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The performance of many large-scale and data-intensive distributed sys-
tems critically depends on the capacity of the interconnecting network. This
paper is motivated by the vision of self-adjusting infrastructures whose re-
sources can be adjusted according to the workload they currently serve, in
a demand-aware manner. Such dynamic adjustments can be exploited to
improve network utilization and hence performance, by dynamically moving
frequently interacting communication partners closer, e.g., collocating them
in the same server or datacenter rack.

In particular, we revisit the online balanced graph partitioning problem
which captures the fundamental tradeoff between the benefits and costs of
dynamically collocating communication partners. The demand is modelled
as a sequence σ (revealed in an online manner) of communication requests
between n processes, each of which is running on one of the ℓ servers. Each
server has capacity k = n/ℓ, hence, the processes have to be scheduled in a
balanced manner across the servers. A request incurs cost 1, if the requested
processes are located on different servers, otherwise the cost is 0. A process
can be migrated to a different server at cost 1.

This paper presents the first online algorithm for online balanced graph
partitioning achieving a polylogarithmic competitive ratio for the fundamen-
tal case of ring communication patterns. Specifically, our main contribution
is a O(log3 n)-competitive randomized online algorithm for this problem. We
further present a randomized online algorithm which is O(log2 n)-competitive
when compared to a static optimal solution. Our two results rely on different
algorithms and techniques and hence are of independent interest.
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1. Introduction

Data-centric applications, including distributed machine learning, batch processing, scale-
out databases, or streaming, produce a significant amount of communication traffic and
their performance often critically depends on the underlying datacenter network [1]. In
particular, large flows (also known as elephant flows) may require significant network
resources if communicated across multiple hops, resulting in a high “bandwidth tax”
and consuming valuable resources which would otherwise be available for additional
flows [2, 3].

An intriguing approach to reduce communication overheads and make a more efficient
use of the available bandwidth capacity, is to leverage the resource allocation flexibilities
available in modern distributed systems (e.g., using virtualization), and render the in-
frastructures self-adjusting: by collocating two processes which currently exchange much
data on the same server or datacenter rack, in a demand-aware manner, communication
can be kept local and resources saved. When and how to collocate processes however is
an algorithmically challenging problem, as it introduces a tradeoff: as migrating a pro-
cess to different server comes with overheads, it should not be performed too frequently
and only when the migration cost can be amortized by an improved communication
later. Devising good migration strategies is particularly difficult in the realm of online
algorithms and competitive analysis, where the demand is not known ahead of time.

The fundamental algorithmic problem underlying such self-adjusting infrastructures
is known as dynamic balanced graph (re-)partitioning and has recently been studied
intensively [4–11], see also the recent SIGACT News article on the problem [12]. In its
basic form, the demand is modelled as a sequence σ (revealed in an online manner) of
communication requests between n processes, each of which is running (i.e., scheduled)
on one of the ℓ servers. Each server has capacity k = n/ℓ, hence, the processes have to
be scheduled in a balanced manner across the servers. A request incurs cost 1, if both
requested processes are located on different servers, otherwise the cost is 0. A process
can be migrated to a different server at cost 1. The goal is to design online algorithms
which do not know σ ahead of time, yet, they are competitive against an optimal offline
algorithm with complete knowledge of the demand.

Unfortunately, deterministic online algorithms cannot achieve a low competitive ra-
tio: Avin et al. [8] (DISC 2016) presented a lower bound of Ω(k) for any deterministic
algorithm for this problem, even if the communication requests are sampled from a ring
graph, and even in a resource augmentation model. Accordingly, most related work
revolves around deterministic algorithms with polynomial competitive ratios [5–8, 11].
Hardly anything is known about the competitive ratio achievable by randomized online
algorithms, except for a “learning variant” introduced by Henzinger et al. in [10] (SIG-
METRICS 2019) and later studied by Henzinger et al. in [4] (SODA 2021): in this learn-
ing model, it is guaranteed that the communication requests can be perfectly partitioned,
that is, the requests in σ are drawn from a graph whose connected components can be
assigned to servers such that no connected component needs to be distributed across
multiple servers. For this learning variant, the authors presented a polynomial-time
randomized algorithm achieving a polylogarithmic competitive ratio of O(log ℓ + log k)
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which is asymptotically optimal. Unfortunately, however, these results on the learning
variant are not applicable to communication patterns which do not perfectly fit into the
servers, but which continuously require inter-server communication and/or migrations.

Motivated by this gap, we in this paper study the design of randomized online algo-
rithms for the balanced graph partitioning problem. We consider two models:

• Static: The performance of the online algorithm is compared to an optimal static
solution (for the given demand). This static model can be seen as a natural gen-
eralization of the learning variant discussed in prior work: while in prior work, it
is assumed that a static solution exists which does not accrue any communication
cost, in our static model, we do not make such an assumption on the communica-
tion pattern.

• Dynamic: The performance of the online algorithm is compared to an optimal
dynamic solution, which may also perform migrations over time.

As a first step, we consider a most fundamental setting where the demand σ is chosen
from a ring communication pattern. This is not only interesting because a ring pattern
cannot be solved by existing algorithms designed for the learning variant (the ring is a
large connected component which does not fit into a server) and because of the high lower
bound for deterministic algorithms mentioned above, but also because of its practical
relevance: machine learning workloads often exhibit ring like traffic patterns [3, 13–15].

1.1. Our Contributions

We present the first online algorithm for online balanced graph partitioning achieving a
polylogarithmic competitive ratio for the fundamental case of ring communication pat-
terns. We first present a randomized online algorithm which is O(log2 n)-competitive
when compared to an optimal static solution; this ratio is strict, i.e., without any ad-
ditional additive terms. Our second and main contribution is a O(log3 n)-competitive
randomized online algorithm for this problem when compared to an optimal dynamic
algorithm. Our two results rely on different algorithms and techniques and hence are of
independent interest.

1.2. Related Work

The dynamic balanced graph partitioning problem was introduced by Avin et al. [6, 8].
Besides the lower bound mentioned above (which even holds for ring graphs), they also
present a deterministic online algorithm which achieves a competitive ratio of O(k log k).
Their algorithm however relies on expensive repartitioning operations and has a super-
polynomial runtime. Forner et al. [5] later showed that a competitive ratio of O(k log k)
can also be achieved with a polynomial-time online algorithm which monitors the con-
nectivity of communication requests over time, rather than the density. Pacut et al. [7]
further contributed an O(ℓ)-competitive online algorithm for a scenario without resource
augmentation and the case where k = 3. The dynamic graph partitioning problem has
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also been studied from an offline perspective by Räcke et al. who presented a polynomial-
time O(log n)-approximation algorithm [16], using LP relaxation and Bartal’s clustering
algorithm to round it.

Deterministic online algorithms for the ring communication pattern have also been
studied already, in a model where the adversary needs to generate the communication
sequence from a random distribution in an i.i.d. manner [11,17]: in this scenario, it has
been shown that even deterministic algorithms can achieve a polylogarithmic competitive
ratio. The problem is however very different from ours and the corresponding algorithms
and techniques are not applicable in our setting.

