, we have that i ≤ 1/δ and thus there are only
O(1/δ) = O(1/ε2) = O(1) size classes in total.

Large and Small Pieces. Intuitively, we want to
refer to pieces with total volume at least ε as large and to
the remaining pieces as small. For technical reasons, we
change this as follows. A piece is large if its committed
volume is non-zero and small otherwise. Thus, the
small pieces are exactly the pieces in class 0. As the
algorithm decides when to commit volume, it controls
the transition from small to large. Note that committed
volume never becomes uncommitted and, hence, a piece
transitions only once from small to large.

Monochromatic Pieces. Pieces that overwhelm-
ingly contain vertices of a single color have to be handled
very carefully by an online algorithm because OPT may
not have to move many vertices of such a piece and thus
experience very little cost. Therefore we introduce the
following notion, which needs to be different for small
and large pieces since we use different scheduling tech-
niques for them: A large piece is called monochromatic
for its majority server s if the volume of its vertices
that did not originate at s is at most δ. A small piece
is called monochromatic if an ε-fraction of its volume
did not originate at the majority server of the piece.
We refer to pieces that are not monochromatic as non-
monochromatic.

3 Algorithmic Framework

In this section we present our general algorithmic frame-
work. Some further details follow in Section 4.

(1) The algorithm always maintains the current
set of pieces P, where each piece is annotated by its
size class. If an edge insertion merges two pieces p1
and p2, into a new merged piece pm, it holds that
|pm|u = |p1|u + |p2|u and |pm|c = |p1|c + |p2|c. We say
that a merge is monochromatic if all of p1, p2 and pm
are monochromatic for the same server s. Throughout
the rest of the paper, we assume w.l.o.g. that |p1| ≤ |p2
and we let pm denote the piece that resulted from the
last merge-operation.

Invariants for Piece Volumes. Whenever the
algorithm has completed its vertex moves after an edge
insertion, the following invariants for piece volumes are
maintained.

1. A piece p is small (i.e. has |p|c = 0) iff |p| < ε.
2. A large piece has committed volume i · δ for some
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i ∈ N, i > 0. If it is monochromatic, all committed
volume must be from its majority color.

3. The uncommitted volume of a large piece is at most
2δ, while the uncommitted volume of a small piece
is at most ε. Note that 2δ = O(1/ε2)� ε.

Now suppose that before a merge-operation, all pieces
fulfill the invariants. Then after the merge, the new
piece pm might fulfill only the relaxed constraint |pm| <
2ε if pm is small (no committed volume) and the relaxed
constraint |pm|u ≤ ε+2δ if pm is large (with committed
volume).1 Before the next merge-operation, we will
perform commit-operations on the piece pm until pm
fulfills the above invariants. More concretely, if |pm| ≥ ε
then a commit-operation is executed as long as |pm|u >
2δ. It selects uncommitted vertices inside pm of volume
δ and sets their state to committed (which makes pm
large). If pm is monochromatic, the commit-operation
only selects vertices of the majority color, of which there
is a sufficient number since for large monochromatic
pieces, the volume of vertices of non-majority color is
at most δ.

(2) The algorithm further maintains a schedule S,
which is an assignment of the pieces in P to servers. The
algorithm guarantees that this schedule fulfills certain
invariants—the most important being the fact that the
total volume of pieces assigned to a server does not
exceed the server’s capacity by much.

Adjusting Schedules. To reestablish these invari-
ants after a change to P, we run the adjust schedule
subroutine. We provide the details of this subroutine in
Section 4 and now give a very short summary. When
the set P changes, this is due to one of two reasons: a
merge operation or a commit-operation. Both types of
changes might force us to change the old schedule S to
a new schedule S′. To do so, we first solve an ILP (to be
defined in Section 4) that computes the rough structure
of the new schedule S′. The ILP solution defines, among
other things, the number of extraordinary servers in the
new schedule S′. Then we determine a concrete sched-
ule S′ that conforms to the structure provided by the
ILP solution. Crucially, we have to determine an S′ that
is not too different from S, in order to keep the cost for
switching from S to S′ small.

We note that the subroutine for adjusting the
schedules only moves pieces between the servers and
hence does not affect the invariants for piece volumes.

Handling an Edge Insertion. We now give a

1The first case occurs when p1 and p2 are small and have

volume just below ε (since then |pm|c = |p1|c + |p2|c = 0 and
|pm|u = |p1|u + |p2|u < 2ε); in this case, pm is initially small
and will become large only later when commit-operations are

performed. The second case occurs when p2 is large with |p2|u
just below 2δ and p1 is small with |p1| just below ε.

high-level overview of the algorithm when an edge (u, v)
is inserted. If u and v are part of the same piece, we
do nothing since P did not change. Otherwise, assume
that u is in piece p1 and v is in p2 with p1 6= p2 and
|p1| ≤ |p2|. Then we proceed as follows.

Step I Move small to large piece: Move the smaller
piece p1 to the server of the larger piece p2.

Step II Merge pieces: Merge p1 and p2 into pm. Run
the adjust schedule subroutine.

Step III Commit volume: If |pm| ≥ ε, then

while |pm|u > 2δ do
Commit volume δ for pm.
Run the adjust schedule subroutine.

4 Adjusting Schedules

Now we describe the subroutine for adjusting schedules
in full detail. In the following, we define an ILP that
helps in finding a good assignment of the pieces to
servers. We ensure that when the set of pieces only
changes slightly, then also the ILP solution only changes
slightly. We also show how the ILP solution can be
mapped to concrete schedules.

Before we describe the ILP in detail, we introduce
reservation and source vectors, as well as configurations.
In a nutshell, a server’s reservation vector encodes how
many pieces of each size class can be assigned to that
server at most. A server’s source vector, on the other
hand, describes the structure of the monochromatic
pieces for that server. A configuration is a pair of a
reservation and a source vector and solving the ILP will
inform us which configurations should be used for the
servers in our schedule.

A reservation vector rs for a server s has the fol-
lowing properties. For a size class i > 0, the entry rsi
describes the total volume reserved on s for the (com-
mitted) volume of pieces in class i (regardless of their
majority color). The entry rs0 describes the total vol-
ume that is reserved for uncommitted vertices (again,
regardless of color); note that these uncommitted ver-
tices could belong to small or large pieces. An entry rsi,
i > 0, must be a multiple of iδ while the entry rs0 is a
multiple of δ. Note that rs does not describe which con-
crete pieces are scheduled on s and not even the exact
number of pieces of a certain class, as it only “reserves”
space.

A source vector ms for server s has the following
properties. For a size class i > 0, the entry msi

specifies the total committed volume of pieces in class
i that are monochromatic for s. Again recall that a
monochromatic piece only has committed volume of
its majority color. The entry ms0 describes the total
uncommitted volume of color s rounded up to a multiple
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of δ. Observe that similarly to the reservation vectors,
(a) the entries msi in the source vector are multiples of
iδ and (b) the entry ms0 is a multiple of δ. In addition,
(c) the entries in ms sum up to at most d1eδ as only
vertices of color s contribute. Observe that the source
vector of a server s just depends on the sizes of the
s-monochromatic pieces and on which of their vertices
are committed; it does not depend on how an algorithm
assigns the pieces to servers.

A vector m is a potential source vector if it fulfills
properties (a)-(c) without necessarily being the source
vector for a particular server. Similarly, a potential
reservation vector r is a vector where the i-th entry is a
multiple of iδ, the 0-th entry a multiple of δ, and r is γ-
valid. Here, we say that r is γ-valid if ‖r‖1 ≤ 1+γ. Note
that there are only O(1) potential reservation or source
vectors since they have only O(1/δ) = O(1) entries
(one per size class) and for each entry there are only
O(1/δ) = O(1) choices.

A configuration (r,m) is a pair consisting of a po-
tential reservation vector r and a potential source vec-
tor m. We further call a configuration (r,m) ordinary
if r ≥ m (i.e., ri ≥ mi for each i) and otherwise we call
it extraordinary. The intuition is that servers with or-
dinary configurations have enough reserved space such
that they can be assigned all of their monochromatic
pieces. Next, note that as there are only O(1) poten-
tial source and reservation vectors, there are only O(1)
configurations in total.

Claim 4.1. There exist only O(1) different configura-
tions (r,m).

In the following, we assign configurations to servers
and we will call a server ordinary if its assigned con-
figuration is ordinary and extraordinary if its assigned
configuration is extraordinary.

