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ABSTRACT
Networked systems are increasingly flexible and reconfigurable.

This enables demand-aware infrastructures whose resources can

be adjusted according to the traffic pattern they currently serve.

This paper revisits the dynamic balanced graph partitioning

problem, a generalization of the classic balanced graph partitioning

problem. We are given a set 𝑷 of 𝒏 = 𝒌ℓ processes which commu-

nicate over time according to a given request sequence 𝝈 . The pro-
cesses are assigned to ℓ servers (each of capacity 𝒌), and a scheduler
can change this assignment dynamically to reduce communication

costs, at cost 𝜶 per node move. Avin et al. showed an 𝛀(𝒌) lower
bound on the competitive ratio of any deterministic online algo-

rithm, even in a model with resource augmentation, and presented

an 𝑶 (𝒌 log 𝒌)-competitive online algorithm. We study the offline

version of this problem where 𝝈 is known to the algorithm.

Our main contribution is a polynomial-time algorithm which

provides an O(log 𝒏)-approximation with resource augmentation.

Our algorithm relies on an integer linear program formulation in a

metric space with spreading constraints. We relax the formulation

to a linear program and employ Bartal’s clustering algorithm in a

novel way to round it.

CCS CONCEPTS
• Theory of computation→ Scheduling algorithms.

KEYWORDS
Approximation algorithms; LP rounding; clustering; graph parti-

tioning

ACM Reference Format:
Harald Räcke, Stefan Schmid, and Ruslan Zabrodin. 2022. Approximate

Dynamic Balanced Graph Partitioning. In Proceedings of the 34th ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA ’22), July

11–14, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3490148.3538563

1 INTRODUCTION
Distributed cloud applications often generate a large amount of

network traffic [9]. In order to reduce communication costs and
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optimally serve such applications, it can make sense to allocate

frequently communicating nodes closer to each other, e.g., by collo-

cating them on the same server or in the same rack in the datacenter.

Such demand-aware optimizations are enabled by the increasing

resource allocation flexibilities available in modern virtualized in-

frastructures, and are empirically supported by the rich spatial and

temporal structure featured by communication patterns of data-

intensive applications [5].

This paper is motivated by the fundamental question how such

dynamic optimizations can be performed while minimizing recon-

figuration costs. In particular, we revisit the dynamic balanced

graph partitioning problem introduced byAvin et al. at DISC 2016 [6]

and recently reviewed at SIGACT News [21]. In a nutshell, in this

problem, a set 𝑃 of 𝑛 processes is distributed across ℓ servers, each

of size 𝑘 : without augmentation, each server can host up to 𝑘 pro-

cesses. It holds that 𝑛 = 𝑘ℓ . A sequence 𝜎 describes the demand,

that is, the communication pairs over time. If we view the commu-

nications requests as the edges of a graph that appear over time,

then this can be seen as a dynamic graph partitioning problem.

The goal is to devise a scheduling algorithm which strikes a

balance between the benefits and the costs of process migrations.

The cost model is as follows: if a communication request is served

remotely, i.e., between nodes mapped to different servers, it incurs

a communication cost of 1; communication requests between nodes

located on the same server are free of cost. Before the cost for the

current request is paid, an algorithm has the option to migrate

nodes at a cost of 𝛼 > 1 for each node move. The problem can

hence be seen as a symmetric version of caching: two nodes can be

“cached together” on any server.

Prior work [2, 6, 27] focused on an online setting where 𝜎 is

revealed to the algorithm one request at a time. In particular, it

has been shown that the competitive ratio of any deterministic

online algorithm is at least linear: in the worst case, the online

algorithm pays at least Ω(𝑘) times more than the offline algorithm

(even if server capacities are augmented by a constant factor). This

lower bound even holds in a scenario with augmentation, that

is, if the online algorithm can use larger servers than the offline

algorithm. Today, it is still an open question whether an 𝑂 (𝑘)-
competitive algorithm exists. The best-known online algorithm is

𝑂 (𝑘 log𝑘) [2, 6, 27] competitive.

This paper initiates the study of offline algorithms for this prob-

lem: the design of efficient approximation algorithms which know

the entire sequence 𝜎 . Besides being a fundamental theoretical re-

search question on its own right, our study of offline algorithms is

also motivated by the fact that communication patterns in datacen-

ters are often fairly predictable [22].

https://doi.org/10.1145/3490148.3538563
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1.1 Our Contributions
Our main contribution is a polynomial-time algorithm which pro-

vides an O( 1
𝜖2

log(𝑛)) approximation with resource augmentation

factor 2 + 𝜖 .
The proposed algorithm is randomized and formulates the opti-

mization problem as an integer linear program in a metric space,

using spreading constraints. This integer linear program is relaxed

to a linear program (LP), for which we obtain a separation oracle,

allowing us to solve the LP in polynomial time. We interpret the LP

solutions as trajectories in the metric space. We subsequently round

the LP solutions efficiently, using Bartal’s clustering algorithm in

a novel way. Unfortunately, we cannot apply Bartal’s algorithm

directly because the number of vertices in our graph depends on the

number of requests 𝑇 . Hence, a direct application would introduce

a logarithmic dependency on 𝑇 into the approximation guarantee.

In order to avoid this we partition our graph into subgraphs in

an appropriate way, execute Bartal’s clustering algorithm on each

subgraph and combine the results, achieving a competitive ratio

that is not dependent on the number of requests.

1.2 Novelty and Putting Things into
Perspective

Our problem can be seen as a generalization of a static graph par-

titioning problem: As our model does not assume initial locations

for the processes, for 𝛼 →∞ (moving processes is very expensive),

the problem turns into a balanced graph partitioning problem [1].

Even in this static version the problem does not allow for a finite ap-

proximation ratio without augmentation [1]. Therefore we clearly

require some form of augmentation in our more general model to

achieve any reasonable guarantees.

Existing algorithms for the balanced graph partitioning prob-

lem are usually based on one of the following two algorithmic

approaches: spreading metrics or dynamic programming. Algo-

rithms that use spreading metrics typically require augmentation at

least 2 [11, 12], whereas algorithms that use dynamic programming

achieve augmentation 1+𝜖 [1, 14]. Our techniques in this paper are

based on spreading metrics, hence the achieved augmentation of

roughly 2 is natural. For the balanced graph partitioning problem

there exists an O(log𝑛)-approximation algorithm for 1+𝜖 augmen-

tation [14] as well as an O(
√
log𝑛 log𝑘)-approximation algorithm

for augmentation 2 [24]. For comparison, our algorithm for the

more general model obtains an O(log𝑛) approximation with an

augmentation of 2 + 𝜖 .
A natural open problem is whether the violation of our algo-

rithm could be improved from 2 + 𝜖 to 1 + 𝜖 or the approximation

guarantee could be improved from O(log𝑛) to O(
√
log𝑛 log𝑘) by

using one of the aforementioned techniques for balanced graph par-

titioning. However, transferring either of these approaches to our

more general problem seems to be very challenging. See Section A

in the appendix for a detailed discussion.

