
SODA 2021

Tight Bounds for
Online Graph Partitioning
Monika Henzinger, Stefan Neumann, Harald Räcke, Stefan Schmid

The Problem

Online Graph Partitioning
Problem Definition

• Initially there is an empty graph 
with vertices

• Vertices are assigned to servers

• Each server has capacity for 
 vertices, where

• Adversary inserts edges into the graph

• Vertices of connected components 
must be assigned to the same server

• Algorithm can re-assign components

n

ℓ

(1 + ε) ⋅ k k = n/ℓ

Online Graph Partitioning
Problem Definition

• If moves a connected
component with vertices, 
it has to pay cost

• knows all edge insertions in
advance and can move to final
configuration at minimum cost

• Goal:  
Minimize the (strict) competitive ratio  
 

	

ALG
s
s

OPT

cost(ALG)
cost(OPT)

Online Graph Partitioning

• Introduced by Henzinger et al.
(SIGMETRICS’19)

• Applications:

• Resource allocation in the cloud

➡ servers = datacenters

➡ vertices = workloads 

	 (e.g., communicating virtual machines)

• Implementing distributed 
union—find data structures

Our Results

Tight Randomized Algorithm

• We obtain a randomized algorithm with
competitive ratio

• We derive a matching lower bound of

➡ Our bounds are asymptotically tight

• Exponentially better than the
-competitive

algorithm in Henzinger et al.
(SIGMETRICS’19)

O(log ℓ + log k)

Ω(log ℓ + log k)

O(ℓ ⋅ log k ⋅ log ℓ)

 vertices
 servers

server capacity = ,
where

n
ℓ

(1 + ε)k
k = n/ℓ

Tight Deterministic Algorithm

• Deterministic algorithm with 
competitive ratio

• And matching lower bound of

➡ The bounds are asymptotically tight

• If (i.e., servers can store vertices), 
we get a (tight) competitive ratio of

O(ℓ ⋅ log k)

Ω(ℓ ⋅ log k)

ε > 1 > 2k

O(log k)

 vertices
 servers

server capacity = ,
where

n
ℓ

(1 + ε)k
k = n/ℓ

Technical Overview

General Problematic

• Reminder:

• Adversary inserts edges

• Vertices of connected components 
must be assigned to the same server

• Goal: minimize the number of vertex moves

• What should we do when an edge is inserted?

• If both components are on the server: 
	 do nothing

• If components are on different servers: 
	 need to move vertices

If Components Are on Different Servers

• Connecting two components
and might trigger a cascade:

• Not enough server capacity to
move to server of (and vice versa)

• We have to move other
components as well

• Which components shall we move?

C1
C2

C1 C2

C2

C1

Which Components Shall We Move?

• We build an ILP based on the server
capacities and component sizes

• The ILP solution reveals how we shall 
assign the components to the servers

• We re-solve the ILP after each edge
insertion

• Sensitivity Analysis: 
If components of sizes and get
connected, the ILP re-assigns components
of size at most

• Are we done?

|C1 | |C2 |

O(|C1 | + |C2 |) C2

C1

Is Sensitivity Analysis Enough?

• Unfortunately, no

• We identify two different types of components:

• easy components are “costly” for ,
 has to pay

• for hard components, 
 might have no cost at all

• Sensitivity analysis works for easy components, 
but it is too costly for hard components

• We can afford to move easy components, 
but we have to avoid moving hard components

OPT
OPT Ω(|C |)

OPT

C2

C1

How to Deal With Hard Components?

• First approach: 
Can we make sure we never move hard
components?

➡ No. Our lower bounds show that sometimes
we must move hard components

• Our approach: 
Interleave (standard) ILP solving and 
manual ILP solving

➡ If the merged component is easy, 
use the standard ILP and sensitivity analysis

➡ If the merged component is hard, 
manually maintain an optimal ILP solution
without moving any components

C2

C1

Summary

Tight Bounds for Online Graph Partitioning

• Online graph partitioning: 
Store vertices across servers 
while edges are inserted into the graph and
connected components must be placed on the
same server

• Tight randomized algorithm, 
 -competitive

• Tight deterministic algorithm, 
 -competitive

• Open Problem: 
Remove exponential dependency on  
in competitive ratio

n ℓ

Θ(log ℓ + log k)

Θ(ℓ ⋅ log k)

ε C2

C1