We now define the ILP. Remember that the goal
in this step is to obtain a set of configurations, which
we will then assign to the servers and which will guide
the assignment of the pieces to the servers. Thus, we
introduce a variable x(r,m) ∈ N0 for each (ordinary
or extraordinary) configuration (r,m). After solving
the ILP, our schedules will use exactly x(r,m) servers
with configuration (r,m). Furthermore, the objective
function of the ILP is set such that the number of
extraordinary configurations is minimized.

The constraints of the ILP are picked as follows.
First, let Vi, i > 0, denote the total committed volume
of all pieces in class i and let V0 denote the total
uncommitted volume of all pieces. Note that the Vi
do not depend on the schedule of the algorithm. Now
we add a set of constraints, which ensures that the
configurations picked by the ILP reserve enough space

such that all pieces of class i can be assigned to one
of the servers. Second, let Zm denote the number of
servers with the potential source vector m at this point
in time. (Recall that the source vectors of the servers
only depend on the current graph and the commitment
decisions of the algorithm and not on the algorithm’s
schedule.) We add a second set of constraints which
ensures that for each m, the ILP solution contains
exactly Zm configurations with source vector m. Now
the ILP is as follows.

min
∑

(r,m): r 6≥m x(r,m)

s.t.
∑

(r,m) x(r,m)ri/δ ≥ Vi/δ for all i∑
r x(r,m) = Zm for all m

In the ILP we wrote ri/δ and Vi/δ to ensure that ILP
only contains integral values. Further observe that the
ILP has constant size and can, hence, be solved in con-
stant time: As there are only O(1) different configu-
rations (Claim 4.1), the ILP only has O(1) variables.
Also, since there are only O(1) size classes i and O(1)
source vectors m, there are only O(1) constraints.

Next, we show that an optimal ILP solution serves
as a lower bound on the cost paid by OPT.

Lemma 4.1. Suppose the objective function value of the
ILP is h, then cost(OPT) ≥ (γ − δ)h = Ω(h).

4.1 Schedules That Respect an ILP Solution
Next, we describe the relationship of schedules and
configurations. A schedule S is an assignment of pieces
to servers. The set of pieces assigned to a particular
server s is called the schedule for s. A schedule for a
server s with source vector ms respects a reservation r
if the following holds:

1. The committed volume of class i pieces scheduled
on s is at most ri.

2. The total uncommitted volume scheduled on s is at
most r0 + 14ε.

3. If r ≥ ms then all pieces that are monochromatic
for s are placed on s.

A schedule respects an ILP solution x if there exists an
assignment of configurations to servers such that:

– A server s with source vector ms is assigned a
configuration (r,m) with m = ms.

– A configuration (r,m) is used exactly x(r,m) times.
– The schedule of each server respects the reservation

of its assigned configuration.
Note that if all source vectors are different, then assign-
ing the configurations to the servers is clear (each server
s is assigned the configuration (r,m) with m = ms).
In the case that some source vectors appear in multiple
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configurations, we describe a procedure for assigning the
configurations to the servers below.

The next lemma shows that servers respecting a
reservation only slightly exceed their capacities.

Lemma 4.2. If the schedule for a server s respects a γ-
valid reservation r, then the total volume of all pieces
assigned to s is at most 1 + γ + 14ε = 1 +O(ε).

4.2 How to Find Schedules In this section, we
describe how to resolve the ILP and adjust the existing
schedule after a merge or commit-operation so that
it respects the ILP solution, in particular, that the
schedule of every server respects the reservation of its
assigned configuration, i.e., Properties 1-3 above. It
is crucial that this step can be performed at a small
cost. We present different variants: In most situations,
the algorithm uses a generic variant that is based on
sensitivity analysis of ILPs. However, in some special
cases (cases in which OPT might pay very little) using
the generic variant might be too expensive. Therefore,
we develop special variants for these cases that resolve
the ILP and adjust the schedule at zero cost.

Before we describe our variants in detail, note
that it is not clear how to assign small pieces to
servers based on the ILP solution. Hence, we define
our variants such that in the first phase they move
some pieces around to construct a respecting schedule
but they ignore Property 2 while doing so, i.e., they
only guarantee Property 1 and Property 3. After this
(preliminary) schedule has been constructed, we run a
balancing procedure (described below), which ensures
that Property 2 holds. The balancing procedure only
moves small pieces and we show that its cost is at most
the cost paid for the first phase. As it is relatively short,
we describe it first.

Balancing Procedure for Small Pieces. We
now describe our balancing procedure, which moves
only small pieces and for which we show that Property 2
of respecting schedules is satisfied after it finished. The
balancing procedure is run after one of the variants of
the ILP solving is finished.

For a server s, let vu(s) denote the total uncom-
mitted volume scheduled at s. We define the slack of
a server s by slack(s) := rs0 − vu(s). Note that be-
cause of the first constraint in the ILP with i = 0, there
is always a server with non-negative slack. Next, we
equip every server s with an eviction budget budget(s)
that is initially 0. Now, any operation outside of the
balancing procedure that decreases the slack must in-
crease the eviction budget by the same amount. Such
an operation could, e.g., be a piece p that is moved
to s (which decreases the slack by |p|u) or a decrease
in rs0 when a new configuration is assigned to s. (Note

that increasing the eviction budget increases the cost for
the operation performing the increase; we will describe
how we charge this cost later.) Intuitively it should
follow that budget(s) roughly equals − slack(s) and in-
deed we can show through a careful case analysis that
budget(s) ≥ − slack(s) − 2ε (see the full version of the
paper).

This eviction budget is used to pay for the cost of
moving small pieces away from s when the balancing
procedure is called. We say a small piece p is movable if
either its majority color has at most a (1−2ε)-fraction of
the volume of p (the piece is far from monochromatic),
or its majority color corresponds to an extraordinary
server. The balancing procedure does the following for
each server s:

while there is a movable piece p on s with |p| <
budget(s) do

Move p to a server with currently non-negative
slack.

budget(s) = budget(s)− |p|
The following lemma shows that after balancing proce-
dure finished, slack(s) ≥ −14ε. This implies that when
the balancing procedure finished, Property 2 holds since
vu(s) = rs0 − slack(s) ≤ rs0 + 14ε.

Lemma 4.3. After the balancing procedure for a server
s finished, we have that slack(s) ≥ −14ε.

4.2.1 Overview of the Variants Next, we give the
full details of the main algorithm for adjusting the
schedules in different cases.
Step I Move small to large piece: Move the smaller

piece p1 to the server of the larger piece p2.
Step II Merge pieces: Merge p1 and p2 into pm. Then

adjust the schedule as follows:
– If p1 is small, then the ILP does not change

and no adjustment is necessary.
– Else: if the merge is non-monochromatic or
s is extraordinary, use the Generic Variant,
otherwise, use Special Variant A.

– Run the rebalancing procedure.
Step III Commit volume: If |pm| ≥ ε, then

while |pm|u > 2δ: do
Commit volume δ for pm.
If pm is non-monochromatic or s is extraordi-
nary, use the Generic Variant, otherwise, use
Special Variant B.
Run the rebalancing procedure.

4.2.2 The Generic Variant We now describe the
Generic Variant of the schedule adjustment. Suppose
the set of pieces P changed into P ′ due to a merge or a
commit-operation.
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The algorithm always maintains for the current set
P an optimum ILP solution. Let x be the ILP solution
for P. When P changes, the algorithm runs the ILP to
obtain the optimum ILP solution x′ for P ′.

In the following, we first argue how to assign the
configurations from x′ to the servers and then we argue
how we can transform a schedule S (respecting x) into
a schedule S′ (respecting x′) with little cost.

We first assign the configurations given by x′ to
servers by the following greedy process. A configuration
(r,m) is free if it has not yet been assigned to x′(r,m)

servers. As long as there is a free configuration (r,m)
and a server s that had been assigned (r,m) in schedule
S, we assign (r,m) to s. The remaining configurations
are assigned arbitrarily subject to the constraint that a
server s with source vector ms obtains a configuration
of the form (r,ms) for some r.

Now that we have assigned the configurations to the
servers, we still have to ensure that the new schedule
respects these new server configurations. We start with
some definitions.