At first glance our problem may also look similar to the k-server

problem [23, 25, 26] because we canmodel the processes as “servers”

traveling in ametric space. But unlike the traditional k-server model

we are not allowed to have many servers close to each other. This

additional constraint completely changes the problem, and existing

k-server algorithmic techniques are not applicable. Furthermore,

the static version of the k-server problem can be solved optimally

in polynomial time, which is clearly not the case for our problem.

1.3 Additional Related Work
The dynamic balanced graph partitioning problem has been intro-

duced by Avin et al. [2, 6]. The authors studied an online version of

the problem and presented a lower bound of Ω(𝑘) for deterministic

algorithms, even in a resource augmentation model, and described

a deterministic online algorithm which achieves a competitive ratio

of 𝑂 (𝑘 log𝑘). The problem can be seen as a symmetric version of

paging [16]. While the online algorithms in [2, 6] relies on expen-

sive repartitioning operations and has a super-polynomial runtime,

Forner et al. [17] later showed that an 𝑂 (𝑘 log𝑘) competitive ra-

tio can also be achieved with a polynomial-time online algorithm

which monitors the connectivity of communication requests over

time, rather than the density. Pacut et al. [27] further described an

𝑂 (ℓ)-competitive online algorithm for a scenario without resource

augmentation and the case where 𝑘 = 3 [10].

There also exist several results on restricted versions of the

problem. In particular, Henzinger et al. [19] initiated the study of a

model where it is guaranteed that the communication requests can

be perfectly partitioned: that is, they are drawn from a graph whose

connected components can be assigned to servers such that no

connected component is split across multiple servers. As the graph

is fixed and partitionable, this model is sometimes referred to as the

learning variant of the general dynamic balanced graph partitioning

problem. The authors present a deterministic exponential-time

algorithm with competitive ratio 𝑂 (ℓ log ℓ log𝑘) and complement

their result with a lower bound of Ω(log𝑘) on the competitive

ratio of any deterministic online algorithm. While their derived

bounds are tight for ℓ = 𝑂 (1) servers, there remains a gap of

factor 𝑂 (ℓ log ℓ) between upper and lower bound for the scenario

of ℓ = 𝜔 (1).
In a follow-up work, Henzinger et al. [18] improve upon these

results and present deterministic and randomized algorithms which

achieve (almost) tight bounds for the learning variant. In particular,

they present a polynomial-time randomized algorithm achieving a

polylogarithmic competitive ratio of𝑂 (log ℓ+ log𝑘), and prove that
no randomized online algorithm can achieve a lower competitive

ratio. Their approach establishes and exploits a connection to gener-

alized online scheduling, in particular, the works by Hochbaum and

Shmoys [20] and Sanders et al. [28]. For the deterministic learning

variant without resource augmentation, Pacut et al. showed a tight

bound of Θ(𝑘 · ℓ).
Another restricted version of the dynamic balanced graph par-

titioning problem has been studied in [3, 4]: here, the adversary

needs to generate the communication sequence from a random dis-

tribution. That is, while the adversary can choose the distribution

(and knows the deterministic online algorithm), it needs to sample

communication requests from this distribution in an i.i.d. manner.

More generally, our model is also related to dynamic bin packing

problems which allow for limited repacking [13]: this model can

be seen as a variant of our problem where pieces (resp. items) can

both be dynamically inserted and deleted, and it is also possible

to open new servers (i.e., bins); the goal is to use only an (almost)

minimal number of servers, and to minimize the number of piece
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(resp. item) moves. However, the techniques of [13] do not extend

to our problem.

To the best of our knowledge there are currently no results on

approximation algorithms for the dynamic balanced graph parti-

tioning problem.

1.4 Organization
The remainder of this paper is organized as follows. After intro-

ducing our formal model in Section 2, we first present a linear

programming formulation of our problem in Section 3 and then

describe our randomized rounding approximation algorithm in

Section 4. We conclude our contribution in Section 5 and discuss

directions for future research.

2 MODEL AND NOTATION
We are given a set of 𝑛 processes together with a sequence 𝜎 =

(𝜎1, . . . , 𝜎𝑇 ) of communication requests between these processes,

where 𝜎𝑡 = {𝑝, 𝑞} specifies a communication request between

processes 𝑝 and 𝑞. The processes have to be scheduled on a set of

ℓ servers, where each server has capacity 𝑘 , i.e., each server can

hold at most 𝑘 processes at any point in time. Let 𝑃 be the set of

processes with |𝑃 | = 𝑛 = 𝑘ℓ .

A communication request 𝜎𝑡 = {𝑝, 𝑞} incurs cost of exactly 1, if

𝑝 and 𝑞 are located on different servers. We call this the communica-

tion cost and say that request 𝜎𝑡 is served remotely. If the processes

are on the same server, no cost is incurred. A migration of a process

to another server induces cost 𝛼 > 1. We call this themigration cost.

The goal is to find a mapping of processes to servers for each time

step that minimizes the sum of migration and communication cost

and obeys the capacity constraints.

Assigning the processes to the servers such that capacity con-

straints are exactly obeyed seems very challenging. Thus, we use

a model with augmentation and allow to place up to (2 + 𝜖)𝑘 pro-

cesses on a server at any point in time. (We assume w.l.o.g. that

1/𝑘 ≤ 𝜖 ; in addition, for technical reasons, we assume that 𝜖 ≤ 1.)

A solution with augmentation is then compared to the optimal

solution without augmentation.

We use the following notation for graphs throughout the paper.

Let 𝑉 be a vertex set and 𝑑 a distance function for the vertices in

𝑉 . For 𝑣 ∈ 𝑉 we use 𝐵(𝑣, 𝑟 ) = {𝑢 ∈ 𝑉 | 𝑑 (𝑣,𝑢) ≤ 𝑟 } to denote

the ball with radius 𝑟 around 𝑣 , i.e., the set of vertices that are

at most at a distance 𝑟 away from 𝑣 . Let 𝐺 = (𝑉 , 𝐸) be a graph

and {𝑉1,𝑉2, . . . ,𝑉𝑧 } a partition of 𝑉 , i.e., 𝑉𝑖 ∩ 𝑉𝑗 = ∅, 𝑖 ≠ 𝑗 , and⋃
𝑖 𝑉𝑖 = 𝑉 . We say an edge 𝑒 ∈ 𝐸 is cut, if it connects two different

vertex sets, i.e., 𝑒 = {𝑢, 𝑣} with 𝑢 ∈ 𝑉𝑖 , 𝑣 ∈ 𝑉𝑗 , 𝑖 ≠ 𝑗 .

