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The Problem



Online Graph Partitioning
Problem Definition

• Initially there is an empty graph 
with  vertices


• Vertices are assigned to  servers


• Each server has capacity for 
 vertices, where 


• Adversary inserts edges into the graph


• Vertices of connected components 
must be assigned to the same server


• Algorithm can re-assign components

n

ℓ

(1 + ε) ⋅ k k = n/ℓ



Online Graph Partitioning
Problem Definition

• If  moves a connected 
component with  vertices, 
it has to pay cost 


•  knows all edge insertions in 
advance and can move to final 
configuration at minimum cost


• Goal:  
Minimize the (strict) competitive ratio  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Online Graph Partitioning

• Introduced by Henzinger et al. 
(SIGMETRICS’19)


• Applications:


• Resource allocation in the cloud

➡ servers = datacenters

➡ vertices = workloads 

	       (e.g., communicating virtual machines)


• Implementing distributed 
union—find data structures



Our Results



Tight Randomized Algorithm

• We obtain a randomized algorithm with 
competitive ratio 


• We derive a matching lower bound of 



➡ Our bounds are asymptotically tight


• Exponentially better than the 
-competitive 

algorithm in Henzinger et al. 
(SIGMETRICS’19)
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Tight Deterministic Algorithm

• Deterministic algorithm with 
competitive ratio 


• And matching lower bound of 



➡ The bounds are asymptotically tight


• If  (i.e., servers can store  vertices), 
we get a (tight) competitive ratio of 
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Technical Overview



General Problematic

• Reminder:


• Adversary inserts edges


• Vertices of connected components 
must be assigned to the same server


• Goal: minimize the number of vertex moves


• What should we do when an edge is inserted?


• If both components are on the server: 
	 do nothing


• If components are on different servers: 
	 need to move vertices



If Components Are on Different Servers

• Connecting two components  
and  might trigger a cascade:


• Not enough server capacity to 
move  to server of  (and vice versa)


• We have to move other 
components as well


• Which components shall we move?
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Which Components Shall We Move?

• We build an ILP based on the server 
capacities and component sizes


• The ILP solution reveals how we shall 
assign the components to the servers


• We re-solve the ILP after each edge 
insertion


• Sensitivity Analysis: 
If components of sizes  and  get 
connected, the ILP re-assigns components 
of size at most 


• Are we done?
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Is Sensitivity Analysis Enough?

• Unfortunately, no


• We identify two different types of components:


• easy components are “costly” for , 
 has to pay 


• for hard components, 
 might have no cost at all


• Sensitivity analysis works for easy components, 
but it is too costly for hard components


• We can afford to move easy components, 
but we have to avoid moving hard components
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How to Deal With Hard Components?

• First approach: 
Can we make sure we never move hard 
components?


➡ No. Our lower bounds show that sometimes 
we must move hard components


• Our approach: 
Interleave (standard) ILP solving and 
manual ILP solving


➡ If the merged component is easy, 
use the standard ILP and sensitivity analysis


➡ If the merged component is hard, 
manually maintain an optimal ILP solution 
without moving any components
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Summary



Tight Bounds for Online Graph Partitioning

• Online graph partitioning: 
Store  vertices across  servers 
while edges are inserted into the graph and 
connected components must be placed on the 
same server


• Tight randomized algorithm, 
  -competitive


• Tight deterministic algorithm, 
  -competitive


• Open Problem: 
Remove exponential dependency on  
in competitive ratio

n ℓ

Θ(log ℓ + log k)

Θ(ℓ ⋅ log k)

ε C2

C1