First, let A be the set of servers for which the
set of scheduled pieces changed due to the merge- or
commit-operation. For a merge-operation, these are
the servers that host one of the pieces p1, p2, or pm,
and for a commit-operation, this is the server that
hosts the piece pm that executes the commit. Note
that |A| ≤ 3. Second, let B be the set of servers
that changed their source vector due to the merge or
commit-operation. Note that for a commit-operation
|B| could be large, because the committed volume could
contain many different colors and for each corresponding
server, the source vector could change by a reduction of
m0. Third, we let C be the set of servers that changed
their assigned configuration between S and the current
schedule S′. Note that |C| ≤ |B|+ ‖x− x′‖1.

Observe that for servers s 6∈ A ∪ C neither their
assigned configuration (since s 6∈ C) nor their set of
scheduled pieces (since s 6∈ A) has changed. Thus, these
servers already respect their configuration and, hence,
we do not move any pieces for these servers now. For
the servers in A ∪ C we do the following:

1. We mark all pieces currently scheduled on servers
in A ∪ C as unassigned.

2. Every ordinary server in A ∪ C moves all of its
monochromatic pieces to itself. This guarantees
Property 3 of a respecting schedule. Note that this
step may move pieces away from servers in A ∪ C.

3. The remaining pieces are assigned in a first fit
fashion. We say a server is free for class i > 0
if the committed volume of class i pieces already
scheduled on it is (strictly) less than ri. It is free
for class 0 if the uncommitted volume scheduled on

it is less than r0.
To schedule an unassigned piece p of class i, we
determine a free server for class i and schedule
p there. The first set of constraints in the ILP
guarantees that we always find a free server.

This scheduling will guarantee Property 1 of a respect-
ing schedule, i.e., for all i > 0 the volume of class i
pieces scheduled on a server s is at most rsi. This holds
because rsi is a multiple of iδ. If we decide to schedule
a class i piece on s because a server is free for class i
then it actually has space at least iδ remaining for this
class. Hence, we never overload class i, i > 0.

In the following, we develop a bound on the cost of the
above scheme. For the analysis of our overall algorithm
we use an involved amortization scheme. Therefore, the
cost that we analyze here is not the real cost that is
incurred by just moving pieces around but it is inflated
in two ways:
(A) If we move a piece p to a server s, we increase the

eviction budget of s by |p|u.
(B) Whenever we change the configuration of a server

from a ordinary to extraordinary, we experience an
extra cost of 4(1 + γ)/δ. This will be required later
in Case IIa of the analysis.

Observe that Cost Inflation (A) clearly only increases
the cost by a constant factor. Cost Inflation (B) will
also only increase the cost by a constant factor as the
analysis below assumes constant cost for every server
that changes its configuration. Note that the Generic
Variant is the only variant for adjusting the schedule for
which Inflation (B) has an affect; the other variants do
not move pieces around and do not generate any new
extraordinary configurations.

The following lemma provides the sensitivity anal-
ysis for the ILP. Its first point essentially states that
for adjusting the schedules, we need to pay cost propor-
tional to the number of servers that change their source
configuration from P to P ′ plus the change in the ILP
solutions. The second point then bounds the change in
the ILP solutions by the number of servers that change
their source vectors from P to P ′.

Lemma 4.4. Suppose we are given a schedule S that
respects an ILP solution x for a set of pieces P. Let P ′
denote a set of pieces obtained from P by either a merge
or a commit-operation, and let D denote the number of
servers that have a different source vector in P and P ′.
Then:

1. If x′ is an ILP solution for P ′, then we can
transform S into S′ with cost O(1+D+‖x−x′‖1).

2. Then we can find an ILP solution x′ for P ′ with
‖x− x′‖1 = O(1 +D).

3. If the operation was a merge-operation, then D ≤ 3.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited



4.2.3 Special Variant A: Monochromatic Merge
Special Variant A is used if we performed a monochro-
matic merge-operation of two large pieces p1, p2 and if
the server s that holds the piece p2 is ordinary. Then
OPT may not experience any cost. Therefore, we also
want to resolve the ILP and adjust the schedule S with
zero cost.

Since the merge is monochromatic, all of p1, p2
and pm are monochromatic for s, and since s has an
ordinary configuration, p1 and p2 are already scheduled
at s. Hence, the new piece pm (which is generated at
p2’s server) is already located at the right server s.

We obtain our schedule S′ by deleting the assign-
ments for p1 and p2 from S and adding the location s
for the new piece pm. Now let i1, i2, and im denote
the classes of pieces p1, p2, and pm, respectively (note
that these classes are at least 1 as all pieces are large).
Then the new ILP can be obtained by only changing
the configuration vector ms and setting

m′si1 := msi1 − |p1|c
m′si2 := msi2 − |p2|c
m′sim := msim + |pm|c

,

Z ′ms
:= Zms − 1

Z ′m′
s

:= Zm′
s

+ 1

and
V ′i1 := Vi1 − |p1|c
V ′i2 := Vi2 − |p2|c
V ′im := Vim + |pm|c

.

To obtain a solution x′ to this new ILP, we change
the reservation vector for the server s as follows.

r′si1 := rsi1 − |p1|c
r′si2 := rsi2 − |p2|c
r′sim := rsim + |pm|c

.

This does not change the ‖ · ‖1-norm of the vector
r because ri1 ≥ mi1 ≥ |p1|c (this follows from the
definition of mi1 and the fact that rs ≥ ms holds) and
because |p1|c+|p2|c = |pm|c. We obtain the ILP solution
x′ by setting

x′(rs,ms)
:= x(rs,ms) − 1 and x′(r′s,m′

s)
:= x(r′s,m′

s)
+ 1.

Note that rs ≥ ms implies r′s ≥ m′s. Hence, our new
ILP solution does not increase the objective function
value of the ILP (i.e., the number of extraordinary
configurations). In the full version of the paper we show
that merging two large monochromatic pieces of a server
cannot decrease the objective function value of the ILP.
Therefore, the new ILP solution x′, which has the same
objective function value as x, is optimal.

Finally, observe that we only changed the configu-
ration of server s and that we did not move any pieces.
Hence, we can transform P, x and S into P ′, x′ and S′

with zero cost.

4.2.4 Special Variant B: Monochromatic Com-
mit Suppose we perform a commit-operation for a
monochromatic piece pm that is located at an ordi-
nary server s. Then OPT may not experience any cost.
Therefore, we present a special variant for adjusting the
schedule that also induces no cost. We perform a rou-
tine similar to Special Variant A and provide the details
in the full version of the paper on arxiv.

5 Analysis

We first give a high level overview of the analysis. Let
P∗ denote the final set of pieces. A simple lower bound
on the cost of OPT is as follows. Let NM denote the set
of vertices that do not have the majority color within
their piece in P∗. Then cost(OPT) ≥ 1

k |NM|, because
each vertex has volume 1

k and for each piece in P∗, OPT
has to move all vertices apart from vertices of a single
color. Hence, the total volume of pieces moved by OPT
is at least 1

k |NM|.
We want to exploit this lower bound by a charging

argument. The general idea is that whenever our online
algorithm experiences some cost C, we charge this cost
to vertices whose color does not match the majority
color of their piece. If the total charge made to each
such vertex v is at most α · vol(v), then the cost of the
online algorithm is at most α · cost(OPT). When we
charge cost to vertices, we will refer to this as vertex
charges.

The difficulty with this approach is that at the time
of the charge, we do not know whether a vertex will have
the majority color of its piece in the end. Therefore,
we proceed as follows. Suppose we have a subset S of
vertices in a piece p and a subset Q ⊆ S does not have
the current majority color of S . Then regardless of
the final majority color of p, a total volume of vol(Q)
of vertices in S will not have this color in the end.
Hence, when we distribute a charge of C evenly among
the vertices of S, a charge of vol(Q) · C/ vol(S) goes to
vertices that do not have the final majority color. We
call this portion of the charge successful.

The following lemma shows that to obtain algo-
rithms competitive to OPT, it suffices if we bound the
successful and the total vertex charges.

Lemma 5.1. Suppose the total successful charge is at
least chargesucc while the maximum (successful and
unsuccessful) charge to a vertex is at most chargemax.
Then cost(OPT) ≥ 1

kchargesucc/chargemax.
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Proof. Note that successful charge only goes to vertices
in NM. Hence, |NM| ≥ chargesucc/chargemax, and,
therefore, we obtain that cost(OPT) ≥ 1

k |NM| ≥
1
kchargesucc/chargemax.