So far, to the best of our knowledge, randomized online algorithms have only been
studied in the learning variant introduced by Henzinger et al. [4, 10]. In their first
paper on the learning variant, Henzinger et al. [10] still only studied deterministic algo-
rithms and presented a deterministic exponential-time algorithm with competitive ratio
O(ℓ log ℓ log k) as well as a lower bound of Ω(log k) on the competitive ratio of any de-
terministic online algorithm. While their derived bounds are tight for ℓ = O(1) servers,
there remains a gap of factor O(ℓ log ℓ) between upper and lower bound for the scenario of
ℓ = ω(1). In [4], Henzinger et al. present deterministic and randomized algorithms which
achieve (almost) tight bounds for the learning variant. In particular, a polynomial-time
randomized algorithm is described which achieves a polylogarithmic competitive ratio
of O(log ℓ+ log k); it is proved that no randomized online algorithm can achieve a lower
competitive ratio. Their approach establishes and exploits a connection to generalized
online scheduling, in particular, the works by Hochbaum and Shmoys [18] and Sanders
et al. [19].

More generally, our model is related to dynamic bin packing problems which allow for
limited repacking [20]: this model can be seen as a variant of our problem where pieces
(resp. items) can both be dynamically inserted and deleted, and it is also possible to open
new servers (i.e., bins); the goal is to use only an (almost) minimal number of servers,
and to minimize the number of piece (resp. item) moves. However, the techniques of [20]
do not extend to our problem.

1.3. Organization

The remainder of this paper is organized as follows. We introduce our model and given
an overview of our results in Section 2. The dynamic model is studied in Section 3 and
the static model in Section 4. We conclude our paper in Section 5.

2. Model and Results

We formally define the dynamic balanced graph partitioning problem for ring demands,
as follows. Let ℓ denote the number of servers, and k the capacity of a server, i.e.,
the maximum number of processes that can be scheduled on a single machine. We use
P = {p0, p1, . . . , pn−1} with n ≤ ℓk to denote the set of processes. Naming of processes
is done modulo n, i.e., pi with i ≥ n refers to process pi mod n.
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In each time step t we receive a request σt = {pj , pj+1} with pj , pj+1 ∈ P , which means
that these two processes communicate. Notice, that this restricts the communication
pattern to a cycle.

Serving a communication request incurs cost of exactly 1, if both requested processes
are located on different servers, otherwise 0. We call this the communication cost of
the request. After the communication an online algorithm may (additionally) decide
to perform an arbitrary number of migrations. Each migration of a process to another
server induces a cost of 1, and contributes to the migration cost of the request.

In the end after performing all migrations each server should obey its capacity con-
straint, i.e., it should have at most k processes assigned to it. The goal is to find an
online scheduling of processes to servers for each time step that minimizes the sum of
migration and communication cost and obeys the capacity constraints.

We will compare our online algorithms to optimum offline algorithms that on the one
hand are more powerful as they know the whole request sequence in advance, but on
the other hand are more restricted in the migrations that they are allowed to perform.
Firstly, we use resource augmentation. This means the offline algorithms have to strictly
obey the capacity constraint, i.e., they can schedule at most k processes on any server,
while the online algorithm may schedule αk processes on any server, for some factor
α > 1. Then we say that the online algorithm uses resource augmentation α.

In this model we obtain the following result.

Theorem 2.1. There is a randomized algorithm that solves the dynamic balanced graph
partitioning problem for ring demands with expected cost O(1ǫ log

3 k)OPT+c and resource
augmentation 2 + ǫ, where OPT is the cost of an optimal dynamic algorithm and c is a
constant not dependent on the request sequence.

One disadvantage of this result is the additive constant c, which means that the algo-
rithm is not strictly competitive. Note that there may exist very long request sequences
that have a very low optimum cost. Then the above theorem would not give good
guarantees.

In a second model we compare the performance of an online algorithm (that again
uses resource augmentation) to that of an optimal static algorithm. Such an algorithm
is only allowed to perform migrations in the beginning before the first request arrives.
In this model our goal is to be strictly competitive. We show the following theorem.

Theorem 2.2. There is a randomized algorithm that solves the dynamic balanced graph
partitioning problem for ring demands with expected cost O( 1

ǫ2
log2 k)OPT and resource

augmentation 3 + ǫ, where OPT is the cost of an optimal static algorithm.

3. The Dynamic Model

In this section we present an online polylog-competitive algorithm against a dynamic
optimal algorithm. The main idea of our online algorithm is the reduction of the balanced
graph partitioning problem for ring demands to the metrical task systems problem on
a line. Metrical task system (MTS) is an online minimization problem that was first
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introduced in [21] and has been extensively studied with various results for different types
of the underlying metric [21–25]. There exist a tight (2n− 1) competitive deterministic
algorithm [21] and a tight O(log2 n) competitive randomized algorithm [25, 26], if n is
the number of states in the system.

Notation

For ease of exposition we model the problem of scheduling processes on servers as a
dynamic coloring problem, as follows. We identify each server s with a unique color cs
and color a process with the color of the server on which it is currently scheduled.

We call the set of consecutive processes S = {ps, . . . , ps+ℓ−1} the segment of length ℓ
starting with ps. For ease of notation we use S = [s, s + ℓ − 1] to refer to this set. We
refer to a process pair {pi, pi+1} as an edge of the cycle. To simplify the notation we
denote such an edge with (i, i + 1).

For an algorithm ALG we use ALG(σ) to denote the cost of the algorithm ALG on σ.
However, usually σ will be clear from the context. Then we use ALG to denote both,
the algorithm and its cost.

3.1. Algorithm

Our strategy is to maintain a set of cut-edges which partition the cycle into slices. We
ensure that we have at most ℓ slices, each of size at most (2 + ǫ)k, such that we can
map the slices directly to servers with resource augmentation (2 + ǫ). Each cut-edge is
contained in an interval I, i.e., its position is constrained to the interval. The problem
of choosing the cut-edge in some interval I reduces to the metrical task systems problem
(MTS). The idea is to run a black box MTS algorithm for each interval independently.

Formally, let k′ := ⌈(1 + ǫ)k⌉ and ℓ′ =
⌈

n
k′

⌉

. The algorithm ONLR uses a shift
parameter R ∈ {0, . . . , k′ − 1} that gives rise to intervals I1, . . . , Iℓ′ , where {Ii =
[R+(i−1)k′, R+ ik′]}. Observe, that successive intervals share one vertex and intervals
Iℓ′ and I1 may also share edges. Each vertex is contained in at most two intervals.

Reduction to MTS A metrical task systems problem is defined as follows. We are
given a metric (S, d) with |S| = n states and a starting state s0 ∈ S. Each time step we
receive a task σi and a cost vector Ti, with Ti(s) describing the cost of processing the
task σi in state s. In response to σi an algorithm for the metrical task systems must
choose a state si ∈ S and pay the cost d(si−1, si) + Ti(si). The goal is to minimize the
overall incurred cost.

The online algorithm starts an MTS-instance for every interval. This instance is
responsible for choosing an edge inside the interval and is defined as follows. Let σI be
the restriction of the request sequence to the requests in I. For each interval I we start
an instance MI of an MTS algorithm, where the states are the edges of the interval. On
a request e ∈ σI we generate a cost vector T with T (e′) = 1, if e′ = e and T (e′) = 0
otherwise. We forward the cost vector T to the MTS instance MI and observe the new
state e′′ ∈ I. Subsequently, we move our cut-edge to e′′.
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Server Mapping The cut-edges inside the intervals induce a mapping of processes to
servers as follows. Let ei = (a, a + 1) and ei+1 = (b, b + 1) be the cut-edges chosen in
intervals Ii and Ii+1, respectively. We schedule the segment [a + 1, b] on the server si.
Observe, that a server receives exactly one slice. However, the slice formed between eℓ′

and e1 could be empty because of the overlap between intervals Iℓ′ and I1.

3.2. Analysis

We first argue that the schedule produced by the online algorithm roughly balances the
processes among the servers.