3 LINEAR PROGRAMMING FORMULATION
As the first step we formulate our problem statement as an integer

linear program (ILP). For this purpose we view the servers 𝑠1, . . . , 𝑠ℓ
as some abstract points in a metric space, where the distance be-

tween two servers is exactly 1. Additionally, for every process 𝑝

and time step 𝑡 we introduce a point 𝑝𝑡 ∈ {𝑠1, . . . , 𝑠ℓ } with the

meaning that if 𝑝𝑡 = 𝑠𝑖 then process 𝑝 is located at the 𝑖th server

at time step 𝑡 . As a consequence, the migration cost for a process

𝑝 at time step 𝑡 is 𝛼 times the distance between 𝑝𝑡 and 𝑝𝑡−1 and

min 𝛼
∑

𝑡 ≥1
𝑝∈𝑃

𝑑 (𝑝𝑡−1, 𝑝𝑡 ) +∑ 𝑡 ≥1
𝜎𝑡={𝑝,𝑞 }

𝑑 (𝑝𝑡 , 𝑞𝑡 )

∀𝑝𝑡 , 𝑞𝜏 , 𝑟𝜌 : 𝑑 (𝑝𝑡 , 𝑞𝜏 ) ≤ 𝑑 (𝑝𝑡 , 𝑟𝜌 ) + 𝑑 (𝑟𝜌 , 𝑞𝜏 ) (T)
∀𝑡, 𝑠𝑖 :

∑
𝑝∈𝑃 𝑑 (𝑝𝑡 , 𝑠𝑖 ) ≥ 𝑛 − 𝑘 (S)

∀𝑡, 𝑝 :

∑ℓ
𝑖=1 𝑑 (𝑝𝑡 , 𝑠𝑖 ) = ℓ − 1 (M)

∀𝑡, 𝜏, 𝑞, 𝑝 : 𝑑 (𝑝𝑡 , 𝑞𝜏 ) ∈ {0, 1} (I)

Figure 1: ILP1: Integer linear program that exactly captures
the model

min 𝛼
∑

𝑡 ≥1
𝑝∈𝑃

𝑑 (𝑝𝑡−1, 𝑝𝑡 ) +∑ 𝑡 ≥1
𝜎𝑡={𝑝,𝑞 }

𝑑 (𝑝𝑡 , 𝑞𝑡 )

∀𝑝𝑡 , 𝑞𝜏 , 𝑟𝜌 : 𝑑 (𝑝𝑡 , 𝑞𝜏 ) ≤ 𝑑 (𝑝𝑡 , 𝑟𝜌 ) + 𝑑 (𝑟𝜌 , 𝑞𝜏 ) (T)
∀𝑆 ⊆ 𝑃, 𝑝 ∈ 𝑆, 𝑡 :∑𝑞∈𝑆 𝑑 (𝑝𝑡 , 𝑞𝑡 ) ≥ |𝑆 | − 𝑘 (S)

∀𝑡, 𝜏, 𝑞, 𝑝 : 𝑑 (𝑝𝑡 , 𝑞𝜏 ) ∈ {0, 1} (I)

Figure 2: ILP2: The relaxed integer linear program

the communication cost at time 𝑡 is the distance between 𝑝𝑡 and 𝑞𝑡

where 𝜎𝑡 = {𝑝, 𝑞} is the request at time 𝑡 .

Next, note that we are not interested in the exact metric points.

We need only the distances between them. We denote by 𝑑 (𝑝𝑡 , 𝑞𝜏 )
the distance between points 𝑝𝑡 and 𝑞𝜏 . All variables in our ILP

will be of the form 𝑑 (𝑝𝑡 , 𝑞𝜏 ) ∈ {0, 1}. Actually, there is only one

variable 𝑑 ({𝑝𝑡 , 𝑞𝜏 }) in the ILP instead of 𝑑 (𝑝𝑡 , 𝑞𝜏 ) and 𝑑 (𝑞𝜏 , 𝑝𝑡 ),
which implies symmetry by design, but for ease of notation we

write 𝑑 (𝑝𝑡 , 𝑞𝜏 ).
ILP1 captures exactly our problem statement. We are minimiz-

ing over the traveled distance of all processes multiplied with 𝛼

(migration cost) and the distance between communication partners

(the number of requests served remotely). Because of the triangle

inequality constraints (T) and symmetry (which holds by construc-

tion) we obtain a valid pseudometric, which is sufficient for our

purpose. The spreading constraints (S) ensure that server capacity

constraints are met. This means that only 𝑘 processes can reside

on the same server simultaneously. The mapping constraints (M)

ensure that each process is assigned to exactly one server in each

time step 𝑡 .

Notice, that not enforcing the mapping constraints can only

lower the cost of the optimal solution. We eliminate server points

𝑠1, . . . , 𝑠𝑙 together with the mapping constraints (M) and let the ILP

decide where to place processes within the metric space. Doing so

we also need to adjust the spreading constraints (S). We formulate

the spreading constraints in a way that ensures that there are not

too many points within a ball of a fixed radius. Let ILP2 denote the

relaxed integer linear program.

Consider the optimal solution of ILP1. Spreading constraints to-

gether with the mapping constraints in ILP1 imply that the spread-

ing constraints in ILP2 are also met. Thus, this is a valid solution

of ILP2. It follows, that the optimal solution cost of ILP2 is a lower

bound on the optimal solution cost of ILP1. Next, we relax the inte-

grality constraints (I) in ILP2 by replacing themwith non-negativity
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constraints which again might only decrease the cost of the optimal

solution. We denote the resulting linear program by LP. Lemma 3.1

states that LP is computable in polynomial time.

Lemma 3.1. An optimal solution to LP can be computed in polyno-

mial time.

Proof. There is a polynomial number of variables and triangle

inequality constraints. For each time step 𝑡 and process 𝑝 ∈ 𝑃 we

can verify in polynomial time whether there exists a spreading

constraint involving 𝑝𝑡 that is not satisfied. Consider the sorted

sequence 𝑎 = (𝑝1, 𝑝2, . . . , 𝑝𝑛) of processes 𝑝𝑖 ∈ 𝑃 that are ordered

according to the increasing distance to 𝑝 at time step 𝑡 . For each

𝑆 ⊆ 𝑃, |𝑆 | =𝑚 and 𝑝 ∈ 𝑆 the expression

∑
𝑞∈𝑆 𝑑 (𝑝𝑡 , 𝑞𝑡 ) ≥ |𝑆 | − 𝑘 is

minimized if 𝑆 contains the first𝑚 processes from the sequence 𝑎.

Hence, for each 𝑝 and 𝑡 we need to verify the spreading constraints

at most for 𝑛 sets 𝑆 ⊆ 𝑃 . Thus, we obtain a separation oracle. □

4 ROUNDING THE LP SOLUTION
The linear program formulated in the previous section can be solved

in polynomial time, but the solution we obtain is fractional. We need

to round it in order to achieve a feasible integral solution. Recall that

the solution of the LP provides us with distances 𝑑 (𝑝𝑡 , 𝑞𝜏 ) for some

abstract points 𝑝𝑡 and 𝑞𝜏 , which correspond to the positions of the

processes 𝑝 and 𝑞 in metric space at time steps 𝑡 and 𝜏 , respectively.

