I Cht Bounds for **Online Graph Partitioning** Monika Henzinger, Stefan Neumann, Harald Räcke, Stefan Schmid

SODA 2021

The Problem

Online Graph Partitioning Problem Definition

- Initially there is an empty graph with *n* vertices
- Vertices are assigned to C servers
- Each server has capacity for $(1 + \varepsilon) \cdot k$ vertices, where $k = n/\ell$
- Adversary inserts edges into the graph
- Vertices of connected components must be assigned to the same server
- Algorithm can re-assign components

Online Graph Partitioning Problem Definition

- If ALG moves a connected component with *s* vertices, it has to pay cost *s*
- OPT knows all edge insertions in advance and can move to final configuration at minimum cost
- Goal: Minimize the (strict) competitive ratio cost(ALG) cost(OPT)

Online Graph Partitioning

- Introduced by Henzinger et al. (SIGMETRICS'19)
- Applications:
 - Resource allocation in the cloud
 - servers = datacenters
 - vertices = workloads

(e.g., communicating virtual machines)

 Implementing distributed union—find data structures

Our Results

Tight Randomized Algorithm

- We obtain a randomized algorithm with competitive ratio $O(\log \ell + \log k)$
- We derive a matching lower bound of $\Omega(\log \ell + \log k)$
- Our bounds are asymptotically tight
- Exponentially better than the $O(\ell \cdot \log k \cdot \log \ell)$ -competitive algorithm in Henzinger et al. (SIGMETRICS'19)

n vertices ℓ servers server capacity = $(1 + \varepsilon)k$, where $k = n/\ell$

Tight Deterministic Algorithm

- Deterministic algorithm with competitive ratio $O(\ell \cdot \log k)$
- And matching lower bound of $\Omega(\ell \cdot \log k)$
- The bounds are asymptotically tight
- If $\varepsilon > 1$ (i.e., servers can store > 2k vertices), we get a (tight) competitive ratio of $O(\log k)$

n vertices ℓ servers server capacity = $(1 + \varepsilon)k$, where $k = n/\ell$

Technical Overview

General Problematic

- Reminder:
 - Adversary inserts edges
 - Vertices of connected components must be assigned to the same server
 - Goal: minimize the number of vertex moves
- What should we do when an edge is inserted?
- If both components are on the server: do nothing
- If components are on different servers:
 need to move vertices

If Components Are on Different Servers

- Connecting two components C_1 and C_2 might trigger a cascade:
 - Not enough server capacity to move C_1 to server of C_2 (and vice versa)
 - We have to move other components as well
- Which components shall we move?

Which Components Shall We Move?

- We build an ILP based on the server capacities and component sizes
- The ILP solution reveals how we shall assign the components to the servers
- We re-solve the ILP after each edge
 insertion
- Sensitivity Analysis: If components of sizes $|C_1|$ and $|C_2|$ get connected, the ILP re-assigns components of size at most $O(|C_1| + |C_2|)$
- Are we done?

s.t. $\sum_{(r,m)} x_{(r,m)} r_i / \delta \ge V_i / \delta$ for all i $\sum_r x_{(r,m)} = Z_m$ for all m

Is Sensitivity Analysis Enough?

- Unfortunately, no
- We identify two different types of components:
 - easy components are "costly" for OPT, OPT has to pay $\Omega(|C|)$
 - for *hard* components,
 OPT might have no cost at all
- Sensitivity analysis works for easy components, but it is too costly for hard components
- We can afford to move easy components, but we have to avoid moving hard components

 $\begin{array}{ll} \min & \sum_{(r,m): r \not\geq m} x_{(r,m)} \\ \text{s.t.} & \sum_{(r,m)} x_{(r,m)} r_i / \delta & \geq V_i / \delta \quad \text{for all } i \\ & \sum_r x_{(r,m)} & = Z_m \quad \text{for all } m \end{array}$

How to Deal With Hard Components?

• First approach:

Can we make sure we never move hard components?

No. Our lower bounds show that sometimes we must move hard components

• Our approach: Interleave (standard) ILP solving and manual ILP solving

- If the merged component is easy, use the standard ILP and sensitivity analysis
- If the merged component is hard, manually maintain an optimal ILP solution without moving any components

s.t. $\sum_{(r,m)} x_{(r,m)} r_i / \delta \ge V_i / \delta$ for all i $\sum_r x_{(r,m)} = Z_m$ for all m

Summary

Tight Bounds for Online Graph Partitioning

- Online graph partitioning: Store *n* vertices across *C* servers while edges are inserted into the graph and connected components must be placed on the same server
- Tight randomized algorithm, $\Theta(\log \ell + \log k)$ -competitive
- Tight deterministic algorithm, $\Theta(\ell \cdot \log k)$ -competitive
- **Open Problem:** Remove exponential dependency on *E* in competitive ratio

 $\sum_{(r,m):r \geq m} x_{(r,m)}$ min $\sum_{(r,m)} x_{(r,m)} r_i / \delta \ge V_i / \delta$ for all *i* s.t. $\sum_{r} x_{(r,m)} = Z_m$ for all m