Lemma 3.1. The load of each server is at most 2(1 + ǫ)k.

Proof. A slice is the set of processes between the two cut-edges in two consecutive in-
tervals. Since the intervals contain at most (1 + ǫ)k+1 processes, a slice can contain at
most 2(1 + ǫ)k processes.

The overall cost of the algorithm consist of two parts. The first part is the communi-
cation cost, which we denote by costhit. The second part is the migration cost, which we
denote by costmig.

Interval Based Strategy

For the analysis we introduce different types of (optimum) algorithms under various
restrictions and compare them to one another. The first concept is the concept of an
interval based strategy. This is an algorithm that has to choose a cut-edge in each
interval and pays 1 if the cut-edge is requested, and d if it moves the cut-edge by d
positions. For an interval I and an interval based strategy ALG we define costALG

hit (I) as
the total hit cost experienced by algorithm ALG on the cut-edge maintained in interval
I. Similarly, we define costALG

move(I) as the cost for moving the cut-edge. Observe that
our online algorithm ONL is an interval based strategy.

Observation 3.2. The communication cost and migration cost of the online algorithm
can be bounded by the interval cost. This means

• costhit ≤
∑

I cost
ONL
hit (I)

• costmig ≤
∑

I cost
ONL
move(I)

Proof. If an edge is moved in an interval (by one position) the incident slices may change
by at most one process. This means at most one process has to be migrated to a different
server (note that due to the overlap it could happen that no slice changes when an
edge is moved). Similarly, whenever two processes located on different servers want to
communicate this communication takes place along a cut-edge. This is a cut-edge in at
least one interval (perhaps in two due to overlap) and therefore this communication cost
is counted in the interval cost.
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We define ONLR :=
∑

I cost
ONL
hit (I)+

∑

I cost
ONL
move(I) and use it as a proxy for the cost

of our online algorithm when using shift parameter R (observe that the real cost could
be lower due to the above observation). Let OPTR :=

∑

I cost
OPT
hit (I) +

∑

I cost
OPT
move(I)

denote the cost of an optimal interval based strategy (that uses shift parameter R).

Lemma 3.3. For any R we have E[ONLR] ≤ α(k) · OPTR + c, where α(k) is the
competitive ratio of the underlying MTS algorithm on k states, and c a constant, that is
independent of the request sequence.

Proof. Each subproblem on I is essentially a metrical task systems problem on a line
metric. An interval I consist of k′ edges that form the states. The cut-edge e is the
current state. On a request e ∈ I, we generate the cost vector T , where T (e′) = 1 if
e′ = e and 0 otherwise. Let σI be the request sequence, constrained only to edges in
I. Let OPTMTS(I) be the cost of an MTS algorithm (on the line I), that serves σI
optimally. By definition this is equal to costOPTR

hit (I) +
∑

I cost
OPTR
move (I).

Because we are using an α(k)-competitive algorithm in each interval we get E[ONLR(I)]
≤ α(k) · OPTMTS(I) + c′ for some constant c that does not depend on the request se-
quence. Summing over all I gives ONLR ≤ α(k) ·OPTR + ℓc′.

Well Behaved Strategy

Now we introduce a so-called well behaved clustering strategy and analyze its cost. We
first show that a well behaved strategy can simulate the real optimum with a small
loss and then we show that an interval based strategy with a random choice of R can
simulate the best well behaved strategy with a small loss. Then the final result follows
from Lemma 3.3.

We define a well behaved clustering strategy W as a strategy that maintains a set of
cut edges EW = {e1, . . . , em} which partition the cycle into segments S1, . . . , Sm. It can
perform two operations:

• Move: The cut edge e = (i, i + 1) is moved to e′ = (j, j + 1) which induces cost
|j− i|. A merge of two segments is simulated by a move operation, where we move
a cut edge e to the position of another cut edge e′ and remove e from EW .

• Split : The segment Si is split into several subsegments by introducing new cut
edges in Si. The split operation induces no cost.

On a request σi, if σi ∈ EW , then the algorithm has cost 1 (hitting cost) or it moves the
corresponding cut edge and pays the moved distance (moving cost). Furthermore, the
size of a segment Si is limited to (1 + ǫ)k. For technical reasons we assume ǫ ≤ 1

4 .
The following crucial lemma shows that an optimal well behaved clustering strategy

is at most an O(log k) factor away from OPT.

Lemma 3.4. There exists a well behaved clustering strategy W with cost at most 4
ǫ log k ·

OPT+ 2n log k.
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Proof. We develop a well behaved clustering algorithm W with the knowledge of OPTs
choices. Let c(p) be the color of the server where OPT places p at the current time
step. We denote by EO = {e = (i, i + 1)| c(i) 6= c(i + 1)} the cut-edges of the optimal
algorithm.

Let SW be the set of segments algorithm W produces. Segment S ∈ SW is δ-
monochromatic, if at least δ|S| processes in S have the same color c. We fix δ := 1

1+ǫ .
Each time OPT migrates a process, we mark it. Marked processes will be a source of
potential for our algorithm. At some point we will remove marks from processes. We
maintain the following invariants:

(IH ) EW ⊆ EO.

(IM ) All segments S of algorithm W are δ-monochromatic.

(IS ) All processes of a segment S with non-majority color are marked.

Due to invariant (IH ) the hitting cost of W is at most the hitting cost of OPT. Due
to invariant (IM ) the size of each segment S is at most (1 + ǫ)k, since the number
of processes with the majority color in S is at least δ|S| and at most k. This gives
|S| ≤ (1 + ǫ)k.

At the start, the segments of W are essentially 1-monochromatic segments of the
initial distribution; EW = EO and there are no marked processes. On a new request σt
we mark all processes OPT migrated in time step t. Let Mt be the number of marked
processes after time step t and let k′ = (1 + ǫ)k. We introduce the potential function

Φt =
1 + ǫ

ǫ
log(k′)Mt +

∑

S∈SW

|S| log( k′

|S|) .

Now, we analyze the amortized costs that we incur due to the movements of OPT and
our adjustments.

OPT Movement. Let ot denote the number of newly marked processes in time step t.
Then, the potential increases by ∆Φopt =

1+ǫ
ǫ log(k′)ot. OPT’s moving cost in this time

step is at least
∑

t ot.

After OPT performed its movements, we have to maintain the invariants. Let ej ∈
EW \ EO. The edge ej separates two segments, L and R, in for algorithm W. Prior to
request σt, the segments L and R were δ-monochromatic due to invariant (IM ). Let
cL and cR be their majority colors, respectively. For each ej ∈ EW \ EO we perform a
merge, a move, or a cut-out operation.

Merge Operation. If cL = cR, we merge the segments L and R (wlog. |L| ≤ |R|) and
pay cmerge = |L|. The new segment S = L ∪R has the size |S| = |L|+ |R|. Notice, that
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the invariant (IS ) is maintained, we do not remove any marks. Let |L| = l and |R| = r.
Our change in the potential function is then:

∆Φmerge = |S| log(
k′

|S|)− r log(k
′

r )− l log(k
′

l )

= l(log( k′

l+r )− log(k
′

l )) + r(log( k′

l+r )− log(k
′

r ))

= l log( l
l+r ) + r log( r

l+r )

= l log(1− r
l+r ) + r log(1− l

l+r )

≤ l(− r
l+r ) + r(− l

l+r )

= −l( 2r
l+r )

≤ −l

The first inequation is due to the well known fact log(1+x) ≤ x. The second inequality
holds because l ≤ r. Thus, the amortized cost of the merge operation is c̃merge =
cmerge +∆Φmerge ≤ 0.