We first transform the LP rounding problem into a graph problem

as follows (see Figure 3 for a visualization). We refer to the sequence

(𝑝0, 𝑝1, 𝑝2, . . . , 𝑝𝑇 ) of points as the trajectory of process 𝑝 . Thus,

each trajectory consists of𝑇 + 1 vertices and𝑇 edges 𝑒 = {𝑝𝑡−1, 𝑝𝑡 }
between consecutive trajectory vertices. We call these edges mi-

gration edges. Let 𝐸𝑚 = {{𝑝𝑡−1, 𝑝𝑡 } | 𝑝 ∈ 𝑃, 1 ≤ 𝑡 ≤ 𝑇 } be the set
of migration edges. Furthermore, for each communication request

𝜎𝑡 = {𝑝, 𝑞} we create an edge 𝑒 = {𝑝𝑡 , 𝑞𝑡 }. We refer to these edges

as communication edges. Let 𝐸𝑐 = {{𝑝𝑡 , 𝑞𝑡 } | 1 ≤ 𝑡 ≤ 𝑇, 𝜎𝑡 = {𝑝, 𝑞}}
be the set of communication edges. Define the length𝑑 (𝑒) of an edge
𝑒 = {𝑢,𝑤} ∈ 𝐸𝑚 ∪ 𝐸𝑐 as the distance 𝑑 (𝑢,𝑤). Let the cost of a com-

munication edge be 1 and the cost of a migration edge 𝛼 . We obtain

a graph𝐺 = (𝑉 , 𝐸, 𝑑) with𝑉 = {𝑝𝑡 | 𝑝 ∈ 𝑃, 𝑡 ≤ 𝑇 } and 𝐸 = 𝐸𝑚 ∪𝐸𝑐 .
We call vertices of the form 𝑝𝑡 for 𝑝 ∈ 𝑃 vertices with timestamp

𝑡 . Let 𝑉 (𝑡) denote the set of vertices with timestamp 𝑡 , 0 ≤ 𝑡 ≤ 𝑇 .
We say the cost of graph𝐺 is cost (𝐺) = 𝛼

∑
𝑒∈𝐸𝑚 𝑑 (𝑒) +∑𝑒∈𝐸𝑐 𝑑 (𝑒).

Note that cost (𝐺) is exactly the cost of the fractional solution of our

linear program. Let OPT be the cost of the optimal integral solution.

Clearly, cost (𝐺) ≤ OPT .

We would like to partition the graph into exactly ℓ pieces 𝑉1,

𝑉2, . . . , 𝑉ℓ such that |𝑉𝑖 ∩ 𝑉 (𝑡) | = 𝑘,∀𝑖, 𝑡 . Then, we could simply

assign each piece to a server. Unfortunately, this seems very difficult.

Instead we proceed in two steps. As the first step, we partition the

graph into many small pieces C = {𝑉1,𝑉2, . . . } with the property

that |𝑉𝑖 ∩𝑉 (𝑡) | ≤ (1 + 𝜖)𝑘,∀𝑖, 𝑡 for a fixed constant 𝜖 . We call these

pieces clusters and a partition of the graph𝐺 into clusters such that

the above property holds a valid clustering C. Let𝑊𝑐 and𝑊𝑚 be the

number of communication edges and migration edges, respectively,

that are cut by the clustering C. We define the cost of clustering C
by cost𝐺 (C) := 𝛼𝑊𝑚 +𝑊𝑐 . In the following we just write cost (C)
if the graph is clear from the context. We refer to this first step as

the graph clustering step.

The second step is the scheduling step. The aim of this step

is to decide which cluster is assigned to which server such that

capacity constraints are maintained. However, this is not trivial

and there might be no good way to assign the clusters from the

graph clustering step. Therefore, the scheduling step first partitions

the clusters from the clustering step into smaller pieces and then

assigns the pieces to servers.

4.1 Graph Clustering Step
Given 𝜖 > 0, our first goal is to partition the graph 𝐺 into clusters

𝑉1,𝑉2, . . . , such that ∀𝑖, 𝑡 : |𝑉𝑖 ∩𝑉 (𝑡) | ≤ (1 + 𝜖)𝑘 . We begin with a

lemma that states that capacity constraints are violated at most by

a factor of (1 + 𝜖), if the diameter of each cluster is bounded.

Lemma 4.1. Let 𝐶 be a cluster and 𝛿 its diameter. If 𝛿 ≤ 𝜖
1+𝜖 then

|𝐶 ∩𝑉 (𝑡) | ≤ (1 + 𝜖)𝑘 ∀𝑡 .

Proof. The set of vertices in 𝐶 with timestamp 𝑡 is exactly

𝐶 ∩ 𝑉 (𝑡). The crucial observation is that due to the spreading

constraints for each 𝑢 ∈ 𝐶 ∩𝑉 (𝑡) we have

𝛿 |𝐶 ∩𝑉 (𝑡) | ≥
∑

𝑣∈𝐶∩𝑉 (𝑡 )
𝑑 (𝑢, 𝑣) ≥ |𝐶 ∩𝑉 (𝑡) | − 𝑘.

Rearranging, we get |𝐶 ∩ 𝑉 (𝑡) | ≤ 𝑘
1−𝛿 for 𝛿 < 1, which we will

ensure. We want to obtain |𝐶 ∩𝑉 (𝑡) | ≤ (1 + 𝜖)𝑘 . We achieve this

by setting
𝑘

1−𝛿 ≤ (1 + 𝜖)𝑘 . Solving for 𝛿 gives 𝛿 ≤ 𝜖
1+𝜖 < 1. □

As a consequence, an assignment of one such cluster to a server

would violate the capacity constraints by at most (1+𝜖)𝑘 (although

we do not know at the moment how to schedule all the clusters). A

further issue is that the clustered graph should incur little cost, i.e.,

the number of migration and communication edges between differ-

ent clusters should be as small as possible. A candidate algorithm

for the graph clustering step is Bartal’s well known algorithm for

low diameter decomposition of graphs [7, 8]. However, if we apply

Bartal’s algorithm directly, our approximation ratio would depend

on log𝑁 , where 𝑁 is the number of vertices in our graph. Because

𝑁 = 𝑛(𝑇 + 1) in our case and we are aiming for a factor O(log𝑛)
approximation, we need to modify Bartal’s algorithm in order to

achieve our goal. In particular, we will enforce a lower bound on

the diameter of each cluster, which in turn will give us an upper

bound on the number of clusters.

Denote by 𝑀 =
∑
𝑝∈𝑃,𝑡 ≥1 𝑑 (𝑝𝑡−1, 𝑝𝑡 ) the overall distance trav-

eled by the processes in the linear programming solution. Next, we

derive an upper bound on the number of clusters.

Lemma 4.2. Let 𝑉1,𝑉2, . . . ,𝑉𝑧 be a clustering of graph 𝐺 . Assume

that every cluster 𝑉𝑖 has a center vertex 𝑣𝑖 and the distance between

two distinct center vertices is at least 𝑟 . Then the number of clusters 𝑧

is at most
1

𝑟 M + 𝑛.