Another lower bound that we use is due to
Lemma 4.1. Let hmax denote the maximum objective
value obtained when solving different ILP instances dur-
ing the algorithm. From time to time, when vertex
charges are not appropriate, we perform extraordinary
charges or just extra charges. In the end, we compare
the total extra charge to hmax. We stress that we only
perform extra charges when extraordinary configura-
tions are involved. This means if hmax = 0 we never
perform extra charges, as otherwise, it would be diffi-
cult to obtain a good competitive ratio.

In the following analysis, we go through the different
steps of the algorithm. For every step, we charge the
cost either by a vertex charge or by an extra charge. If
we apply a vertex charge, we argue that (1) enough of
the applied charge is successful and (2) the charge can
accumulate to not too much at every vertex. For extra
charges, we require a more global argument and we will
derive a bound on the total extra charge in terms of
hmax in Section 5.1.1.

5.1 Analysis Details When merging a piece p2 and
p1 with |p1| ≤ |p2| we proceed in several steps.

Step I: Small to Large. In this first step, we move
the vertices of p1 to the server of p2. If p1 and p2 are
on different servers we experience a cost of |p1|. Also,
we have to increase the eviction budget of the server
that holds piece p2 (if p1 is a small piece). The cost for
this step is 0 if p1 and p2 are on the same server and,
otherwise, it is at most 2|p1|. We charge the cost as
follows.

Case (Ia) Merge is monochromatic. If p1, p2, and
pm are monochromatic for the same server s we only
experience cost if s is extraordinary because otherwise
p1 and p2 are located at s. We make an extra charge
for this cost.

Case (Ib) Merge is not monochromatic. We make
the following vertex charges:

• Type I charge: We charge 2
δ ·
|p1|
|pm| · vol(v) to every

vertex in pm.
• Type II charge: We charge 2

δ ·vol(v) to every vertex
in p1.

Claim 5.1 below shows that the Type I and Type II
charge at a vertex can accumulate to at most O(log k).
In the following, we argue that at least a charge of 2|p1|
is successful. We distinguish several cases.
• If either p2 or pm is not monochromatic, we

know that at least a volume of δ (if the non-
monochromatic piece is large) or a volume of ε|p2|
of vertices does not have the majority color. Hence,

we get that at least min{δ, ε|p2|} 2|p1|
δ|pm| ≥ 2|p1| of the

Type I charge is successful. The inequality uses
|pm| ≤ 1, |p2| ≥ 1

2 |pm|, and δ ≤ ε2 ≤ ε/2.
• If p1 is not monochromatic then at least δ|p1|

volume in p1 has not the majority color. This gives
a successful charge of at least δ|p1| · 2δ ≥ 2|p1|.

• Finally suppose that p1 and p2 are monochromatic
for different colors Cs and C`, respectively. If in
the end Cs is not the majority color of the final
piece then we have a successful charge of at least
(1 − ε)|p1| · 2/δ ≥ 2|p1| from the Type II charge.
Otherwise, C` is not the majority color and we

obtain a successful charge of (1 − ε)|p2| · 2|p1|
δ|pm| ≥

2|p1|.

Claim 5.1. The combined Type I and Type II charge
that can accumulate at a vertex v is at most O(log k ·
vol(v)/δ).

Step II: Resolve ILP and Adjust Schedule. In
this step, we merge the pieces p1 and p2 into pm and
run the subprocedure for adjusting the schedule, which
finds a new optimum solution to the ILP and finds a
schedule respecting the ILP solution. Due to Lemma 4.4
this incurs at most constant cost. In the following, we
distinguish several cases. For some cases, the bound of
Lemma 4.4 is sufficient and we only have to show how
to properly charge the cost. For other cases, we give a
better bound than the general statement of Lemma 4.4.
In the following, s denotes the server where the merged
piece pm is located now (and where p2 was located
before).

Case (IIa) p1 small. In this case, the input to the
ILP did not change. This holds because no volume
was committed and no uncommitted volume changed
between classes. Therefore we do not experience any
cost for resolving the ILP.

However, it may happen that p2 was not monochro-
matic but the merged piece pm is. Note that this can
only happen if p2 is also small (since large pieces can-
not transition from non-monochromatic to monochro-
matic). Suppose pm is monochromatic for a server
s′ 6= s, and this server has an ordinary configuration.
Then we have to move pm to s′ for the new schedule
to respect the configuration of s′. We incur a cost of
|pm| + |pm|u ≤ 2|pm|, where |pm|u is required to in-
crease the eviction budget at s′. (Indeed, moving pm to
s′ might cause the rebalancing procedure to move pieces
away from s′.) We charge 4/δ · vol(v) to every vertex in
pm. We call this charge a Type III charge.
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How much of the charge is successful? Observe
that p2 was not monochromatic for s′ before the merge
as otherwise it would have been located at s′. This
means vertices with volume at least δ|p2| ≥ δ|pm|/2 in
pm have a color different from s′ (the majority color in
pm). This means we get a successful charge of at least
δ|pm|/2 · 4/δ = 2|pm|, as desired.

To obtain a good bound on the total Type III charge
accumulating at a vertex v we have to add a little tweak.
Whenever a server s switches its configuration from
ordinary to extraordinary, we cancel the most recent
Type III charge operation for all vertices currently
scheduled on s.

This negative charge is accounted for in the extra
cost that we pay when switching the configuration of
a server from ordinary to extraordinary. Recall that in
Cost Inflation (B), we said that we experience an extra
cost of 4(1 +γ)/δ whenever we switch the configuration
of a server s from ordinary to extraordinary. This cost
is used to cancel the most recent Type III charge for all
pieces currently scheduled on s.

Lemma 5.2. Suppose a vertex v experiences a positive
Type III charge at time t that is not canceled. Let t′

denote the time step of the next Type III charge for
vertex v, and let p and p′ denote the pieces that contain
v at times t and t′, respectively. Then |p′| ≥ (1 + ε)|p|.

Corollary 5.1. The total Type III charge that can
accumulate at a vertex is only O(log k · vol(v)).

Case (IIb) p1 large, merge not monochromatic.
We resolve the ILP and adjust the schedule S. Ac-
cording to Item 1 and Item 3 of Lemma 4.4 this incurs
constant cost. Let CIV denote the bound on this cost.
We perform a vertex charge of CIV/δ · vol(v) for every
vertex in pm. We call this charge a Type IV charge. In
the following we argue that at least a charge of CIV is
successful. We distinguish two cases.

If one of the pieces p1, p2, or pm is not monochro-
matic we know that at least vertices of volume δ in the
piece do not have the majority color. Hence, we get
that at least CIV/δ · δ ≥ CIV of the Type IV charge is
successful.

Now, suppose that p1 is monochromatic for server
s and pm is monochromatic for a different server s′.
Regardless of which color is the majority color in the
end, there will be vertices of volume at least (1− ε)|p1|
that will not have this majority color. Hence, we obtain
a successful charge of at least (1 − ε)|p1| · CIV/δ ≥
(1 − ε)ε · CIV/δ ≥ CIV, where the first step uses that
p1 is large and the second that δ ≤ ε2 ≤ (1− ε)ε, which
holds because ε ≤ 1/4.

Claim 5.2. A vertex v can accumulate a total Type IV
charge of at most CIV/δ · vol(v).

Case (IIc) p1 large, merge monochromatic, s
extraordinary. In this case, we also resolve the ILP
and adjust the schedule, which according to Item 1 and
Item 3 of Lemma 4.4 incurs constant cost. Let C denote
this cost. We make an extra charge of C. Observe that
C = O(|p1|) because p1 is a large piece. This will be
important when we derive a bound on the total extra
charge.

Case (IId) p1 large, merge monochromatic, s
ordinary. Suppose that the server s has an ordinary
configuration. In this case we do not want to have
any cost, because we cannot perform an extra charge
as no extraordinary configurations are involved and we
cannot charge against the vertices of pm as the piece is
monochromatic. We use Special Variant A for adjusting
the schedule. This induces zero cost.

Step III: Commit-operation. We analyze the
commit-operation. We will call a commit-operation
monochromatic if it is performed on a monochromatic
piece and, otherwise, we call it non-monochromatic.

Case (IIIa) pm not monochromatic, s ordinary.
The commit-operation may change the source vector of
several servers. Let D denote the number of servers
that changed their source vector. The cost for handling
the commit-operation is at most O(1 +D) according to
Lemma 4.4. Let CV denote the hidden constant, i.e.,
the cost is at most CV(1 + D). We split this cost into
two parts: CV is the fixed cost and CVD is the variable
cost of the commit.

