
OpenSDWN:  
Programmatic control over  
home and enterprise Wi-Fi

Julius Schulz-Zander, Bogdan Ciobotaru, Carlos Mayer, Stefan Schmid and Anja Feldmann
1

Link Characterization
Wide range of physical transmission rates

Flags such
as NoACK

Links are
asymmetric

RTS/CTS to mitigate
Hidden Terminal issue

Layer 2
retransmissions

Supports several medium
Access Categories (ACs)

2

Home Network Example

We don’t focus on 
 short lived flows

3

Mobility and State Migration
• Client mobility:

• New stateful firewall (FW)
lacks connection state

• Connections break

• State migration required

?

• State needs to be migrated
from one MB instance to
another

MB state migration

4

Motivation
• Application-specific requirements are not considered at the wireless access

• Application-specific sensitivity to latency or packet loss

• Today’s rate control is traffic agnostic

• Group related data traffic

• Multicast always sent at basic rate (typically lowest physical rate)

• No smart rate selection for group related traffic (even with just one subscriber)

• Middlebox Management (MB)

• Mobility requires MB state to be migrated/moved (e.g. FW state on Hotspot WiFi APs)

5

SDN NFV SDWN

Home

Enterprise

OpenSDWN Control Plane

OpenSDWN

6

OpenSDWN Building Blocks
• Separation between WiFi Control and Data-path

• Programmability of upper-MAC 802.11 functionalities

• Slicing of the wireless

[1] J. Schulz-Zander, L. Suresh, N. Sarrar, A. Feldmann, T. Hühn, and R. Merz. Programmatic Orchestration of WiFi Networks. In Proc. USENIX ATC ’14.

• Management of network functions

• Middlebox-Agents provide a network function interface

• Per-client middlebox state abstraction

• Programmability of the Wireless Datapath

• Assign Wi-Fi transmission settings to flows

• Abstraction from the physical transmission settings

Odin [1]

WDTX
vMB

Participatory

7

Realized as an
SDWN Application

Odin in a Nutshell
• SDWN Applications

• Mobility Management

• Client-based Load Balancing

• Per-client Light Virtual Access Point (LVAP) abstraction

• LVAP abstracts the complexities of IEEE 802.11

• Provides slicing of the wireless

• Focus on upper-MAC functionalities

• Client Association, Authentication etc.
[1] J. Schulz-Zander, L. Suresh, N. Sarrar, A. Feldmann, T. Hühn, and R. Merz. Programmatic Orchestration of WiFi Networks. In Proc. USENIX ATC ’14.

8

Wireless Datapath Programmability
• WiFi Datapath Transmission (WDTX) Rules

• Assignment of fixed and/or „meta“ transmission settings

• Control over transmission power, transmission rate as well as tailored retry chains

• Control level of wireless transmission settings:

• Per-Group level, e.g., maximum common transmission rate

• Per-station level, e.g., transmission power, RTS/CTS protection

• Per-application level, e.g., bandwidth/latency requirements

• Per-flow level, e.g., physical transmission rate, no ACK policy

9

SDWN Interface
OpenSDWN Controller

Radio Driver

Radio Agent

mac80211 subsystem

wireless NIC drivers

Wireless Access Point

cfg80211

Kernel Space netlink interface debugfs

mark1 TX Rule

mark2 TX Rule

markn TX Rule

…

User Space

Wireless data-path transmission settings

WDTX 
Table

LVAP

LVAP WDTX

WDTX

10

virtual Middlebox
• Abstraction from the inner workings of a specific middlebox

• Per-client state abstraction

• Simplifies device/user handling, e.g.,

• Mobility can be handled easier

• Per-device/class rules (e.g. for BYOD)