Proof. Consider process 𝑝 and its trajectory (𝑝0, 𝑝1, . . . , 𝑝𝑇 ).
Let len(𝑝) = ∑𝑇

𝑡=1 𝑑 (𝑝𝑡−1, 𝑝𝑡 ) be the length of the trajectory. Then,

there are at most ⌈ 1𝑟 len(𝑝)⌉ cluster centers among these trajectory

vertices, as otherwise the distance between two center vertices

would be strictly lower than 𝑟 . Summing over all process trajectories

we obtain:

𝑧 ≤ ∑
𝑝∈𝑃 ⌈ 1𝑟 len(𝑝)⌉ ≤

1

𝑟

∑
𝑝∈𝑃 len(𝑝) + 𝑛 ≤ 1

𝑟 M + 𝑛,
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𝑝𝑡−2

𝑝𝑡−1

𝑝𝑡 𝑝𝑡+1

𝑝𝑡+2

𝑞𝑡−2𝑞𝑡−1
𝑞𝑡

𝑞𝑡+1

𝑞𝑡+2

𝑟𝑡−2𝑟𝑡−1
𝑟𝑡

𝑟𝑡+1

𝑟𝑡+2

Figure 3: Transformation of the LP solution into a graph:
The behavior of every process (here 𝑟 , 𝑝 and 𝑞) is represented
by a trajectory of 𝑇 + 1 points, which are connected by mi-
gration edges. The communication requests (here between 𝑞

and 𝑝 at time 𝑡 , and 𝑟 and 𝑞 at time 𝑡 + 2) are represented by
communication edges (drawn as a double edge). The dashed
circles are clusters with centers 𝑟𝑡+1 and 𝑝𝑡+2, respectively.

which proves the lemma. □

Let 𝑟 = 𝜖
4(1+𝜖) and 𝑍 = 1

𝑟M + 𝑛. We want to ensure that the

radius of each cluster is between 𝑟 and 2𝑟 . The graph clustering

algorithm works as follows. During iteration 𝑖 we arbitrarily select

a still unassigned vertex 𝑣 as the new cluster center. Then, we

choose 𝑥 from interval [0, 𝑟 ] according to the probability density

𝜌 (𝑥) = 𝑍
𝑍−1

ln𝑍
𝑟 𝑒− ln𝑍

𝑥
𝑟 and set radius 𝑟𝑖 to 𝑟 +𝑥 . Subsequently, we

create a new cluster 𝑉𝑖 of unassigned vertices that are at distance

at most 𝑟𝑖 from 𝑣 and remove it from the graph𝐺 . The procedure is

repeated until there are no unassigned vertices left. The algorithm

is described more formally in Procedure CreateClusters (see

Figure 4).

The proof of Lemma 4.3 follows essentially the same steps as

the proof in [7]. We slightly modify the analysis to account for the

fact that the radius we choose in each iteration is now from the

range [𝑟, 2𝑟 ] and not [0, 𝑟 ] as in [7]. This gives us an approximation

factor that is dependent on the number of clusters and not on the

number of vertices in the graph.

Lemma 4.3. Algorithm CreateClusters applied to a graph 𝐺

produces a valid clustering C with expected cost 𝐸 [cost (C)] at most

8

𝜖 (1 + 𝜖) ln(𝑍 )cost (𝐺).

Proof. By construction, the diameter of each cluster is at most

4𝑟 . According to Lemma 4.1 the maximum number of vertices corre-

sponding to some time step 𝑡 inside each cluster is at most (1 + 𝜖)𝑘 .
Hence, the clustering is valid.

Next, we derive a bound on the probability that an edge 𝑒 =

{𝑢,𝑤} with length 𝑑 (𝑒) is cut. For ease of analysis let 𝑟 ′ = 𝑟/ln(𝑍 ).
Then, 𝑥 is chosen from the interval [0, 𝑟 ′ ln(𝑍 )] according to the

probability density 𝜌 (𝑥) = 𝑍
𝑍−1

1

𝑟 ′ 𝑒
− 𝑥

𝑟 ′ . We fix some iteration 𝑡 . Let

𝑣 be the vertex that was chosen as the cluster center in this iteration.

Assuming that 𝑢 and𝑤 are still unassigned, we derive a bound on

the probability that they will be separated during the next iterations.

W.l.o.g. let 𝑑 (𝑣,𝑢) ≤ 𝑑 (𝑣,𝑤). We define the following events:

Input: Graph 𝐺 = (𝑉 , 𝐸, 𝑑), 𝜖,M
Output: Set of clusters C

procedure CreateClusters(𝐺, 𝜖,M)

𝑟 ← 𝜖
4(1+𝜖)

𝑍 ← 1

𝑟 M + 𝑛
C ← ∅
𝑖 ← 1

while 𝑉 ≠ ∅ do
Choose arbitrary unassigned vertex 𝑣

Choose 𝑥 from [0, 𝑟 ] according to probability density

𝜌 (𝑥) = 𝑍
𝑍−1

ln𝑍
𝑟 𝑒
− ln𝑍 𝑥

𝑟

𝑟𝑖 ← 𝑟 + 𝑥
𝑉𝑖 ← 𝐵(𝑣, 𝑟𝑖 )
𝑉 ← 𝑉 −𝑉𝑖
C ← C ∪ {𝑉𝑖 }
𝑖 ← 𝑖 + 1

end while
return C

end procedure

Figure 4: Algorithm for graph clustering

• 𝑈𝑡 : vertices 𝑢 and𝑤 are still unassigned at the beginning of

iteration 𝑡

• 𝐶𝑡 : 𝑑 (𝑣,𝑢) ≤ 𝑟 + 𝑥 ≤ 𝑑 (𝑣,𝑤) given𝑈𝑡 , i.e., cluster 𝑉𝑡 cuts 𝑒

• 𝑁𝑡 : 𝑟 + 𝑥 < 𝑑 (𝑣,𝑢) given 𝑈𝑡 , i.e., both of 𝑢 and 𝑤 remain

unassigned

• 𝑋𝑡 : edge 𝑒 will be cut by some cluster 𝑉𝑗 , 𝑗 ≥ 𝑡 , given𝑈𝑡

Trivially, 𝑃 (𝑈0) = 1. Eventually, we want to bound 𝑃 (𝑋0). Notice
that the edge could be either cut in the current iteration or the edge

“survives” and it will be cut in some of the following iterations. We

state it as follows:

𝑃 (𝑋𝑡 ) = 𝑃 (𝐶𝑡 ) + 𝑃 (𝑁𝑡 )𝑃 (𝑋𝑡+1)

Let 𝑎 = max{𝑑 (𝑣,𝑢) − 𝑟, 0} and 𝑏 = max{𝑑 (𝑣,𝑤) − 𝑟, 0}. Then, we
obtain:

𝑃 (𝐶𝑡 ) =
∫ 𝑏

𝑎

𝜌 (𝑥)𝑑𝑥

=
𝑍

𝑍 − 1 (𝑒
− 𝑎

𝑟 ′ − 𝑒−
𝑏
𝑟 ′ )

=
𝑍

𝑍 − 1 (1 − 𝑒
−𝑏−𝑎

𝑟 ′ )𝑒−
𝑎
𝑟 ′

≤ 𝑍

𝑍 − 1
𝑑 (𝑢,𝑤)

𝑟 ′
𝑒−

𝑎
𝑟 ′ ,

where we used (1 − 𝑒−𝑥 ) ≤ 𝑥 and 𝑏 − 𝑎 ≤ 𝑑 (𝑢,𝑤) in the last step.