We charge 3CV/δ · vol(v) to every vertex v in pm.
We call this charge a Type V charge. In pm at least
vertices of volume δ have not the majority color because
pm is not monochromatic. Therefore we get a successful
charge of 3CV/δ · δ = 3CV.

Clearly, the charge is sufficient for the fixed cost.
However, the remaining successful charge of 2CV may
not be sufficient for the variable cost. In the following,
we argue that the total remaining successful charge
that is performed for all non-monochromatic commits
is enough to cover the variable cost for these commits.

Lemma 5.3. Let Xnm(s) denote the number of times
that a non-monochromatic commit causes a change in
the source vector of s. Then the variable cost for all non-
monochromatic commits is at most

∑
s CVXnm(s) ≤

2CVN , where N denotes the total number of non-
monochromatic commits.

Observe that the total remaining charge for the non-
monochromatic commits is 2CVN (a charge of 2CV for
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every commit). Hence, the previous lemma implies that
this remaining charge is sufficient for the variable cost
of all non-monochromatic commits.

Claim 5.3. The Type V charge at a vertex v can
accumulate to at most 3CV/δ

2 · vol(v).

Case (IIIb) pm monochromatic, s ordinary. Sup-
pose we perform a commit-operation for the piece pm.
Here we use Special Variant B for resolving the ILP and
adjusting the schedule. This incurs zero cost.

Case (IIIc) pm monochromatic, s extraordinary.
We resolve the ILP and adjust the schedule. The cost
for this is O(1), since we can use Item 1 of Lemma 4.4
with D = 1, because pm is monochromatic and thus
we only commit volume of color s. Let C1 denote
the upper bound for this cost. We perform an extra
charge of C1. Since the committed volume has only
color s, the total number of monochromatic commits
for a specific server s is at most 1/δ = O(1) because
each commit increases the committed volume of color
s by δ. Consequently, the total extra charge that we
perform for monochromatic commits of a specific server
s is at most C1/δ. To simplify the analysis of the total
extra charge in Section 5.1.1 we combine all these extra
charges into one extra charge of C1/δ that is performed
whenever the server s switches its state from ordinary
to extraordinary for the first time.

5.1.1 Analysis of Extra Charges In this section
we derive a bound on the total extra charge generated
by our charging scheme. Let us first recap when we
perform extra charges:
(I) During the merge-operation we perform an extra

charge of O(|p1|) in Case Ia and Case IIc, when the
merge-operation is monochromatic for server s and
s has an extraordinary configuration.
We stress the fact that whether a merge is
monochromatic only depends on the sequence of
merges and not on the way that pieces are sched-
uled by our algorithm.

(II) Whenever a server changes its configuration from
ordinary to extraordinary for the first time, we
generate an extra charge of C1/δ = O(1) to
take care of the cost of monochromatic commits
(Case IIIc).

Now let hmax denote the maximum number of extraor-
dinary configurations that are used throughout the al-
gorithm. Clearly, if hmax = 0 there is never any extraor-
dinary configuration and the extra charge will be zero.
If hmax ≥ 1, we show that the previously described de-
terministic online algorithm guarantees an extra charge
of at most O(` log k).

Lemma 5.4. If hmax = 0, there is no extra charge. If
hmax ≥ 1, the total extra charge is O(` log k).

Next, we show that the maximum vertex charge
(successful or unsuccessful) is O(log k · vol(v)).

Lemma 5.5. The maximum vertex charge chargemax

(successful or unsuccessful) that a vertex v can receive
is at most O(log k · vol(v)).

Combining Lemma 5.4 and Lemma 4.1 for extra
charges and our arguments about vertex charges with
Lemma 5.1, we obtain the following theorem.

Theorem 5.1. There exists a deterministic online al-
gorithm with competitive ratio O(` log k).

Note that we obtain an even stronger result if
hmax = 0: the cost is at most O(log k) · cost(OPT)
because of the bound on the total vertex charge (and
the fact that we do not have extra charges). Oth-
erwise (hmax > 0), the total extra charge is at most
O(` log k), which means that we are O((` log k)/hmax)-
competitive. So the worst-case competitive ratio occurs
when hmax = 1.

The constant hidden in the O(·)-notation in the

theorem is (1/ε)O(1/ε4). The exponential dependency
on 1/ε is caused by the ILP sensitivity analysis in
Lemma 4.4. In particular, the hidden constants in
Items 1 and 2 of the lemma are (1/ε)O(1/ε4), since the
ILP has one variable for each potential configuration
and the number of such configurations in Claim 4.1 is
(1/ε)O(1/ε2). All other steps of the analysis only add
factors poly(1/ε).

Next, consider the case ε > 1. Then the servers can
store vertices of volume 2 + ε′ and the above algorithm
is O(log k)-competitive: Indeed, in this case, servers can
always store all of their monochromatic pieces (of total
volume at most 1) and never become extraordinary;
thus, we are in the setting with hmax = 0 above.
Furthermore, the algorithm above never assigns pieces
of volume more than 1 + ε′ to each server. Together,
this bounds the total load of each server to 2 + ε′ and
we obtain the following theorem.

Theorem 5.2. If ε > 1, there exists a deterministic
online algorithm with competitive ratio O(log k).

6 Randomized Algorithm

How can randomization help to improve on the com-
petitive ratio? For this observe that the cost that
we charge to vertices is at most O(log k · cost(OPT)).
Hence, the critical part is the cost for which we per-
form extra charges, which can be as large as Ω(` log k)
according to Theorem 7.1. A rough sketch of a (simpli-
fied) lower bound is as follows. We generate a scenario
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where initially all servers have the same source vector
but some server needs to schedule its source-pieces on
different servers (as, otherwise, we could not fulfill all
constraints).

In this situation, an adversary can issue merge re-
quests for all vertices that originated at the server s that
currently has its source-pieces distributed among several
servers. Then the online algorithm incurs constant cost
to reassemble these pieces on one server, and, in ad-
dition, has to split the source-pieces of another server
between at least two servers. Repeating this for ` − 1
steps gives a cost of Ω(`) to the online algorithm while
an optimum algorithm just incurs constant cost.

The key insight for randomized algorithms is that
the above scenario cannot happen if we randomize the
decision of which server distributes its source-pieces
among several servers. The online problem then turns
into a paging problem and we use results from online
paging to derive our bounds.

6.1 Augmented ILP Let M denote the set of all
potential source vectors. We introduce a partial order-
ing on M as follows. We say m ≥p m′ if any prefix-sum
of m is at least as large as the corresponding prefix-sum
for m′. Formally,

m ≥p m′ ⇐⇒ ∀i:
∑i
j=0mj ≥

∑i
j=0m

′
j .

Observe that m ≥ m′ implies m ≥p m′. We adapt
the ILP by adding a cost-vector c that favors large
source vectors w.r.t. ≥p. This means as a first objective
the ILP tries to minimize the number of extraordinary
configurations as before but as a tie-breaker it favors
extraordinary configurations with large source vectors.
For this we assign unique ids from 1, . . . , |M | to the
source vectors s.t. m1 ≥p m2 =⇒ id(m1) ≤ id(m2).
Then we define the cost-vector c by setting

(6.1) c(r,m) :=

{
0 r ≥ m
1 + λ id(m) otherwise

,

for λ = 1/(|M |2 · `). Given the cost-vector c, we set the
objective function of our new ILP to

∑
(r,m) c(r,m)x(r,m).

The choice of λ together with ‖x‖1 = ` imply that∑
(r,m):r 6≥m λ id(m)x(r,m) ≤ λ · |M |` = 1/|M | < 1.

Thus, the ILP still minimizes the number of extraor-
dinary servers.

In the full version of the paper, we show that the
sensitivity analysis for the ILP still holds. This means if
we have a constant change in the RHS vector of the ILP,
we can adjust the ILP solution and the schedule at the
cost stated in Lemma 4.4. Similarly, when we manually
adjust the ILP solution (Case IId and Case IIIb), we
do not increase the cost because only the configuration

of a single server s changes and this server keeps its
ordinary configuration, i.e., it does not contribute to
the objective function of the ILP.

A crucial property of the partial order ≥p is that
source vectors of servers are monotonically decreasing
w.r.t. ≥p as time progresses and as more merge-opera-
tions are processed.