Now suppose that cL 6= cR. Let el = (l, l + 1) ∈ EO be the nearest cut edge of
OPT ”left” of ej , and er = (r, r + 1) ∈ EO the nearest cut edge of OPT ”right” of ej ,
respectively. Let F = [l+1, r]. By construction F contains only processes with the same
color c. We differentiate whether one of the colors cL, cR is equal to c or not. We need
the following fact for the analysis.

Fact 3.5. Let f(d) = (s− d) log( s
s−d) with constants s ≥ 2, 1 ≤ d < s. Then, f(d) ≤ d.

Proof. We have f(d) = (s− d) log( s
s−d) = (s− d) log(1+ d

s−d) ≤ (s− d)( d
s−d) = d, where

the inequality is due to the well known fact log(1 + x) ≤ x.

Move Operation. If cL = c, all processes in F ∩ R must be marked due to invariant
(IS ). Then, we move ej to er, a distance d = |F ∩ R| and remove the marks of F ∩ R.
If cR = c, we act analogously. Our actual cost is cmove = d. Let |L| = l and |R| = r.
Then, the change in potential is:

∆Φmove = [(l + d) log( k′

l+d)− l log(k
′

l )] + [(r − d) log( k′

r−d)− r log(k
′

r )]− d1+ǫ
ǫ log k′

= l log( l
l+d) + r log( r

r−d) + d log( k′

l+d)− d log( k′

r−d)− d1+ǫ
ǫ log k′

≤ r log( r
r−d)− d log( k′

r−d)− d log k′ − d log(l + d)

≤ (r − d) log( r
r−d)− d log k′ − d log(l + d)

≤ d− d log k′ − d log(l + d) ≤ −d

The first inequality holds because log( l
l+d) < 0 and 1+x

x ≥ 2, for 0 < x ≤ 1. The second
last inequality holds due to Fact 3.5. The last inequality holds since k′ ≥ 2 and l+d ≥ 2.
Hence, the amortized cost of the move operation is c̃move = cmove +∆Φmove ≤ 0.

10



Cut-out Operation. Now, assume that c 6= cL and c 6= cR. Then, all p ∈ F must be
marked. Wlog. let |j − l| ≤ |j − r|. We move ej to el and make a split in R by creating
a new cut edge er. F now becomes a new segment for algorithm W. We pay at most
|F |/2 for the movement of ej . Afterwards, we remove the marks from the processes in
F . Notice, that the new segment F is 1-monochromatic. Furthermore invariants (IM )
and (IS ) are also maintained. Let |L| = l, |R| = r, |F | = d, |j− l| = dl, and |j− r| = dr.
The change in potential is:

∆Φcut-out =
[

(l − dl) log(
k′

l−dl
)− l log(k

′

l )
]

+
[

(r − dr) log(
k′

r−dr
)− r log(k

′

r )
]

+ d log(k
′

d )− d1+ǫ
ǫ log k′

≤
[

l log( l
l−dl

)− dl log(
k′

l−dl
)
]

+
[

r log( r
r−dr

)− dr log(
k′

r−dr
)
]

− 5d log k′

≤ (l − dl) log(
l

l−dl
) + (r − dr) log(

r
r−dr

)− 5d log k′

≤ dl + dr − 5d log k′

= d− 5d log k′

≤ −d

The first inequality is due to 1+x
x ≥ 6, for 0 < x ≤ 1

4 . For the second inequality we
use Fact 3.5. Hence, the amortized cost of the cut-out operation is c̃cut-out = ccut-out +
∆Φcut-out ≤ 0.

After performing the above adjustments we ensured that invariants (IH ) and (IS )
hold, i.e., EW ⊆ EO and all non-majority color processes are marked. We have to take
care of the (IM ) invariant that all segments are δ-monochromatic. For this we use the
split-operation.

Split Operation. If there exists a segment S in W that is not δ-monochromatic any-
more, we simply make a ”full” split. We create new cut-edges S∩EO, such that segment
S breaks up into smaller 1-monochromatic pieces. Since S is not δ-monochromatic any-
more, there are at least (1− δ) marked processes in S due to invariant (IS ). We remove
marks from these processes. Let T1, . . . , Tm be the resulting subsegments of S. The
change in potential is:

∆Φsplit ≤
[
∑

i |Ti| log(
k′

|Ti|
)− |S| log( k′

|S|)
]

− (1− δ)|S|1+ǫ
ǫ log k′

≤ log(k′)
∑

i |Ti| − |S| log(
k′

|S|)− |S| log k
′

= |S| log k′ − |S| log( k′

|S|)− |S| log k
′

= −|S| log( k′

|S|)

≤ 0

The last inequality holds, because |S| ≤ (1 + ǫ)k = k′. Thus, the amortized cost of the
split operation is c̃split = ∆Φsplit ≤ 0.

11



From the above analysis we conclude, that in each time step t our amortized cost is at
most c̃t ≤

1+ǫ
ǫ log(k′)ot. Then, our overall cost W is at most W ≤ 1+ǫ

ǫ log(k′)
∑

t ot+Φ0 ≤
2(1 + ǫ)2/ǫ · log(k) ·OPT+ 2n log k. As 2(1 + ǫ)2 ≤ 4 for ǫ ≤ 1

4 the lemma follows.

Lemma 3.6. Let OPTW be an optimal well behaved clustering strategy. When choosing
the shift parameter R uniformly at random from {0, k′ − 1} the optimum interval based
strategy has expected cost ER[OPTR] ≤ 6OPTW.

Proof. We add additional cost of k′ to a well behaved strategy OPTW each time a cut
edge of OPTW crosses the boundary of a interval. Let OPT′

W denote this adapted overall
cost.

There are l′ + 1 interval borders, i.e., the probability for a given process p to be
an interval border is at most l′+1

n ≤ 2
k′ . If a cut edge of OPTW moves a distance of

d, then each process on the way is an interval border with probability at most 2/k′.
This gives, that the expected movement costs are at most d + d 2

k′k
′ = 3d. Hence,

E[OPT′
W] ≤ 3OPTW.

We develop an interval based algorithm that tries to mimic OPTW. Fix some interval
I. Since k′ = (1 + ǫ)k, we know that each well behaved strategy should have always at
least one cut-edge inside I. We choose one such cut edge e and every time e is moved,
we simply try to follow its movement. If the movement takes e outside of I, we know
that OPT′

W pays cost k′. Then, instead of following e we choose another cut-edge inside
I and travel there at a cost of at most k′.

By this construction all cost (hitting or movement) of the interval based algorithm
can be charged to the movement or hitting cost of an edge in OPT′

W. However, note
that intervals may overlap. This means there may be two intervals in the interval
based algorithm that charge against the same edge of OPT′

W. Nevertheless we still get
ER[OPTR] ≤ 2OPT′

W ≤ 6OPTW, as desired.

Theorem 2.1. There is a randomized algorithm that solves the dynamic balanced graph
partitioning problem for ring demands with expected cost O(1ǫ log

3 k)OPT+c and resource
augmentation 2 + ǫ, where OPT is the cost of an optimal dynamic algorithm and c is a
constant not dependent on the request sequence.

