Stitching Inter-Domain Paths over IXPs

Vasileios Kotronis, Rowan Klöti, <u>Matthias Rost</u>, Panagiotis Georgopoulos, Bernhard Ager, Stefan Schmid, Xenofontas Dimitropoulos

Inter-Domain Routing: Status Quo

Inter-Domain Routing: Status Quo

Inter-Domain Routing: Status Quo

- BGP selects single policy-compliant path
- only best-effort transport

Motivation

- Applications may require ...
 - high bandwidth
 - low latency
 - enhanced reliability

• ASes connect at Internet Exchange Points (IXPs)

AS-centric view

• ASes connect at Internet Exchange Points (IXPs)

AS-centric view

• ASes connect at Internet Exchange Points (IXPs)

AS-centric view

• ASes connect at Internet Exchange Points (IXPs)

AS-centric view

- ASes connect at Internet Exchange Points (IXPs)
- Idea: use ASes for providing inter-IXP paths

Our Proposal: Control Exchange Points

• **Centrally** stitch inter-IXP paths at IXPs using CXPs

Our Proposal: Control Exchange Points

- **Centrally** stitch inter-IXP paths at IXPs using CXPs
- ASes are responsible to connect end hosts to IXPs

Our Proposal: Control Exchange Points

- **Centrally** stitch inter-IXP paths at IXPs using CXPs
- ASes are responsible to connect end hosts to IXPs
- ASes might provide guarantees on paths
 → end-to-end guarantees

Main Questions

- Which IXPs should be controlled by CXPs?
- How many customers can we reach?
- What is the gain in path diversity?
- How to efficiently and centrally compute routes?
- What are the opportunities of centralized control?

MEASURING THE IXP MULTIGRAPH

Methodology

Determine IXPs and the ASes connecting them

– Euro-IX (and Peering-DB)

Determine customer-cone of IXPs
 – CAIDA data

Results at a Glance

Results at a Glance: IXP Multigraph

Avg. degree: 220 Avg. edge multiplicity: 4.3

Results at a Glance: IXP Multigraph

Results at a Glance: Customer Reach

Results at a Glance: Customer Reach

Results at a Glance: Customer Reach

Approx. 61% of IPv4 adresses

- Do we really need all of the 229 IXPs to offer end-to-end paths?
- Greedily select IXPs maximizing customer cone.

- Do we really need all of the 229 IXPs to offer end-to-end paths?
- Greedily select IXPs maximizing customer cone.

- Do we really need all of the 229 IXPs to offer end-to-end paths?
- Greedily select IXPs maximizing customer cone.

- Do we really need all of the 229 IXPs to offer end-to-end paths?
- Greedily select IXPs maximizing customer cone.

- Do we really need all of the 229 IXPs to offer end-to-end paths?
- Greedily select IXPs maximizing customer cone.

- Do we really need all of the 229 IXPs to offer end-to-end paths?
- Greedily select IXPs maximizing customer cone.

number of IXPs	reachable directly	with 1-hop
5	approx. 40%	approx. 91%
20	approx. 55%	approx. 92%

Path Diversity

• What is the gain in path diversity over BGP?

Path Diversity

- What is the gain in path diversity over BGP?
- BGP: valley-free (at most one peering link)

Path Diversity

- What is the gain in path diversity over BGP?
- BGP: valley-free (at most one peering link)

Path Diversity: Results

Path Diversity: Results

- Significant gains even when only stitching peering links
- Up to 29x times the path diversity

HOW TO EFFICIENTLY COMPUTE END-TO-END PATHS AT CXPS

Objective: embed requests (as many as possible)

ASes of X and Y provide connectivity to the IXPs

Task: find appropriate path for connecting the IXPs

Trading Off Objectives

- single link
- resource fragmentation
- uses low-latency link

- two links
- no resource fragmentation

Trading Off Objectives

CXP should consider

- resource utilization (hop count)
- resource fragmentation
- utilization of scarce resources

Finding Good Paths is Challenging

Theory

- Finding optimal paths is NP-hard when considering latency etc.!
- Feasible paths can be found in polynomial time.

Practice

 Even when only considering 14 IXPs, the IXP multigraph contains around 4k edges.

Finding Good Paths is Challenging

Theory

- Finding optimal paths is NP-hard when considering latency etc.!
- Feasible paths can be found in polynomial time.

Practice

 Even when only considering 14 IXPs, the IXP multigraph contains around 4k edges.

We develop an algorithmic framework.

- Efficiently computing paths.
- Harnessing centralized control.

Finding Good Paths is Challenging

Theory

- Finding optimal paths is NP-hard when considering latency etc.!
- Feasible paths can be found in polynomial time.

Practice

 Even when only considering 14 IXPs, the IXP multigraph contains around 4k edges.