Observation 6.1. Let ms(t) denote the source vector
of some server s after some timestep t of the algorithm.
Then t1 ≤ t2 implies ms(t1) ≥p ms(t2), i.e., the source
vector of a particular server is monotonically decreasing
w.r.t. ≥p.

6.2 Marking Scheme The total extra charge that
is generated by our algorithm is determined by how we
assign extraordinary configurations to servers. We use a
marking scheme to decide which servers may receive an
extraordinary configuration. Formally, a (randomized)
marking scheme dynamically partitions the servers into
marked and unmarked servers and satisfies the following
properties:
• Initially, i.e., before the start of the algorithm, all

servers are unmarked.
• Let hm denote the number of servers with source

vector m that are assigned an extraordinary config-
uration by the ILP, i.e., hm =

∑
(r,m):r 6≥m x(r,m).

The marking scheme has to mark at least hm
servers with source vector m.

The cost cost(M) of a marking schemeM is defined as
follows:
• Switching the state of a server from marked to

unmarked or vice versa induces a cost of 1.
• If a marked server experiences a monochromatic

merge, the cost increases by |p1|, where p1 is the
smaller piece involved in the merge-operation.

Suppose for a moment that the marked servers always
are exactly the servers that are assigned an extraor-
dinary configuration. Then the above cost is clearly
an upper bound on the total extra charge as define in
Section 5.1.1 (up to constant factors). This is because
the marking scheme pays whenever switching between
marked and unmarked, while in our analysis we only
make one extra charge of constant cost when a server
switches to an extraordinary configuration for the first
time.

In the following, we enforce the condition that
a server only has an extraordinary configuration if
it is marked by the marking scheme. However, the
marking scheme could mark additional servers that are
not extraordinary. Thus, by enforcing this condition
our algorithm incurs additional cost. Suppose, e.g.,
that the marking scheme decides to unmark a server
s that is currently marked and has been assigned an
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extraordinary configuration. Then we have to switch
the (extraordinary) configuration (r,ms) assigned to s
with an ordinary configuration (r′,ms) that currently
is assigned to a different marked server s′. Note that
we always find such a server because there exist at least
hms marked servers with source vector ms. The switch
can then be performed at constant cost. We make an
additional extra charge for this increased cost of our
algorithm. Note that the marking scheme accounts for
this additional cost as it incurs cost whenever the state
of a server changes. Therefore, the cost of the marking
scheme can indeed serve as an upper bound on the total
extra charge (including the additional extra charge).
This gives the following observation.

Observation 6.2. Let M be a marking scheme. The
total extra charge is at most O(cost(M)).

Next, we construct a marking scheme with small
cost. For simplicity of exposition we assume that we
know hmax, the maximum number of extraordinary con-
figurations that will be used throughout the algorithm,
in advance. We describe in the arxiv version of the
paper how to adjust the scheme to work without this
assumption by using a simple doubling trick (i.e., make
a guess for hmax and increase the guess by a factor of 2
if it turns out to be wrong).

We will use results from a slight variant of online
paging [10]. In this problem, a sequence of page requests
has to be served with a cache of size z. A request
(p, w) consists of a page p from a set of ` ≥ z pages
together with a weight w ≤ 1.2 If the requested page
is in the cache, the cost for an algorithm serving the
request sequence is 0. Otherwise, an online algorithm
experiences a cost of w. It can then decide to put the
page into the cache (usually triggering the eviction of
another page) at an additional cost of 1.

The cost metric for the optimal offline algorithm
is different and provides an advantage to the offline
algorithm. If the offline algorithm does not have p in
its cache, it pays a cost of w/r, where r ≥ 1 being
a parameter of the model, and then it can decide to
put p into its cache at an additional cost of 1. In [10],
the authors show how to obtain a competitive ratio of
O(r + log z) in this model.

The Paging Problems. Let M denote the set of
potential source vectors and recall that |M | = O(1). We
introduce |M | different paging problems, one for every
potential source vector m ∈M .

2Note that our problem definition slightly differs from the
model analyzed by Blum et al. [10], which has w = 1 for every

request. However, it is straightforward to show that the results
of [10] carry over to our model.

Fix a potential source vector m. Let Sm denote
the set of servers that have a source vector m′ ≥p m.
Essentially, we simulate a paging algorithm on the set
Sm (i.e., servers correspond to pages) with a cache of
size |Sm| − hmax and parameter r = log k.

Note that a server may leave the set Sm, but it
is not possible for a server to enter this set because
the source vector ms of a server is non-increasing w.r.t.
≥p (Observation 6.1). The fact that servers may leave
Sm is problematic for setting up our paging problem
because this would correspond to decreasing the cache
size, which is usually not possible. Therefore, we define
the paging problem on the set of all servers and we
set the cache size to ` − hmax, but we make sure that
servers/pages not in Sm are always in the cache. This
effectively reduces the set of pages to Sm and the cache
size to |Sm| − hmax.

We construct the request sequence of the paging
problem for Sm as follows. A monochromatic merge for
a server s ∈ Sm is translated into a page request for
page s with weight |p1|, where p1 is the smaller piece
that participates in the merge-operation. Following
such a merge request, we issue a page request (with
weight 1) for every page/server not in Sm. This makes
sure that an optimum solution keeps all these pages in
the cache at all times, thus reducing the effective cache-
size to |Sm| − hmax. The request sequence stops when
|Sm| = hmax.

The Marking Scheme. We obtain a marking
scheme from all the different paging algorithms as
follows. A server with source vector m is marked if
it is not in the cache for the paging problem on set Sm,
or if |Sm| ≤ hmax. The following lemma shows that this
gives a valid marking scheme.

Lemma 6.1. The marking scheme marks at least hm
servers with source vector m.

Let cost(Sm) denote the cost of the solution to the
paging problem for Sm. The following two claims give
an upper bound on the cost of the marking scheme.

Claim 6.1. We have that

cost(M) ≤
∑
m

(
cost(Sm) + hmax +O(log k) · hmax

)
= O

(∑
m

cost(Sm) + log k · hmax

)
.

Claim 6.2. There is a randomized online algorithm
for the paging problem on Sm with (expected) cost
cost(Sm) ≤ O((log k + log `) · hmax).

Now combining the two claims above with
Lemma 4.1 and the analysis of vertex charges from Sec-
tion 5, we obtain our main theorem.
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Theorem 6.1. There is a randomized algorithm with
competitive ratio O(log `+ log k).

The constant hidden in the O(·)-notation in the theorem

is (1/ε)O(1/ε4). This follows from the same arguments
mentioned after the statement of Theorem 5.1 and the
fact that Claim 6.1 only adds another (1/ε)O(1/ε2)-factor
since the number of monochromatic configurations is
(1/ε)O(1/ε2).

7 Lower Bounds

In this section, we derive lower bounds on the com-
petitive ratios for deterministic and randomized algo-
rithms. In particular, we show that any deterministic
algorithm must have a competitive ratio of Ω(` log k)
and any randomized algorithm must have a competitive
ratio of Ω(log `+ log k).

We note that the lower bounds derived in this
section also apply to the model studied by Henzinger
et al. [18]. Their model is slightly more restrictive than
ours in that eventually, every server must have exactly
one piece of volume 1 (resp. k in their terminology);
in contrast, in our model, servers may eventually host
multiple pieces smaller than 1. However, our lower
bounds are designed such that they also fulfill the
definition of the model by Henzinger et al.

7.1 Lower Bounds for Deterministic Algo-
rithms

Theorem 7.1. For any k ≥ 32 and any constant 1/k ≤
ε ≤ 1/32 such that εk is a power of 2, any deterministic
algorithm must have a competitive ratio of Ω(` log k).

We devote the rest of this subsection to prove the
theorem.

Set m be a positive integer such that εk = 2m. As
ε ≤ 1/32 it follows that k ≥ 2m+5. Fix any deterministic
algorithm ONL. We will show that there exists a
sequence σONL of edge insertions such that the cost of
the optimum offline algorithm is O(ε), while the cost of
ONL is Ω(ε` log(εk)). The sequence σONL depends on
ONL, i.e., edge insertions will depend on which servers
ONL decides to place the pieces.

Definitions. We assume that the servers are
numbered sequentially. As before, each server has a
color and every vertex is colored with the color of its
initial server. For simplicity, we assume server i has
color i. The main server of a color c is the server that,
out of all servers, currently contains the largest volume
of color-c vertices and whose index number of all such
servers is the smallest3.

