Tight Bounds for
Online Graph Partitioning

Monika Henzinger, Stefan Neumann, Harald Racke, Stefan Schmid

T . o o0 SRS

gezd Lnlversitat FKTH %

SODA 2021 & wien G e B
8, &

The Problem

Online Graph Partitioning

Problem Definition

* |nitially there is an empty graph
with 7 vertices

» \ertices are assigned to £ servers

 Each server has capacity for
(1 + &) - k vertices, where k = n/¢

* Adversary inserts edges into the graph

» \ertices of connected components
must be assigned to the same server

* Algorithm can re-assign components

Online Graph Partitioning

Problem Definition

 If ALG moves a connected
component with s vertices,
it has to pay cost s

« OPT knows all edge insertions in
advance and can move to final
configuration at minimum cost

e (Goal:
Minimize the (strict) competitive ratio

cost(ALG)
cost(OPT)

Online Graph Partitioning

* |Introduced by Henzinger et al.
(SIGMETRICS’19)

* Applications:

e Resource allocation in the cloud
=) servers = datacenters
= vertices = workloads

(e.g., communicating virtual machines)

* |Implementing distributed
union—find data structures

Our Results

n vertices

Tight Randomized Algorithm oo

server capacity = (1 + e)k,
where k = n/¢

 We obtain a randomized algorithm with
competitive ratio O(log Z + log k)

* We derive a matching lower bound of

Q(log + log k)

= Our bounds are asymptotically tight

 Exponentially better than the
O - logk - log £)-competitive
algorithm In Henzinger et al.
(SIGMETRICS’19)

n vertices

Tight Deterministic Algorithm sarvorcopanty o (1 + O

where kK = n/?t

* Deterministic algorithm with
competitive ratio O(¢ - log k)

 And matching lower bound of

Q7 - log k)
= [he bounds are asymptotically tight

e lfe > 1 (i.e., servers can store > 2k vertices),
we get a (tight) competitive ratio of

O(log k)

Technical Overview

General Problematic

 Reminder:
e Adversary inserts edges

* \ertices of connected components
must be assigned to the same server

e Goal: minimize the number of vertex moves
 What should we do when an edge is inserted?

e |f both components are on the server:
do nothing

* |f components are on different servers:
need to move vertices

If Components Are on Different Servers

» Connecting two components C
and C, might trigger a cascade:

 Not enough server capacity to
move C; to server of C, @ndvice versa)

e \WWe have to move other
components as well

 Which components shall we move?

Which Components Shall We Move?

 We build an ILP based on the server
capacities and component sizes

 The |ILP solution reveals how we shall
assign the components to the servers

 We re-solve the ILP after each edge
iInsertion

» Sensitivity Analysis:
If components of sizes |C;| and | C, | get
connected, the ILP re-assigns components

of size at most O(|C, | + |G, |) min - Y. ez Lirm)

* Are we done? St D (rm) T(rm)Ti/6 > Vi/d foralli

D r T(r.m) = Z,, forall m

Is Sensitivity Analysis Enough?

e Unfortunately, no

* We identify two different types of components:

» easy components are “costly” for OPT,
OPT has to pay Q(|C|)

* for hard components,
OPT might have no cost at all

* Sensitivity analysis works for easy components,
but it is too costly for hard components

* We can afford to move easy components, min Z(r,m):er (r,m)
but we have to avoid moving hard components

St D rm) Erm)Ti/0 = Vi/o foralli

D r T(r.m) = Z,, forall m

How to Deal With Hard Components?

* First approach:
Can we make sure we never move hard

components?

= No. Our lower bounds show that sometimes
we must move hard components

 Our approach:
Interleave (standard) ILP solving and

manual ILP solving

= |f the merged component is easy,
use the standard ILP and sensitivity analysis

= |f the merged component is hard, min Z(T m): r¥m T(rm)
manually maintain an optimal ILP solution |
without moving any components St D rm) Erm)Ti/0 = Vi/o foralli

D r T(r.m) = Z,, forall m

Summary

Tight Bounds for Online Graph Partitioning

* Online graph patrtitioning:
Store n vertices across £ servers
while edges are inserted into the graph and

connected components must be placed on the
same server

* Tight randomized algorithm,
O(log Z + log k)-competitive

* Tight deterministic algorithm,
O - log k)-competitive

* Open Problem:

Remove exponential dependency on &
iIn competitive ratio St D rm) Trm)Ti/0 = Vi/6 foralls

min Z (r,m):r2m x(T,m)

D r T(r.m) = Z,, forall m