For 𝑃 (𝑁𝑡 ) we obtain

𝑃 (𝑁𝑡 ) =
∫ 𝑎

0

𝜌 (𝑥)𝑑𝑥 =
𝑍

𝑍 − 1 (1 − 𝑒
− 𝑎

𝑟 ′ ) .

Wewant to prove by induction that 𝑃 (𝑋𝑡 ) ≤ (2− 𝑡
𝑍−1 )

𝑑 (𝑢,𝑤)
𝑟 ′ ). Due

to Lemma 4.2 and by construction of algorithm CreateClusters

we know that the number of clusters is at most 𝑍 . Consider the last

iteration 𝑡 ′ ≤ 𝑍 , i.e., the base case. Then, 𝑃 (𝑋𝑡 ′) = 0. Otherwise the
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edge would be cut, there would be still unassigned vertices left and

𝑡 ′ would not be the last iteration, so the bound holds.

Let 𝑃 (𝑋𝑡+1) ≤ (2− 𝑡+1
𝑍−1 )

𝑑 (𝑢,𝑤)
𝑟 ′ . Notice, that if 𝑑 (𝑣,𝑢) > 2𝑟 , then

trivially 𝑃 (𝐶𝑡 ) = 0 and 𝑃 (𝑁𝑡 ) = 1, leading to 𝑃 (𝑋𝑡 ) = 𝑃 (𝑋𝑡+1) ≤
(2 − 𝑡+1

𝑍−1 )
𝑑 (𝑢,𝑤)

𝑟 ′ ≤ (2 − 𝑡
𝑍−1 )

𝑑 (𝑢,𝑤)
𝑟 ′ . Therefore, we can assume

that 𝑑 (𝑣,𝑢) ≤ 2𝑟 . Then:

𝑃 (𝑋𝑡 ) = 𝑃 (𝐶𝑡 ) + 𝑃 (𝑁𝑡 )𝑃 (𝑋𝑡+1)

≤ 𝑍

𝑍 − 1
𝑑 (𝑢,𝑤)

𝑟 ′
𝑒−

𝑎
𝑟 ′

+ 𝑍

𝑍 − 1 (1 − 𝑒
− 𝑎

𝑟 ′ ) (2 − 𝑡+1
𝑍−1 )

𝑑 (𝑢,𝑤)
𝑟 ′

=
𝑍

𝑍 − 1

[
𝑒−

𝑎
𝑟 ′ + (1 − 𝑒−

𝑎
𝑟 ′ ) (2 − 𝑡+1

𝑍−1 )
] 𝑑 (𝑢,𝑤)

𝑟 ′

=
𝑍

𝑍 − 1

[
1 + (1 − 𝑒−

𝑎
𝑟 ′ ) − (1 − 𝑒−

𝑎
𝑟 ′ ) 𝑡+1

𝑍−1

] 𝑑 (𝑢,𝑤)
𝑟 ′

=
𝑍

𝑍 − 1

[
1 + (1 − 𝑡+1

𝑍−1 ) (1 − 𝑒
− 𝑎

𝑟 ′ )
] 𝑑 (𝑢,𝑤)

𝑟 ′

≤ 𝑍

𝑍 − 1
[
1 + (1 − 𝑡+1

𝑍−1 ) (1 −
1

𝑍
)
] 𝑑 (𝑢,𝑤)

𝑟 ′

=

[
2 − 𝑡

𝑍 − 1

] 𝑑 (𝑢,𝑤)
𝑟 ′

The last inequality holds since 𝑑 (𝑣,𝑢) − 𝑟 ≤ 𝑟 = 𝑟 ′ ln(𝑍 ) and
therefore 𝑎 ≤ 𝑟 ′ ln(𝑍 ) which leads to 𝑒−

𝑎
𝑟 ′ ≥ 1

𝑍
. By plugging in

𝑟 ′ = 𝑟/ln𝑍 we obtain 𝑃 (𝑋0) ≤ 2

𝑟 ln(𝑍 )𝑑 (𝑢,𝑤).
Let C be the clustering produced by algorithm CreateClusters

and let𝑊𝑐 and𝑊𝑚 be the number of communication edges and mi-

gration edges, respectively, that are cut by it. The cost of clustering

C is cost (C) = 𝛼𝑊𝑚 +𝑊𝑐 . Then, by linearity of expectation

𝐸 [cost (C)] = 𝛼𝐸 [𝑊𝑚] + 𝐸 [𝑊𝑐 ]

= 𝛼
∑
𝑡 ≥1,𝑝∈𝑃 𝑃 [𝑒 = {𝑝𝑡−1, 𝑝𝑡 } is cut]

+∑𝑡 ≥1,𝜎𝑡={𝑝,𝑞 } 𝑃 [𝑒 = {𝑝𝑡 , 𝑞𝑡 } is cut]

≤ 2

𝑟 ln(𝑍 )
(
𝛼
∑
𝑡 ≥1,𝑝∈𝑃 𝑑 (𝑝𝑡−1, 𝑝𝑡 )
+∑𝑡 ≥1,𝜎𝑡={𝑝,𝑞 } 𝑑 (𝑝𝑡 , 𝑞𝑡 )

)
= 2

𝑟 ln(𝑍 )cost (𝐺)

= 8

𝜖 (1 + 𝜖) ln(𝑍 )cost (𝐺)

□

4.2 Splitting the Input Sequence
We managed to partition the graph into clusters, but our approx-

imation factor still depends on the maximum number of clusters

𝑍 = 4

𝜖 (1 + 𝜖)𝑀 + 𝑛, where𝑀 is the total length of migration edges.

To eliminate this dependency we apply the following procedure:

We divide our input sequence into phases that incur migration cost

Θ(𝛼𝑛). In particular, we divide the graph obtained from the LP into

subgraphs 𝐺0 = (𝑉0, 𝐸0, 𝑑),𝐺1 = (𝑉1, 𝐸1, 𝑑), . . . such that each sub-

graph𝐺𝑖 has migration cost between 𝛼𝑛 and 2𝛼𝑛 and contains ver-

tices with timestamps from interval [𝑡𝑖 , 𝑡𝑖+1 − 1]. The time intervals

are not overlapping. We denote byV = {𝑉0,𝑉1, . . . } the clustering
of graph 𝐺 into subgraphs 𝐺𝑖 . We use algorithm CreateClusters

to generate clusters C𝑖 for each subgraph 𝐺𝑖 independently and

combine the results.