Proof. We have ER[ONLR] ≤ ER[α(k)OPTR + c′] (Lemma 3.3), ER[OPTR] ≤ 6OPTW

(Lemma 3.6) and OPTW ≤
4
ǫ′ log k ·OPT+2n log k (Lemma 3.4), where α(k) denotes the

competitive ratio of an algorithm for metrical task systems on a line with O(k) states.
By using the algorithm presented in [25] (which achieves competitive ratio O(log2 k)
on any metric space), we conclude that the cost of the online algorithm fulfills ONL ≤
O( 1

ǫ′ log
3 k)OPT + c, where c is a constant not dependent on the request sequence. By

Lemma 3.1 we know that the load of each server is at most (2 + 2ǫ′)k. Setting ǫ′ = ǫ/2
gives the theorem.
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4. The Static Model

In this section we present an polylog-competitive online algorithm against an optimal
static algorithm. We start with a solution for a simpler problem that will serve as a
main ingredient for our algorithm.

Notation

For ease of exposition we model the problem of scheduling processes on servers as a
dynamic coloring problem, as follows. We identify each server s with a unique color cs
and color a process with the color of the server on which it is currently scheduled.

We call the set of consecutive processes S = {ps, . . . , ps+ℓ−1} the segment of length
ℓ starting with ps. For ease of notation we use S = [s, s + ℓ − 1] to refer to this set.
For a parameter δ we call S δ-monochromatic for a color c if strictly more than δ|S|
processes p ∈ S are initially colored with c. We call a segment monochromatic if it is
δ-monochromatic for a value δ ≥ 1/2. In this case we call c the majority color of segment
S. Let δ̄ := max{ 2

2+ǫ ,
14
15}, for a ǫ > 0.

We refer to a process pair {pℓ, pℓ+1} as an edge of the cycle. To simplify the notation
we denote such an edge with (ℓ, ℓ+ 1).

4.1. Hitting Game on the Line

In this section we analyze a simplified problem, that will server as a building block for
our algorithm. The simplified problem is defined as follows.

A line of k + 1 nodes V = {v1, v2, . . . , vk+1} and k edges E = {e1, e2, . . . , ek} with
ei = {vi, vi+1} is given. Our initial position is the central edge es, s = ⌈k2⌉. Each time
step t, 1 ≤ t ≤ N , we receive a request e ∈ E. If our current position is e, we may stay
there and pay cost of 1 (the hitting cost). Alternatively, we could change our position
and pay the traveled distance (the moving cost), where the distance between edge ei and
ej is d(ei, ej) = |i− j|.

In our algorithm we use techniques of Blum et al. [27] to maintain a probability
distribution over the edge set. However, in [27] they consider a uniform metric, whereas
we have a line, i.e., they could switch between any two states with a cost of 1. We need
to choose our probability distribution carefully to correctly incorporate our moving cost.

We compare our algorithm’s cost against an optimal static strategy that chooses one
position ep at the beginning, pays the distance |s − p| and stays at this position for all
subsequent requests. Let OPT be the cost of such an optimal static algorithm. Our
first observation is that we have to use a randomized strategy in order to be better than
Ω(k)OPT:

Lemma 4.1. Any deterministic online algorithm has cost at least Ω(k) OPT.

Proof. Since the adversary knows the position of the deterministic algorithm DET, it
just requests its position each time. Then, after time step T ≥ k2 the algorithm DET has
cost at least T . On the other hand, by an averaging argument there must be an edge that
was requested at most T

k times. Traveling there costs at most k. Then, T
T/k+k ≥

k
2 .
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Observe, that a reasonably competitive algorithm should not move too far away from
the starting position right at the beginning, since the optimal static algorithm could stay
nearby to the starting position and pay only constant hitting cost. On the other hand,
it has to react fast enough to increasing hitting cost.

Let x(t) denote the request vector, with x
(t)
e describing the number of requests to edge

e up until time step t and let x
(t)
I be the restriction of the vector x(t) to the edges inside

an interval I = {vl, . . . , vr}. Note, that x
(0) = 0.

Interval Growing Algorithm

The interval growing algorithm maintains an interval I around the starting edge and
restricts the possible positions only to this interval. Note that an interval I contains
|I|− 1 edges. The algorithm proceeds in phases. We begin with interval I0 = {vs, vs+1},
i.e., only the starting edge is contained in I0. We say I0 is the initial interval. Let

I = [ℓ, r] be our current interval. We denote by min(I) the minimum mine∈I(x
(t)
e )

at the current time step t. Whenever min(I) reaches (1 − δ̄)|I| we double the size of
the interval and set I ′ := [ℓ − |I|/2, r + |I|/2] (and then choose a new edge inside I ′).
Thus, a new phase begins with I ′ as our new interval. There is one exception to this
growth rule: when the length of the new interval would be larger than k + 1 we define
I ′ := [ℓ − ⌈(k + 1 − |I|)/2⌉, r + ⌈(k + 1 − |I|)/2⌉], i.e., we only give the new interval a
length of k + 1.

During each phase we maintain a probability distribution over the edge set of our
current interval. Let I be our current interval. We select a random edge inside I

according to the probability distribution p(t) = ∇smin|I|−1(x
(t)
I ) (see Appendix A).

Let smin′(x) denote smind(x) for a d-dimensional vectors x. On a new request our
probability distribution changes from p(t−1) to p(t), subsequently we have to move ac-
cording to the change in the probability distribution in order to maintain the invariant.
At the end of a phase, we grow our interval, and subsequently choose a new edge inside
the new interval I ′, which incurs cost at most |I ′|.

We denote by cost
(t)
hit and cost

(t)
move the incurred hitting and moving cost at time t,

respectively. Let ℓ(t) be a vector such that ℓ
(t)
i = 1 if ei is the requested edge at time t

and ℓ
(t)
j = 0 for j 6= i. Notice, that x(t−1) + ℓ(t) = x(t). Then, the expected hitting cost

at time t is at most E[cost
(t)
hit] = (p(t−1))T ℓ(t). Since the distance between two edges is at

most k, the expected moving cost is at most k times the Earthmover distance between
distributions p(t−1) and p(t), which in our case is at most k‖p(t)−p(t−1)‖1. The advantage
of using the ∇smin′ function is that we ensure that our moving cost is comparable to
the hitting cost.

Lemma 4.2. Let I be the current, non-initial interval of the interval growing algorithm.
Then, OPT ≥ max{12 min(I), 1−δ̄

2 |I|}.

Proof. Let I ′ denote the interval I before the most recent growth step. At the beginning
OPT makes its move and either stays in I ′ and suffers at least min(I ′) communication
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cost or moves out of I ′ and pays 1
2 |I

′| moving cost. Since |I| = 2|I ′| and min(I ′) ≥

(1− δ̄)|I ′|, we conclude that OPT ≥ 1−δ̄
2 |I|.

Assume I has the maximum possible size k + 1. Then, OPT ≥ min(I) is a trivial
lower bound, since OPT has to choose one position in I. Otherwise, by construction
min(I) ≤ (1− δ̄)|I| and since OPT ≥ 1−δ̄

2 |I| we conclude that OPT ≥ 1
2 min(I).

Let I be the current interval of the interval growing algorithm. We denote by costhit(I)
the overall hitting cost and by costmove(I) the overall moving cost incurred by the algo-
rithm. Then, cost(I) := costhit(I) + costmove(I) denotes the overall cost of the interval
growing algorithm.

Lemma 4.3. Let I be the current interval of the interval growing algorithm. The algo-
rithm incurs the following costs:

a) E[costhit(I)] ≤ 2min(I) +O(ln |I|) |I|.

b) E[costmove(I)] ≤ 4min(I) +O(ln |I|) |I|.

c) E[cost(I)] = 0, if I is the initial interval.

Proof. If I is the initial interval, then there was no request to the initial edge yet, no
costs were incurred.