Sample-Selection Framework

- Sample set of feasible paths.
- Select "best" one found.
- Reconfigure later if necessary.

Path Sampling Strategies

- Perturbed Dijkstra (PD)
 - project inter-IXP links on the lowest latency one and apply Dijkstra
 - iterate without the links found
- Guided Dijkstra (GD)
 - Dijkstra choosing a single inter-IXP link at random during neighborhood exploration
- Guided Walk (GW)
 - Choose next IXP node and the respective edge uniformly at random

Path Selection Strategy

- Strictly prefer paths with smaller hop count
- Break ties by ...
 - trying to avoid using scarce low latency links
 - trying to avoid depleting bandwidth between adjacent IXPs

Reconfiguration Support

- We propose Integer Program HeurPaths for background reconfigurations.
- Given the previously sampled paths, it selects any of them for enabling the embedding of additional requests.

Integer Program 2: Heuristi	c Path Formulation (HeurPaths)	
$\max \sum_{R \in \mathcal{R}} x_R$		(OBJ)
$x_R = \sum_{P_R \in \mathcal{P}_R} y_{P_R}$	$\forall R \in \mathcal{R}$	(HP-1)
$bw_e \geq \sum_{R \in \mathcal{R}, e \in P_R} bw_R \cdot y_R$	$\forall \ e \in E_G$	(HP-2)
$x_R \in \{0, 1\}$ $y_{P_R} \in \{0, 1\}$	$\forall R \in \mathcal{R} \\ \forall R \in \mathcal{R}, P_R \in \mathcal{P}_R$	(HP-3) (HP-4)

EVALUATION

Challenges

- CXP needs to embed requests such that latency and bandwidth requirements are satisfied
- CXP would like to ...
 - embed as many requests as possible (profit!)
 - minimize resource utilization
 - avoid resource fragmentation
 - avoid unnecessary usage of low-latency links
- Shortest Paths Problem with multiple objectives: NP-hard

Algorithmic Framework: Sample&Select

- Generate a set of feasible paths (w.r.t. bandwidth and latency) and select one of them using a high-level objective function
 - Sample paths: Variants of Dijkstra / Randomized
 Walks (5, 10, 20, 100 paths..)
 - Select:
 - Minimize hop count (resource)
 - Try to avoid scarce low latency links / scarce bandwidth links

Path Sampling: Considerations

- Multigraph
 - Given a request we can check whether a solution can exist:
 - Remove all links not supporting the bandwidth
 - Project the graph onto a simple one using lowestlatency edges
 - Peform any shortest-paths algorithm
 - Gives us two types of information:
 - Is it feasible?
 - Shortest paths distances from any node towards the receiver

Path Sampling: Algorithms

- Perturbed Dijkstra
 - Project multigraph onto simple graph and apply Dijkstra
 - Compute shortest path → remove used edges → recompute paths (simple!) will always use low-latency links
- Guided Dijkstra
 - Given any state in the path computation (that means we have a distance for a node from the start), consider the next hop
- Guided Walk
 - Similar to Guided Dijkstra but explore nodes randomly, not using a distance Queue (such that we can always extend the path)

Algorithmic Opportunity: Centralized Batch Embeddings

- Given an existing set of requests we may reconfigure embeddings!
- We provide a simple Integer Program such that provided a set of paths for each request any of the path can be chosen, trying to maximize the number of embedded requests
- Even for 10,000 requests with 20 paths each, computation times for optimal solutions lies within 5 seconds to 1 minute
- Optimal IP will take up to hours!

Simulation Parameter Space

- Number of requests
- Arrival Process
- Topology used
- Latency distribution
- End-host distribution
- Paths per request
- Capacities of requests and substrate network

Simulation Parameter Space

- Number of requests
- Arrival Process / Leaving Process
- Topology used
- Latency distribution (requests and substrate)
- End-host distribution
- Paths per request
- Capacities of requests and substrate network

RESULTS

Acceptance Ratio

Code Availability

• Github link

CONCLUSION

Path Diversity: Considered Models

THE FOLLOWING ARE BACKUP SLIDES AT THE MOMENT

Results at a Glance

Overcoming BGP's limitations

• Much research in the last 20 years

Overcoming BGP's limitations

- Much research in the last 20 years
 - Extend BGP: e.g. Miro, Nira

Overcoming BGP's limitations

- Much research in the last 20 years
 - Complement BGP: Bandwidth Brokers

Overcoming BGP's limitations

- Much research in the last 20 years
 - Complement BGP: Bandwidth Brokers, Path Computation Elements (PCE)

Overcoming BGP's limitations

- Much research in the last 20 years
 - Complement BGP: Bandwidth Brokers, Path Computation Elements (PCE), Software-Defined Exchanges (SDX)

just played around a little with PDF