11

vMB Interface

Middlebox Driver

OpenSDWN Controller

Kernel Space
User Space

Middlebox Host

conntrack 
tools

conntrack

vMB

network interfaces

Statefull FW

netlink interface

middlebox  
abstraction

xtables

nl_driver

Bro

vMBBro driver

middlebox
abstraction

middlebox  
abstraction

vMB

IDS
Agent Agent

VNF
Agent

Virtual  
Network  
Function

12

Thee basic operations
supported by OpenSDWN

13

Operation: Mobility and Migration

vMB
vMB Clone

Migrate

Controller
Middlebox

C
lie

nt
 M

ob
ilit

y

vMB

LVAP 
Migration

Client’s LVAP

14

Operation: Transmission Control

Set Match Rule

Traffic  
Manager

Set Wireless  

Transmission Rule
Controller

Translates service
requirements into
transmission rules

15

Operation: Service Differentiation

DPI 
Middlebox

Service N
otification

Participatory  
Interface

Controller

Service Notification

16

Evaluation

17

Different WDTX Rules

R
ou

nd
 T

rip
 T

im
e

(R
TT

) [
m

s]

Default BPR AC:VO BPR+AC:VO

4
5

6
7

8

RTT optimization through WDTX
• 2 APs and two stations

• Two simultaneous flows

• Best effort background flow

• Flow with different WTDX

• RTT is decreased by half for flow

• Highest access category

• Best Probability Rate

18

●

Different WDTX Rules

M
AC

 L
ay

er
 R

et
ra

ns
m

is
si

on
s

Default BPR AC:VO BPR+AC:VO

20
30

40
50

Delay optimization through WDTX

• 2 APs and two stations

• Two simultaneous flows

• Best effort background flow

• Flow with different WTDX

• Layer 2 retransmissions decrease

19

Group transmissions
• Multicast packets are typically sent at basic rate

• Unicast has the potential to reduce the airtime consumption

• Direct Multicast Service (DMS)

• Switch from Multicast to Unicast

• Requires a client to signal its DMS capabilities

• OpenSDWN can assign maximum common transmission rate for a
group of stations

20

Time [s]

Th
ro

ug
hp

ut
 [k

By
te

s/
s]

0 10 20 30 40 50 60

20
0

60
0

10
00 ● Throughput

Frames

OpenSDWN DMS App
• IPTV service from a major

European ISP

• Stream easily exceeds the
available capacity in a IEEE
802.11g network

• Switching to unicast mitigates
this issue

#P
ac

ke
ts

 /

Switch to unicast

21

vMB Firewall Migration

●

●● ●

●
● ●●

●
●●● ●●

0.0

0.5

1.0

1.5

2.0

25 50 100 200 400 800 1600 3200 640012800
Entry Count

Ti
m

e(
m

s)

(a) Per entry write latency.

●

●

●●
●●●

●

●
●●●
●

●●
●

● ●●

0.0

0.5

1.0

1.5

2.0

25 50 100 200 400 800 1600 3200 640012800
Entry Count

Ti
m

e(
m

s)

(b) Per entry read latency.

●
●

●●
●

● ● ●● ●●● ●0.0

0.5

1.0

1.5

2.0

25 50 100 200 400 800 1600 3200 640012800
Entry Count

Ti
m

e(
m

s)

(c) Per entry delete latency.
Figure 6: Latency for a stateful firewall vMB object read, write and delete operation. Latency in milliseconds (time) is normalized to a per-entry time. vMB
object size is increased from 25 entries to 12,800 entries.

Algorithm 1: Mobility Service
begin

if handoverEvent = True then
oldMBid AP2MBmap.get(oldAPid) ;
newMBid AP2MBmap.get(newAPid) ;
vMB createvMB(clientIP, oldMBid) ;
if vMB.migrate(newMBid) = True then

signalOdin(migrationComplete) ;