Now, we fix some phase and derive the overall hitting and moving cost incurred in this
phase. Let Ii denote the interval maintained in phase i. Assume that phase i start at time

t1 and ends at time t2. We denote by P
(i)
hit and P

(i)
move the incurred hitting and moving

cost during phase i, respectively. We know that E[cost
(t)
hit] ≤ (∇smin′(x

(t−1)
Ii

))T ℓ(t).
Furthermore, applying Lemma A.2 we derive that

E[cost(t)move] ≤ |Ii| ‖∇smin′(x
(t−1)
Ii

+ ℓ(t))‖

≤ 2(∇smin′(x
(t−1)
Ii

))T ℓ(t) .

Again, using Lemma A.2 we obtain:

t2
∑

t=t1

∇smin′(x
(t−1)
Ii

)T ℓ(t) ≤ 2

t2
∑

t=t1

(

smin′(x
(t−1)
Ii

+ ℓ(t))− smin′(x
(t−1)
Ii

)
)

= 2

t2
∑

t=t1

(

smin′(x
(t)
Ii
)− smin′(x

(t−1)
Ii

)
)

= 2
(

smin′(x
(t2)
Ii

)− smin′(x
(t1−1)
Ii

)
)

≤ 2
(

min(x
(t2)
Ii

) + |Ii| ln |Ii|
)

Then, P
(i)
hit
≤ 2(min(x

(t2)
Ii

) + |Ii| ln |Ii|) and P
(i)
move ≤ 4(min(x

(t2)
Ii

) + |Ii| ln |Ii|).
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Let m be the current phase. We know that for i < m the minimum min(Ii) at end of
phase i is exactly (1−δ̄)|Ii|. Then, min(Ii)+|Ii| ln |Ii| ≤ (ln |Ii|+1)|Ii|. The moving costs
of the interval growing algorithm are essentially the costs for maintaining the probability
distribution. Additionally, at the end of each phase i we pay at most |Ii+1| for choosing
a new position in the interval Ii+1. Then:

costmove(I) =

m−1
∑

i=1

(E[P (i)
move] + |Ii+1|) + E[P (m)

move]

≤

[

m−1
∑

i=1

4(ln |Ii|+ 1)|Ii|+ |Ii+1|

]

+ E[P (m)
move]

≤

[

O(log |I|)
m−1
∑

i=1

|Ii|

]

+ E[P (m)
move]

≤ O(log |I|) |I|+ 4(min(I) + |I| ln |I|)

≤ 4min(I) +O(log |I|) |I|

Using the same steps we derive that the hitting cost costhit(I) of the interval growing
algorithm is at most 2min(I) +O(log |I|) |I|.

Corollary 4.4. The expected cost of the interval growing algorithm E[cost(I)] is at most
O( 1

1−δ̄
log k)OPT.

4.2. Algorithm

The algorithm consists of three procedures. The Slicing Procedure, the Clustering Pro-
cedure and the Scheduling Procedure.

1. The Slicing Procedure gets the request sequence as input and maintains a set of cut
edges. These are edges in the cycle for which the two endpoints may be scheduled
on different servers (to be determined by the clustering and scheduling procedure).
The cut edges partition the cycle into slices (segments that start and end in a
cut-edge). During the algorithm the set of slices changes dynamically as cut edges
are moved or deleted (a deletion of a cut edge causes a merge of the two incident
segments).

2. The input to the Clustering Procedure is the sequence of slice change operations as
generated by the Slicing Procedure. The Clustering Procedure maintains a group-
ing of slices into clusters such that slices that almost exclusively contain processes
with a particular (initial) color are grouped together (these are 3

4 -monochromatic
slices).

3. Finally, the Scheduling Procedure schedules the clusters on the servers. It makes
sure that clusters that contain monochromatic slices for a particular server sc are
scheduled on this server.
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The Slicing Procedure

The basic idea of the Slicing Procedure is to maintain a set of cut-edges by using the
interval growing algorithm from Section 4.1. Initially, the cut edges are edges in the
cycle for which both end-points are on different servers w.r.t. the initial distribution of
processes. We create an interval I = [i, i+ 1] around each initial cut edge e = (i, i + 1).
We call e the center of interval I. The idea is to run the interval growing algorithm for
each interval independently.

Clearly, this näıve approach does not work. One major challenge is that the analysis
for the Hitting Game (see Lemma 4.3) compares the cost of the online algorithm to the
cost of an optimum algorithm inside the interval. In order to salvage this analysis we
have to make sure that the intervals do not overlap too much. A second difficulty is that
the lower bound on OPT for Lemma 4.2 hinges on the fact that OPT needs to choose at
least one edge. However, if the initial distribution contains many cut-edges then OPT
does not need to choose a cut edge for every interval.

Formally, we transform the Hitting Game approach to the set of intervals as follows.
Let x denote the request vector, with xe describing the number of requests to edge e and
let xI be the restriction of the vector x to the edges inside an interval I. We select a ran-
dom cut-edge inside each interval according to the probability distribution ∇smin′(xI)
(where smin′(x) denotes smind(x) for a d-dimensional vectors x; see Appendix A). When-
ever for an interval [ℓ, r] the minimum mine∈I(xe) reaches (1− δ̄)|I| we double the size of
the interval and set I ′ := [ℓ−|I|/2, r+ |I|/2] (and then choose a new cut-edge inside I ′).
There is one exception to this growth rule: when the length of the new interval would
be larger than k + 1 we define I ′ := [ℓ− ⌈(k + 1− |I|)/2⌉, r + ⌈(k + 1− |I|)/2⌉], i.e., we
only give the new interval a length of k + 1.

The first change to the hitting game approach is as follows. Whenever an interval I
becomes δ̄-monochromatic (note that this can only happen directly after growing the
interval) for δ̄ we stop the growth process for this interval. The interval becomes inactive
and we do not maintain a cut-edge inside it, anymore. Consequently, the cost for the
interval will not increase in the future. Note that deleting a cut-edge may induce some
cost for the scheduling algorithm as it has to ensure that the neighbouring slices are
scheduled on the same server.

The second change is that we sometimes deactivate intervals, in order to guarantee
that intervals do not overlap too much. This is done as follows. After an interval
I grows, we deactivate all intervals that are completely contained in I (we call such
intervals dominated). This means we stop the growth process of these intervals and do
not maintain a cut-edge for them anymore. Also this type of deactivation may generate
additional cost because the neighbouring slices may have to be moved. The formal
Slicing Procedure is shown in Algorithm 1.

Note that initially an interval has length 2 as it contains the two end-points of an
initial cut-edge in the distribution of processes. Right after the first request to the single
edge inside an initial interval the interval will grow. Therefore, we refer to an interval
of length 2 as an initial interval.

We call an interval that has reached its maximum length a final interval as it will not
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Algorithm 1: Slicing procedure

Data: requested edge e, set of active intervals I
Result: new set of active intervals I
x(e)← x(e) + 1
forall I ∈ I s.t. e ∈ I do

update cut-edge according to prob. distribution ∇smin′(xI)

while ∃ I such that mine∈I x(e) ≥ |I| do
grow I
if I is δ̄-monochromatic then

I ← I \ I // I becomes monochromatic

else

forall J ∈ I such that J ⊆ I do

I ← I \ J // J becomes dominated

choose cut-edge according to prob. distribution ∇smin′(xI)

return I

grow anymore. Note that such an interval is always active. An interval may be inactive
because it is either δ̄-monochromatic or it is dominated (completely contained in another
interval). We call two active intervals I and J adjacent, if no other active interval has
its center between the centers of I and J .