Let C =
⋃

𝑖 C𝑖 be the combined clustering. Then, cost (C) is ex-
actly

∑
𝑖≥0 cost (C𝑖 ) + cost (V). Clearly, cost (V) ≤ |V|𝛼𝑛, since by

construction the number of migration edges that connect subgraph

𝐺𝑖 with subgraph 𝐺𝑖+1 is 𝑛 (only consecutive subgraphs are con-

nected by edges). Let𝑀𝑖 denote the total length of migration edges

in subgraph 𝐺𝑖 . By construction 𝛼𝑀𝑖 ≤ 2𝛼𝑛. Hence, the number

of clusters 𝑍𝑖 = |C𝑖 | in each subgraph 𝐺𝑖 is at most
(1+𝜖)
𝜖 8𝑛 + 𝑛.

Since 𝜖 ≥ 1

𝑘
≥ 1

𝑛 and the function
1+𝜖
𝜖 ≤ 𝑛 + 1 for 𝜖 ≥ 1

𝑛 we obtain:

𝑍𝑖 ≤ 8𝑛2 + 9𝑛 ≤ 16𝑛2, for 𝑛 ≥ 2. Then, by linearity of expectation

𝐸 [cost (C)] ≤ ∑
𝑖≥0 𝐸 [cost𝐺𝑖

(C𝑖 )] + 𝐸 [cost𝐺 (V)]

≤ ∑
𝑖≥0

8

𝜖 (1 + 𝜖) log(𝑍𝑖 )cost (𝐺𝑖 ) + |V|𝛼𝑛

≤ 32

𝜖 log(4𝑛)∑𝑖≥0 cost (𝐺𝑖 ) + |V|𝛼𝑛

≤ 32

𝜖 log(4𝑛)∑𝑖≥0 (cost (𝐺𝑖 ) + 𝛼𝑛)

≤ 64

𝜖 log(4𝑛)∑𝑖≥0 cost (𝐺𝑖 )

≤ O( 1𝜖 log𝑛)cost (𝐺)

The second inequation is due to Lemma 4.3. The third inequation

holds because 𝑍𝑖 ≤ 16𝑛2 and 𝜖 ≤ 1. The fifth inequation holds

because 𝛼𝑛 ≤ cost (𝐺𝑖 ) for all 𝑖 .

4.3 Scheduling Step
In the graph clustering step we partitioned the graph into clusters

such that the cost of cut edges is O( 1𝜖 log𝑛)cost (𝐺) and capacity

constraints are violated only by a factor of (1 + 𝜖). Now we want to

assign clusters to servers. An assignment of a cluster𝐶 to a server 𝑠

means that for all points 𝑝𝑡 ∈ 𝐶 we place the process 𝑝 at time step

𝑡 on the server 𝑠 . A migration edge between clusters corresponds

to a process that may be migrating to another server (depending

on the assignment of clusters to servers). A communication edge

between clusters corresponds to a communication request that may

be served remotely. If we assign the clusters directly to the servers,

then the cost of our solution would correspond to the cost of cut

edges, i.e., cost of migrations and communication requests served

remotely. Still, an assignment of several clusters to one server could

result in large capacity constraints violation.

Until now we established an upper bound on the number of

vertices in each time step in the clusters. In order to schedule the

processes without large capacity constraints violation we also need

a lower bound. We split the clusters from the graph clustering step

into subclusters, such that the cost increase is only a constant fac-

tor (dependent on 𝜖) and an assignment of subclusters to servers

involves only small capacity constraint violation. We create sub-

clusters by choosing consecutive non-overlapping time intervals

and assign vertices with timestamps from the same time interval to

a subcluster. For example, all vertices of cluster 𝐶 with timestamps

in [𝑡0, 𝑡1] form a subcluster 𝑆0 ⊆ 𝐶 , the vertices with timestamps

in [𝑡1 + 1, 𝑡2] form subcluster 𝑆1 ⊆ 𝐶 and so on. In other words, we

are "cutting" the cluster at time steps 𝑡0, 𝑡1, 𝑡2, . . . .

We say the duration 𝐼 (𝑆) of a subcluster 𝑆 is the time interval

[𝑡𝑏 , 𝑡𝑒 ] such that 𝑡𝑏 is the smallest timestamp of all vertices in 𝑆 and

𝑡𝑒 the largest timestamp of all vertices in 𝑆 . Let us refer to 𝑡𝑏 as the
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Input: Set of clusters C
Output: Set of subclusters S

procedure CreateSubclusters(C)
S = ∅
for 𝐶 ∈ C do

𝑡 ← 0

while 𝑡 ≤ 𝑇 do
𝑡𝑏 ← 𝑡 ⊲ start time of current subcluster

𝑥 ← |𝐶 ∩𝑉 (𝑡) |
while 𝑡 ≤ 𝑇 and |𝐶 ∩𝑉 (𝑡) | ≤ (1 + 𝜖

4
)𝑥 and |𝐶 ∩𝑉 (𝑡) | ≥ (1 − 𝜖

4
)𝑥 do

𝑡 ← 𝑡 + 1
end while
𝑆 ← ⋃𝑡−1

𝑖=𝑡𝑏
(𝐶 ∩𝑉 (𝑖)) ⊲ the new subcluster

𝐼 (𝑆) ← [𝑡𝑏 , 𝑡 − 1] ⊲ duration with start time 𝑡𝑏 , end time 𝑡 − 1
𝑤 (𝑆) ← min𝑖∈𝐼 (𝑆) |𝐶 ∩𝑉 (𝑖) | ⊲ width of 𝑆

S ← S ∪ {𝑆}
end while

end for
return S

end procedure

Figure 5: Algorithm for subcluster creation

start time and 𝑡𝑒 as the end time of subcluster 𝑆 . We say a subcluster

is active at time 𝑡 if 𝑡 ∈ 𝐼 (𝑆). For each subcluster we want that

|𝑆 ∩𝑉 (𝑡) | remains approximately the same for all 𝑡 ∈ 𝐼 (𝑆). The idea
is as follows. If for every subcluster 𝑆 , |𝑆∩𝑉 (𝑡) | is between𝑤 (𝑆) and
(1 + 𝜖)𝑤 (𝑆) for all 𝑡 ∈ 𝐼 (𝑆), then we can assign the subclusters to

the servers using a simple greedy algorithm. We call𝑤 (𝑆) the width
of the subcluster 𝑆 . Algorithm CreateSubclusters (see Figure 5)

describes how the subclusters are generated (see also Figure 6 for a

visualization).