3The difference between majority and main color is that we

A piece is called single-colored if all vertices of the
piece have the same color. If a single-colored piece with
color c is not assigned to the main server for c, it is
called c-away or simply away. Any piece of volume at
least 2ε is called a large piece, all other pieces are called
small. We say two pieces are merged if there is an edge
insertion connecting the two pieces.

Initial Configuration. Initially each of the `
servers contains one large single-colored piece of volume
2ε and (1 − 2ε)k isolated vertices, each of volume 1/k.
The large pieces of on servers 1, 2, and 3 are called
special. A color c is deficient if the total volume of all
small c-away pieces is at least ε.

Sequence σONL. The first two edge insertions
merge the three special pieces into one (multi-colored)
special piece of volume 6ε. As we will show any
algorithm now has at least one deficient color. Note
that all small pieces are single-colored and have volume
20/k = 1/k.

Now σONL proceeds in rounds. We will show that
there is a deficient color at the end and, thus, also
at the beginning of every round. In each round only
small pieces of the same (deficient) color are merged
such that their volume doubles. As a result, all small
pieces continue to be single-colored and, at the end of
each round, all small pieces of the same color have the
same volume, namely 2i/k for some integer i, except
for potentially one piece of smaller volume, which we
call the leftover piece. A leftover piece is created if the
number of small items of color c and volume 2i/k at the
beginning of a round is an odd number. If this happens,
it is merged with the leftover piece of color c of the
previous rounds (if it exists) to guarantee that there is
always just one leftover piece of color c. To simplify the
notation we will use the term almost all small pieces of
color c to denote all pieces of color c except the leftover
piece of color c.

A round of σONL consists of the following sequence
of requests among the small pieces: If there exists a
deficient color c such that the volume of almost all small
pieces of color c is 2i/k for some integer i and 2i/k < ε,
then σONL contains the following steps.
If there are small pieces of color c and volume 2i/k that
are currently on different servers, they are connected by
an edge, otherwise two such pieces on the same server
are connected by an edge. Repeat this until there is
at most one small piece of color c of volume 2i/k left.
Once this happens and if such a piece exists, it becomes
a leftover piece of color c and if another leftover piece of
color c exists from earlier rounds, the two are merged.

added the second condition to guarantee that the main server of
a color is unique.)
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Note that almost all pieces of color c have now volume
2i+1/k and the leftover piece has smaller volume. If
2i+1/k ≥ ε, merge all non-special (i.e. the small and
the non-special large) pieces of color c and call color c
finished. As long as there are at least two unfinished
deficient colors, start a new round.

Once there are no more rounds we will show that
there is exactly one unfinished deficient color c∗ left
and there are at least 2j+3 small pieces of color c∗ and
volume ε/2j for some integer j ≥ 1. Furthermore there
exists the special piece of volume 6ε (which is not single-
colored) and for every other color there exists one piece
of volume 1 (if it does not belong to {1, 2, 3}) or of
volume 1− 2ε (if it belongs to {1, 2, 3}).

Final Merging Steps. To guarantee that each
piece has volume exactly 1 at the end, the remaining
pieces of volume less than 1 are now suitably merged.
First 2j+3 of the pieces of color c∗ and volume ε/2j

are merged into 3 pieces of volume 2ε each, the rest
is merged into one piece. Then consider two cases: If
c∗ ∈ {1, 2, 3}, let c′ and c′′ be the other two colors of
{1, 2, 3}. In this case σONL merges the first small piece
of volume 2ε of c∗ with the non-special piece of c′ and
then merges the second small piece of volume 2ε of c∗

with the non-special piece of c′′. Then all the remaining
pieces of color c∗ are merged with each other and with
the special piece.

If c∗ 6∈ {1, 2, 3}, then σONL merges the small pieces
of volume ε/2 of color c∗ with the non-special piece of
color 1 and then does the same with color 2 and 3. Then
all the remaining (small and large) pieces of color c∗ are
merged with each other and with the special piece.

Note that as a consequence all piece now have
volume 1.

We show first that all the assumptions made in
the description of σONL hold. Specifically the next
three lemmata will show that (1) after initialization
and after each round there exists a deficient color for
any algorithm, that (2) for each color c almost all small
pieces of color c have volume 2i/k and the leftover piece
of color c has volume less than 2i/k, and that (3) at the
beginning of the final merging steps there is exactly one
unfinished deficient color left and there are at least 2j+3

small pieces of this color that have volume ε/2j for some
integer j ≥ 1. Then we will show that algorithm ONL
has cost at least Ω(ε` log(εk)) to process the sequence.

Lemma 7.1. At the beginning of each round there exists
an unfinished deficient color for algorithm ONL.

Proof. After initialization and after each round there
exists (1) the special piece of volume 6ε that is not
single-colored and (2) for each color there exist small
single-colored pieces of total volume at least 1−2ε. Now

suppose by contradiction that no color is deficient. Then
for each color c the total volume of small c-away pieces
is less than ε, i.e. the volume of the small pieces on
the main server for c is at least 1− 3ε. As no server can
have pieces of total volume more than 1+ε assigned to it
and ε ≤ 1/8, it follows that the non-special pieces on the
main server of c require volume more than (1+ε)/2, and,
thus, each server can be the main server for at most one
color. As there are as many colors as there are server,
each server is the main server for exactly one color and
each color has exactly one main server.

Now consider the server s∗ on which the special
piece is placed and let it be the main server for some
color c. Then the total volume of the pieces on s∗ is 6ε
for the special piece. If c is not deficient, s∗ has load at
least 1 − 3ε for the non-special pieces of color c. Thus,
the server’s load is at least 1 + 3ε which is not possible.
Hence, there must exist a deficient color.

Next we show that there is always an unfinished
deficient color. This is trivially true after initialization
as all colors are unfinished. Let us now consider the end
of a round. Note that every color c that is finished has
a non-special piece of volume at least 1− 2ε and, thus,
the special piece cannot be placed on the main server
of a finished color c. Recall that every non-deficient
color has pieces of total volume at least 1 − ε on its
main server. Thus, the special piece cannot be placed
the main server of any non-deficient color. Thus, the
special piece can only be placed on a server that is not
the main server of a finished deficient or a non-finished
color. If every deficient color is finished, every color has
a main server and the special piece cannot be placed on
any of them. As, however, there are as many servers as
there are colors, it would follow that the special piece is
not placed on any server, which is not possible. Thus,
there must exist a deficient unfinished color.

Lemma 7.2. For each color c it holds at the beginning
and end of each round that almost all small pieces of
color c have volume 2i/k for some integer i and the
other small piece has even smaller volume.

Proof. By induction on the number of rounds. The
claim holds after initialization for i = 1 for every color.
During each round for some color c the pieces of color c
and volume 2i/k are merged pairwise, and the possible
left-over piece of volume 2i/k is merged with the leftover
piece of earlier rounds, if it exists. From the induction
claim it follows that the leftover piece of earlier rounds
has volume less than 2i/k. Thus, the resulting leftover
piece has volume less than 2i+1/k. Furthermore, the
pieces of the other colors remain unchanged. Thus, the
claim follows.
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Lemma 7.3. At the beginning of the final merging steps
there is exactly one unfinished deficient color left and
there are at least 2j+3 small pieces have volume ε/2j for
some integer j ≥ 1.

Proof. Lemma 7.1 holds after each round, thus, also
after the final round. It shows that there is still at
least one deficient unfinished color. As there are no
more rounds, there at most one deficient unfinished
color, which implies that there is exactly one deficient
unfinished color. As it is unfinished, all its small pieces
have volume less than ε. For the rest of the proof we
only consider small pieces of this color.

Recall that εk = 2m and k ≥ 2m+5. Initially there
are k − 2εk ≥ 2m+5 − 2m+1 small pieces of volume
1/k each. Let k′ be the largest power of 2 that is
at most k − 2εk. It follows that k − 2εk ≥ k′ >
k/2 − εk ≥ 2m+4 − 2m. Thus, initially there are at
least k′ small pieces of volume 1/k = ε/2m each. Let
j be any integer with 0 ≤ j ≤ m such that exactly
m− j rounds were executed for this color. Thus, there
are at least k′/2m−j pieces of volume 2m−jε/2m = ε/2j

at the beginning of the final merging steps. Note that
k′/2m−j ≥ (2m+4 − 2m)/2m−j = 2j+4 − 2j ≥ 2j+3.
Thus, there are at least 2j+3 pieces of volume ε/2j . As
the color is unfinished, each small piece has volume less
than ε, i.e. j ≥ 1. Thus the lemma holds.