The Clustering Procedure

The clustering procedure groups slices into clusters such that slices that are 3
4 -mono-

chromatic for the same color are all within the same cluster. In addition it must ensure
that any cluster is not too large because the scheduling procedure will not split clusters
among different servers and, thus, will not be able to find a good schedule if some clusters
are very large.

For every color c the clustering procedure maintains one special cluster, which we call
the color c cluster. A slice S either forms a singleton cluster that only contains slice S,
or it belongs to the color c cluster, where c is the majority color of S. The assignment
of a slice to a cluster is done as follows.

• Initially all slices consist only of a single color and belong to the cluster for this
color.

• Whenever a slice S changes (by movement of a cut edge, or by merging a smaller
slice to it1) we examine the new slice S′.

– If S′ does not have a majority color it becomes a singleton cluster.

– If S′ is 3
4 -monochromatic for some color c it is assigned to the color c cluster.

1ties broken arbitrarilly
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– Otherwise it is assigned to the cluster of its majority color iff S was assigned
to this cluster. This means that if S and S′ have the same majority color c
and S was assigned to the color c cluster we assign S′ to it. Otherwise S′

forms a singleton cluster.

The Scheduling Procedure

The scheduling procedure gets the input from the clustering procedure and maintains
an assignment of the clusters to the servers such that the load on the servers is roughly
equal.

Upon a new request the clustering algorithm could change existing clusters. Some
processes might change their cluster (maybe deleting a cluster in the process), some
clusters might split. This changes the size of clusters and, hence, the load distribution
among the servers can become imbalanced.

Let X be the maximal size of a cluster and D := max{2,X/k}. The scheduling
procedure rebalances the distribution of clusters among servers such that there are at
most (D + ǫ)k processes on any server, for an ǫ > 0. This is done as follows.

Assume, that after the execution of the clustering algorithm server s has load greater
than (D+ ǫ)k. We perform the following rebalancing procedure. While server s has load
greater than Dk, we take the smallest cluster C in s (|C| ≤ D) and move it to a server
s′ with load at most k (such a server must exist because the average load is at most k).
If |C| ≤ k then s′ has load at most 2k afterwards. Otherwise we migrate the content of
s′ (apart from cluster C) onto another server with load at most k.

4.3. Structure of Intervals and Slices

In order to derive upper bounds on the communication and moving cost of our algorithm,
we have to understand the underlying structure of the intervals and slices produced in
the slicing procedure.

The next lemma states that monochromatic segments that have a large enough inter-
section must have the same majority color.

Lemma 4.5. Let I and J be two overlapping δ-monochromatic segments. If |I ∩ J | ≥
αmax{|I|, |J |} and δ ≥ 1− α

2 , the segments have the same majority color.

Proof. Let |I \J | = a, |I ∩J | = b and |J \ I| = c. Then, |I ∪J | = a+ b+ c. Assume that
the segments have different majority colors cI and cJ , respectively. Then, the segment
|I ∪ J | must contain strictly more than δ(a + b) elements of color cI and strictly more
than δ(b+c) elements of color cJ . Trivially, the number of elements of both colors cannot
exceed a+ b+ c, i.e., δ(a + b) + δ(b + c) < a+ b+ c or δ < a+b+c

a+2b+c . Furthermore, since
b ≥ α(a+ b) and b ≥ α(b+ c) we get b ≥ α

2 (a+ 2b+ c). Then,

δ <
a+ b+ c

a+ 2b+ c
= 1−

b

a+ 2b+ c
≤ 1−

α

2
,

which gives a contradiction.
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Next, we argue, that the union of a sequence of consecutive overlapping δ-mono-
chromatic intervals of the same majority color is also monochromatic.

Lemma 4.6. Let I1, I2, . . . , Im be δ-monochromatic intervals with the same major-
ity color, such that I =

⋃

i Ii forms a single contiguous segment. Then I is δ
2−δ -

monochromatic for c.

Proof. Wlog. we assume that the set of intervals does not contain redundant intervals,
i.e., for all j,

⋃

i 6=j Ii 6= I. Further, we assume that the intervals are numbered by the
order of their centers.

Define I0 = Im+1 = ∅ and let Xi = Ii ∩ Ii+1 and Ai = Ii \Xi−1. Then, the intervals
have the following structure: Ii = Xi−1∪Ai∪Xi+1. Notice, that Xi and Aj are disjoint.
For a segment S we use f(S) to denote the number of elements with color c in S.
Trivially, 0 ≤ f(S) ≤ |S|. Furthermore, we know that

f(Ii) = f(Xi−1) + f(Ai) + f(Xi) ≥ δ(|Xi−1|+ |Si|+ |Xi|) = δ|Ii|,

for all 1 ≤ i ≤ m. Then,

δ|I| = δ
∑m

i=1(|Xi−1|+ |Ai|)

=
∑m

i=1 δ(|Xi−1|+ |Ai|+ |Xi|)−
∑m

i=1 δ|Xi|

≤
∑m

i=1(f(Xi−1) + f(Ai) + f(Xi))−
∑m

i=1 δ|Xi|

=
∑m

i=1(f(Xi) + f(Ai)) +
∑m

i=1(f(Xi−1)− δ|Xi|)

=
∑m

i=1(f(Xi) + f(Ai)) +
∑m

i=1(f(Xi)− δ|Xi|)

=
∑m

i=1(f(Xi) + f(Ai)) +
∑m

i=1((1− δ)f(Xi) + δf(Xi)− δ|Xi|)

≤
∑m

i=1(f(Xi) + f(Ai)) + (1− δ)
∑m

i=1 f(Xi)

≤ (2− δ)
∑m

i=1(f(Xi) + f(Ai))

= (2− δ)f(I)

The next lemma explains the structure of the slice between two adjacent active inter-
vals. Let I be an interval with length |I| ≥ 4 and let I ′ denote the interval before its
most recent growth step. We say I ′ is the core of I and denote it by core(I) = I ′. Note
that initial intervals do not have a core.

Lemma 4.7. Let N = [a, b] be a segment such that no active interval is intersecting N .
Let M be the set of inactive intervals I with core(I) ∩ N 6= ∅. Let M =

⋃

I∈M I and
F = N \M . Then, there exists a color c and an interval set U ⊆ M with the following
properties:

a)
⋃

I∈U I = M ;

b) each interval in U is δ̄-monochromatic for color c;

c) each process in F has initial color c;

d) the segment N ′ = M ∪ F is δ̄/(2 − δ̄)-monochromatic for color c.
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Proof. Property d just follows from the first three properties by simply applying Lemma 4.6.
Therefore, we focus on proving properties a, b and c. We prove these by induction over
the number of intervals inM.

Base case (|M| = 0):
IfM = ∅ we have F = N \M = N and U = ∅. Then properties a and b of the lemma
are trivially fulfilled. Any initial cut-edge is either inside an active interval or inside the
core of some interval. As no active interval and no core intersects N (otw.M would not
be empty) we get that all processes in F must have the same initial color. We choose c
as this color. This fulfills Property c.

Induction step:
We call the vertices in F free vertices as they are not contained in any set of M. We
distinguish two cases.

I) First suppose that there exists a free vertex f that has an interval ofM on both
sides. LetMℓ denote the set of interval to the left of f andMr denote the interval
to the right of f . We apply the induction hypothesis on the sub-sequences Nℓ :=
[a, f ] and Nr := [f, b] (with interval sets Mℓ and Mr, respectively). This gives
interval sets Uℓ and Ur that are δ̄-monochromatic for colors cℓ and cr, respectively,
and it gives sets of free vertices Fℓ and Fr that all have color cℓ and cr, respectively.
The union U := Uℓ ∪ Ur of the interval sets covers M , which gives Property a.