OPENSDWN for different workloads in more detail. Specifically,
we measure the read, write and delete performance of a stateful FW
vMB extension that utilizes the netlink interface of the Linux Ker-
nel conntrack module for connection tracking, which is typically
part of a stateful firewall. We repeat each experiment 12 times for
each workload. The vMB object workloads vary from 25 to up
to 12,800 entries. As shown in Figure 6(a), we first measure the
performance of the per-entry execution time of the write (setState).
The write duration for a single entry decreases constantly with the
workload, and stabilizes at around 130 µs for a single entry in a
vMB object. Next, we evaluate the read time (getState) which de-
creases constantly. The average value stabilizes at around 270µs
(see Figure 6(b)). Finally, we evaluate the delete operation in or-
der to fully understand the required time for the migrate operation,
which requires a read, write and a delete of the old vMB object.
The average value of a delState stabilizes at around 40µs (see Fig-
ure 6(c)). That said, a migrate operation takes at least the time of
a combined read and write, times the number of entries. Thus, the
time can be estimated by the measured results. Specifically, the
delete of the old vMB state can be called after the object was cor-
rectly fetched and while it is installed into the new MB.
Case Study: Firewall State Migration The firewall state migra-
tion service is a reactive application triggered through external
events to move state between MB instances. The algorithm in form
of pseudo-code is shown in Algorithm 1. For example, when Odin
detects a client with a higher RSSI at a new AP, a handover event
is generated and the client’s firewall state migrated to the AP be-
fore the handover. The firewall state migration service then decides
whether the state associated with the mobile user needs to be mi-
grated and executes the operation. The application keeps a mapping
between APs and firewalls. If the client is moving over to an AP
that corresponds to a different stateful firewall than the current, a
migration of the client’s connection tracking state is performed.

During the state migration operation, the controller uses the three
operations that were evaluated previously. The getState call
on the serving middlebox is followed by a setState operation
with the target MB identifier as argument. Finally, the state is re-
moved through a delState call. The last two operations are vir-

Entry count Mean execution time (ms)
Write Read Delete Migrate

1 11.6 38.4 6.4 45.0
10 12.3 48.6 6.8 60.9
100 20.3 121.6 10.7 141.9
1000 115.9 778.0 43.0 893.9
10000 1119.3 5201.2 385.3 6320.5

Table 2: Average execution time of the setState, getState
and delState operations for different workloads.

tually simultaneous because RPC method calls are asynchronous,
and called at different agents. Table 2 shows the measured average
migration time for different vMB object sizes. The total time of
a migrate() call on a vMB object with 100 entries averages at
around 140 ms. This underlines the potential power that the sim-
plicity of the vMB abstraction exposes to a network programmer.
Note, the agent to kernel communication for a single rule is below
one millisecond. The RPC interface and entry processing from the
Linux Kernel netlink interface contribute the most to the processing
time.

5. PROTOTYPE IMPLEMENTATION
This section presents more details about our prototype imple-

mentation. We first describe the different radio and middlebox
interfaces implemented by OPENSDWN, then present the control
plane, and finally discuss the support for reactive and proactive ap-
plications. The Radio Agent is implemented in C/C++ while the
controller is based on the Java-based Floodlight OF controller. The
MB agent is realized in python and implements a newly defined MB
protocol.

5.1 Interfaces
Interfaces to the physical WiFi and middlebox resources are pro-

vided by agents. We describe the radio and middlebox interfaces in
turn. Moreover, Table 3 depicts the south-bound interface between
the agents and the controller.
Radio Interface: OPENSDWN’s wireless APs run a radio agent
which exposes the necessary hooks for the controller (and thus ap-
plications) to orchestrate the WiFi network and report measure-
ments. All time-critical aspects of the WiFi MAC protocol (such
as IEEE 802.11 acknowledgments) continue to be performed by
the WiFi NIC’s hardware. On the other hand, non time-critical
functionality including management of client associations, is im-
plemented in software on the controller and the agents. Specifi-
cally, this realizes a distributed WiFi split-MAC architecture. In
addition, matching on incoming frames is performed to support
a publish-subscribe system wherein network applications can sub-
scribe to per-frame events.

22

vMB FW performance: write

●

●● ●

●
● ●●

●
●●● ●●

0.0

0.5

1.0

1.5

2.0

25 50 100 200 400 800 1600 3200 640012800
Entry Count

Ti
m

e(
m

s)

23

Conclusion
• OpenSWDN enables a wide range of new SDWN applications

• Direct multicast as a simple application

• User-defined service differentiation and prioritization

• vMB abstraction simplifies handling of client mobility

!

• Future Work:

• Study service requirements and effect of WDTX

• Effect of group related WDTX rules on services

24

Questions?"
!

Code soon available:  
opensdwn.com

25