Lemma 4.4. The set S of subclusters returned by algorithm Cre-

ateSubclusters when applied to a clustering C fulfills the following

properties:

• every subcluster has approximately the same number of pro-

cesses throughout its duration, i.e., ∀𝑡 ∈ 𝐼 (𝑆): |𝑆 ∩ 𝑉 (𝑡) | ≥
𝑤 (𝑆) and |𝑆 ∩𝑉 (𝑡) | ≤ (1 + 𝜖)𝑤 (𝑆)
• cost (S) ≤ O( 1𝜖 )cost (C)

Proof. Let 𝐼 (𝑆) = [𝑡𝑏 , 𝑡𝑒 ] and 𝑥 = |𝑆 ∩𝑉 (𝑡𝑏 ) |. By construction

𝑤 (𝑆) = min𝑡 ∈𝐼 (𝑆) |𝑆 ∩𝑉 (𝑡) |. Since𝑤 (𝑆) ≥ (1− 𝜖
4
)𝑥 we obtain that

(1+𝜖)𝑤 (𝑆) ≥ (1+𝜖) (1− 𝜖
4
)𝑥 ≥ (1+ 𝜖

2
)𝑥 ≥ (1+ 𝜖

4
)𝑥 (𝜖2 ≤ 𝜖 for 𝜖 ≤ 1)

which is by construction an upper bound on |𝑆 ∩𝑉 (𝑡) |,∀𝑡 ∈ 𝐼 (𝑆) .
Each subcluster induces a cut to its cluster. We are cutting the

processes at each subclusters end time. At that time there are at

most (1 + 𝜖
4
)𝑥 processes, but since the beginning of the subclusters

start time we already observed at least
𝜖
4
𝑥 migration edges that

are cut, otherwise we would have continued the duration 𝐼 (𝑆) of
subluster 𝑆 . Each time we observe at least 𝛼 𝜖

4
𝑥 cost and increase

the migration cost by at most 𝛼 (1 + 𝜖
4
)𝑥 . This corresponds to a

factor of O( 1𝜖 ) increase of the cost. □

As the next step, we schedule the subclusters using a greedy

algorithm. We say the load of a server 𝑠 at time 𝑡 is the total width

of active subclusters (at time 𝑡 ) that are assigned to 𝑠 . We process

the subclusters in the order of increasing start time and assign the

current subcluster 𝑆 to the server that has minimum load at the

start time of this cluster.

Lemma 4.5. The greedy algorithm produces a scheduling such that

the number of processes on each server is at most 2(1 + 𝜖)𝑘 for all

time steps.

Proof. Let 𝑆 be the current subcluster we want to assign to a

server. By an averaging argument the least loaded server 𝑠 must

have load at most 𝑘 at this time (i.e., before scheduling 𝑆). Otherwise

every server would have load greater that 𝑘 which results in the

overall number of processes greater than 𝑛, a contradiction. By a

monotonicity argument the current load of 𝑠 can also be at most

𝑘 for future time steps. This holds because we are processing the

subclusters in the order of increasing start time.

Since 𝑤 (𝑆) ≤ 𝑘 , the load on server 𝑠 is at most 2𝑘 for all time

steps (right after scheduling 𝑆). Furthermore, no subcluster will be

assigned to 𝑠 as long as its load at the start time of the correspond-

ing subcluster is greater that 𝑘 . Hence, after the greedy algorithm

finishes, the load on each server does not exceed 2𝑘 at any time

step. According to Lemma 4.4 the actual number of processes on

each server is at most 2(1 + 𝜖)𝑘 for all time steps. □

Let𝑊 be the cost of process migrations and remotely served re-

quests incurred by scheduling subclusters S. Clearly,𝑊 ≤ cost (S).
Then

𝐸 [𝑊 ] ≤ O( 1
𝜖2

log𝑛)OPT
By setting 𝜖 ′ = 𝜖

2
and applying the algorithm described in the

previous sections with 𝜖 ′ as parameter, we can state the following

theorem:
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Figure 6: Subdivision of a cluster 𝑆 into subclusters: Prior
to time step 𝑡 we are “cutting” the cluster 𝑆 (left red line).
Then, 𝑥 is the number of vertices in 𝑆 with timestamp 𝑡 . In
the next time step such that the number of vertices with the
corresponding timestamp is greater than 𝑥 + 𝜖

4
or lower than

𝑥− 𝜖
4
(which is 𝑡 +5 in this example) we are cutting the cluster

again (right red line). A subcluster with start time 𝑡 and end
time 𝑡 + 4 is created. We proceed in the same way with the
remaining time steps.

Theorem 4.6. The dynamic balanced graph partitioning prob-

lem can be solved in polynomial time with approximation factor

O( 1
𝜖2

log(𝑛)) and resource augmentation 2 + 𝜖 .

5 CONCLUSION
Motivated by the vision of demand-aware networked systems, we

revisited the dynamic balanced graph partitioning problem. Our

main contribution is the first polynomial-time algorithm which

achieves a polylogarithmic approximation ratio.

Our work leaves open several interesting avenues for future

research. In particular, it remains to provide an exact characteriza-

tion of the achievable approximation ratio under different allowed

augmentation factors. It would also be interesting to see whether

similar approximation ratios can be achieved using online algo-

rithms as well, or whether there are lower bounds which show a

separation.
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A LIMITATION OF OTHER TECHNIQUES
In this section we discuss the problems arising from transferring

techniques from [15, 24] to our more general problem.

In [15] the authors achieve violation 1 + 𝜖 on trees by using

dynamic programming. The idea is to characterize the partition

of the tree into connected components by a signature vector, that

describes the approximate sizes of components within the partition.

Crucially, it is shown that there are only a small number of different

signatures (polynomial in 𝑛) and that the best possible partition for

a given signature can be computed in polynomial time via dynamic

programming. This gives the aforementioned guaranty.

However, if you want to adapt this technique to our scenario the

signature needs to contain the component sizes for each time step.

This would result in a number of signatures that is exponential in

the number of time steps.

Another open problem is whether the approximation guarantee

could be improved from O(log𝑛) to O(
√
log𝑛 log𝑘) using tech-

niques from [24]. The algorithm there consists of two steps. In a

first step the 𝑘-balanced partitioning problem is formulated using

a semidefinite program with an ℓ2
2
spreading metric, which is sub-

sequently mapped into ℓ2. In a second step the components are

created by repeatedly cutting out pieces from the graph using a

random projection procedure. However, the size of such a piece

could be too large. In this case the algorithm simply rejects the piece.

With constant probability a piece is not too large, which bounds

the expected number of times the cutting procedure is performed.

If you want to adapt this approach to our scenario, then you need

to reject all pieces that contain too many vertices from one of the

time steps. However, in this case we cannot argue that with constant

probability the piece is not too large, as for an arbitrary number

of time steps the probability bound will not hold. Therefore, the

running time of the algorithm would be exponential in the number

of time steps.


	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Novelty and Putting Things into Perspective
	1.3 Additional Related Work
	1.4 Organization

	2 Model and Notation
	3 Linear Programming Formulation
	4 Rounding the LP Solution
	4.1 Graph Clustering Step
	4.2 Splitting the Input Sequence
	4.3 Scheduling Step

	5 Conclusion
	Acknowledgments
	References
	A Limitation of other techniques