Next we analyze how many rounds are performed
for a given color until it is finished. Consider any color c.
The number of rounds necessary to increase the volume
of almost all small pieces of color c from 1/k to ε is
log(εk) as εk is a power of 2. Each round roughly halves
the number of small pieces. Thus, we only have to show
that there are enough small pieces available initially so
that log(εk) many rounds are possible for color c.

Lemma 7.4. For each finished color log(εk) rounds are
executed.

Proof. Fix a color c and consider in this proof only
pieces of color c. As ε ≤ 1/8 and each initial small
piece is a single vertex, there are k − 2εk ≥ 3k/4 many
such small pieces initially. Let k′ be the largest power of
2 that is at most 3k/4. Note that k′ > 3k/8. Thus the
number of small pieces of volume at least ε is at least
k′/2log(εk) > 3/(8ε) ≥ 3. Hence for each finished color
log(εk) rounds will be executed.

As there are ` different colors, it suffices to show
that in almost every round algorithm ONL moves pieces
with total volume Ω(ε) to achieve the desired lower
bound of Ω(ε` log(εk)) for the cost of ONL.

Lemma 7.5. In one round of the above process, except
in the last round for each color, ONL moves vertices

with volume Ω(ε). In total, the algorithm moves vertices
with volume Ω(ε` log(εk))

Proof. Fix a color c and only consider pieces of color
c in this proof. Note that when two pieces of different
servers, of volume 2i/k each, are merged, at least one
of them has to change its server, resulting in a cost of
2i/k for the algorithm. We proved in Lemma 7.1 that at
the beginning of each round a deficient color exists. A
deficient color has away pieces of total volume at least
ε, i.e., there are small pieces of total volume at least ε
not on the main server. During a round, as shown by
Lemma 7.2, almost all of these pieces have volume 2i/k
for some integer i and their total contribution to the
total volume of all away pieces of color c is larger than
ε− 2i/k (subtracting out the volume of the potentially
existing leftover piece of even smaller volume). Thus,
as long as ε− 2i/k ≥ ε/2, i.e., in all but the last round,
the total volume of all the away pieces excluding the
leftover piece is larger then ε/2. In the following when
we talk about a small piece, we mean a small piece that
is not the leftover piece and we fix a round that is not
the last round. We will show that at least ε/2 volume
is merged by pieces on different servers in this round,
resulting in at least ε/4 cost for the algorithm.

Now consider two cases: (1) If the main server s∗

contains small pieces of total volume at least ε/2, then
every away piece can be merged with a small piece either
on s∗ or on a different server. Thus at least ε/2 volume
is merged by pieces on different servers. (2) If, however,
the main server contains small pieces of total volume
less than ε/2, then every server contains small pieces
of total volume less than ε/2. Small pieces of different
servers are merged until all remaining small pieces are
on the same server. However, this server has less than
ε/2 volume of small pieces, i.e., more than ε/2 volume
must have been merged between different servers. Thus
in both cases the algorithm has cost at least ε/4. The
second claim follows immediately from the discussion
preceding the lemma.

Lemma 7.6. In total, OPT moves vertices with volume
O(ε).

Proof. Right at the beginning OPT places the special
piece of volume 6ε on server s∗ and moves the small
pieces of color c∗ that are merged in the final merging
step with a different color to the main server for the
corresponding color. Thus, none of the other steps cause
any cost for OPT. Thus, OPT only has cost O(ε).

The previous two lemmas imply a lower bound on
the competitive ratio of Ω(` log(εk)) for deterministic
algorithms. This finishes the proof of the theorem.
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7.2 Lower Bounds for Randomized Algorithms

Theorem 7.2. Any randomized online algorithm must
have a competitive ratio of Ω(log `+ log k).

Proposition 7.1. If ε < 1/6, then any randomized on-
line algorithm must have a competitive ratio of Ω(log `).

Proof. We use Yao’s principle [28] to derive our lower
bound and provide a randomized hard instance against
a deterministic algorithm. The hard instance starts by
merging the vertices of each server into monochromatic
pieces of volume 2ε each. Now the hard instance
arbitrarily picks three pieces with different majority
colors and merges them into a piece of volume 6ε and we
call this piece special. Next, the hard instance proceeds
in ` − 1 rounds. Before the first round all servers
are unfinished. In round i, the hard instance picks an
unfinished server s uniformly at random. Now the hard
instance uniformly at random picks monochromatic
pieces with color s of total volume 1 − 2ε and merges
them in arbitrary order; after that we call s finished.
When all `− 1 rounds are over, a final configuration in
which all pieces have volume 1 is obtained as follows.
First, observe that there is a unique unfinished server
s∗. Now the hard instance merges the special piece
and monochromatic pieces of color s∗ of total volume
1−6ε. The remaining monochromatic pieces of color s∗

are merged with the components of the finished servers
from which the vertices of the special piece originated.
All other monochromatic components of volume 2ε are
merged with the large monochromatic components with
the same color as the piece itself.

For a given schedule, we say that an unfinished
server s is split if monochromatic pieces with color s
and of volume at least ε are not scheduled on s. Now
observe that after each round there exists a server which
is split: First, observe that none of the finished servers
can store its monochromatic piece of volume 1 − 2ε
together with the special piece of volume 6ε. Now if
none of the (unfinished) servers was split, one of them
would contain all of its monochromatic pieces of total
volume at least 1− 2ε together with the special piece of
volume 6ε. Thus, the total load of the server is 1 + 4ε
which is not a valid schedule.

Next, we show that if a server s is split, then the
algorithm has moved monochromatic pieces with color
s of volume at least ε: First, suppose the algorithm
has scheduled all monochromatic pieces of color s on
some server s′ 6= s. Then the algorithm has paid at
least 1 − 2ε ≥ ε to move the monochromatic pieces
of color s to s′. Second, suppose the monochromatic
pieces of color s are scheduled on at least two different
servers. Then the algorithm must have moved at least

one monochromatic piece of color s away from s. Since
s is unfinished and all monochromatic pieces of s have
volume 2ε, the algorithm has paid at least ε for moving
monochromatic pieces of color s.

Now we analyze the cost paid by the algorithm.
Observe that before round i there are `−i+1 unfinished
servers and at least one of them is split. Let s be a split
server. Thus with probability 1/(` − i + 1) the hard
instance picks the split server s. It follows from the
previous claims that the algorithm paid at least ε to
move pieces of color s. Since the above arguments hold
for each round, the total expected cost of the algorithm
is

`−1∑
i=1

ε
1

`− i+ 1
=
∑̀
i=2

ε
1

i
= Ω(ε log `).

Next, observe that OPT never moves more than
O(ε) volume: Indeed, the hard instance only merges
pieces in which all vertices have the same color except
when (1) creating the special piece of volume O(ε),
(2) merging the special piece with the vertices from
s∗ and (3) merging the small pieces from s∗ with the
large pieces of the servers from which the special piece
originated. All of these steps can be performed by only
moving volume O(ε).

Thus, the competitive ratio is Ω(log `).

Proposition 7.2. Any randomized algorithm must
have a competitive ratio of at least Ω(log k).

Proof. We use Yao’s principle [28] to derive our lower
bound and provide a random instance against a deter-
ministic algorithm. In the instance all pieces initially
have volume 1/k, i.e., the pieces consist of single ver-
tices. The lower bounds proceeds in log k rounds. In
each round, we pick a perfect matching between all
pieces uniformly at random. Thus, after i rounds, all
pieces have volume 2i/k. Note that after log k rounds
all pieces have volume 1 and we have obtained a valid
final configuration.

We claim that in each round the algorithm has
to move volume Ω(`). Suppose we are currently in
round i. Now consider two pieces p1 and p2 which are
merged during a single round. Then the probability
that p1 and p2 are assigned to different servers is
Ω((` − 1)/`) = Ω(1). Furthermore, observe that each
piece has volume 2i/k and in total there are n/2i pieces.
Now by linearity of expectation we obtain that the
expected volume moved by the algorithm in round i
is Ω(2i/k · n/2i) = Ω(`).

Next, observe that the total cost paid by the
algorithm is Ω(` · log k) since there are log k rounds.
Furthermore, OPT never moves volume more than O(`)
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because it moves each vertex at most once. Thus, the
competitive ratio is Ω(log k).
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