The free vertices are F = Fℓ ∪ Fr. To show properties b and c we have to argue
that cℓ = cr. But this is immediate because by construction Fℓ ∩ Fr 6= ∅ as it
contains vertex f .

II) Now suppose that M = ∪i∈II forms a single contiguous segment. Let H = [hℓ, hr]
with core(H) = [cℓ, cr] be the largest interval in M (ties broken arbitrarily). Let
Nℓ = [a, cℓ] and Nr = [cr, b] denote the segments to the left and right of H’s core
(but still sharing one vertex with the core), and let Fℓ := Nℓ − M and Fr :=
Nr −M denote the free vertices in these segments. Further define Mℓ = {I ∈
M | s.t. core(I)∩Nl 6= ∅},Mr = {I ∈ M | s.t. core(I)∩Sr 6= ∅}, Mℓ =

⋃

I∈Mℓ
I,

and Mr =
⋃

I∈Mr
I.

By construction M = Mℓ ∪Mr. We now proceed by constructing interval sets
Uℓ ⊆ Mℓ and Ur ⊆ Mr that cover Mℓ and Mr, respectively, and that are δ̄-
monochromatic for colors cℓ and cr, respectively. This is sufficient to obtain prop-
erties a and b by choosing U = Uℓ ∪ Ur because cℓ will be equal to cr. To see this
we argue that both Uℓ and Ur must contain the set H. This holds for Ur because
H is the only set in Mr that contains the vertex hℓ ∈ Mr. An interval X ∈ Mr

has a vertex to the right of cr (including cr) in its core. To also include hℓ would
imply H ⊆ X. This is not possible as H is one of the largest intervals and no two
intervals can have identical borders.
Now, we show how to construct Ur. The construction for Uℓ is analogous. We

distinguish two sub-cases.

A) First suppose that hr is the rightmost vertex in any interval of M. Then
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any interval inMr is completely contained in H, which means we can choose
Ur = {H}.

B) Now, let J 6= H denote the interval that contains the rightmost vertex of M .
First observe that J is δ̄-monochromatic because if not there would need to
be a strictly larger δ̄-monochromatic interval that completely contains J in its
core. Then J could not contain the rightmost vertex of M .

a) If H and J have intersecting cores then the whole segment [cr, hr] is con-
tained in both of them. This means that their intersection is at least
1
4 max{|H|, |J |}. Since δ̄/(2 − δ̄) ≥ 7

8 we can apply Lemma 4.5 and con-
clude that H and J have the same majority color. Hence, we can choose
Ur = {H,J} to cover Mr.

b) Suppose the cores do not intersect. Let J = [jℓ, jr] and core(j)=[dℓ, dr]. We
apply the induction hypothesis to the two sub-sequences A = [cr, dℓ − 1]
and B = [cr + 1, dℓ]. We can do this because both have at most |M| − 1
intersecting cores. We get two δ̄/(2 − δ̄)-monochromatic sequences A′ and
B′, and interval subsets UA and UB.
A′ = [hℓ, γ], where γ ≥ max{hr, dℓ − 1} because A′ must cover H and A.

B′ = [γ, jr], where γ ≤ min{cℓ + 1, jℓ} because B′ must cover J and B.
The intersection between A′ and B′ has size at least 1

4 max{|A′|, |B′|},
which by Lemma 4.5 gives that they need to have the same majority color.
Also the intervals in UA and UB have this majority color. Hence, we can
choose Ur = UA ∪ UB .

So far all intervals in U = Uℓ ∪ Ur have the same majority color c. It remains to
show that also all in Fℓ and Fr have this color. This then gives Property c of the
lemma. Again we only do the argument for Fr.
Let X = [xℓ, xr] denote the interval that contains the rightmost vertex of M . If

b ≥ xr then Fr = ∅ and there is nothing to prove. Otherwise, Fr = [xr + 1, b].
We first argue that the leftmost vertex xr + 1 in Fr has color c. This implies the
statement because the region [xr+1, b] cannot contain any initial cut-edges as these
would be either inside an active interval or inside the core of an inactive interval,
and there are no cores intersecting [xr + 1, b].
We apply the induction hypothesis to the segment S := [cr +1, hr +1], which we

can do because core(H) does not intersect S (hence, at most |M|−1 intervals have
a core intersecting S). By Property d this returns a segment S′ = Mr ∪ FS ⊇ S
that is δ̄/(2− δ̄)-monochromatic for some color cS , and all vertices in FS = S \Mr

have color cS .
The intersection between S′ and H is at least 1

4 max{|H|, |S′|}. Since δ̄/(2− δ̄) ≥
7
8 we can apply Lemma 4.5 and conclude that H and S′ have the same majority
color, i.e., cS = c. In addition we get that the vertex xr + 1 has color c, as well, as
it is contained in FS .
This finishes the proof of Case II of the induction step.
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Lemma 4.8. Let L = [a, b] and R = [c, d] be two non-intersecting intervals, such that
no active interval intersects the segment N = [b + 1, c − 1]. Let eℓ = (ℓ, ℓ + 1) and
er = (r, r + 1) be the centers of L and R, respectively, and let S = [a, d] be the segment
containing both L and R. LetM be the set of non-initial intervals with centers in [ℓ+1, r]
and let M =

∑

I∈M |I|.
If |S| ≥ 1

1−δ (M + |L| + |R|), then each segment S′ = [i, j] with i ∈ L and j ∈ R is
δ-monochromatic.

Proof. We show that if |S| ≥ 1
1−δ̄

(M+|L|+|R|), then the segment N contains many pro-

cesses with same initial color, which implies the lemma, since every segment S′ contains
N .

LetM′ be the set of intervals I such that core(I)∩N 6= ∅. Then,M′ ⊆M. Otherwise,
w.l.o.g. there exists an interval I with center ei < eℓ and core(I) ∩ N 6= ∅. But, then
L ⊆ core(I), which means L should have been dominated at the time when I was active.

We apply Lemma 4.7 on N and receive a set of δ̄-monochromatic (non-initial) intervals
U ⊆ M′, such that U =

⋃

I∈U I and the processes in F = N \ U have the same initial
color. Then,

|F | = |N | − |U | = |S| − (|U |+ |L|+ |R|) .

Since U ⊆M′ ⊆M, and therefore |U | ≤M , we conclude:

|F | ≥ |N | − (M + |L|+ |R|) ≥ |S| − (1− δ)|S| = δ|S| ≥ δ|S′|

Then, there are at least δ|S′| processes of the same color which means that segment S′

is δ-monochromatic.

4.4. Correctness

In this section we show that at any time step, each server contains at most (3 + 2ǫ)k
processes. A crucial ingredient for this is, that each cluster has a bounded size.

Lemma 4.9. Let A and B be two adjacent active intervals with cut-edges ea and eb,
respectively. The size of the slice S between ea and eb is at most |A|+|B|−2+(2−δ̄)/δ̄ ·k.

Proof. W.l.o.g. let A = [aℓ, ar] and B = [bℓ, br] with 0 ≤ aℓ < bℓ < n. If the intervals
intersect (ar > bℓ) we are done. Otherwise we analyze the segment N = [ar + 1, bℓ − 1].
Since N does not intersect any active interval we can apply Lemma 4.7, which states,
that there is a δ̄

2−δ̄
-monochromatic segment N ′ with N ⊆ N ′. Thus, N ′ consists of at

most k processes of some color c and at most (1− δ̄
2−δ̄

)k processes of other color. Hence,

|N | ≤ |N ′| ≤ k + (1 − δ̄
2−δ̄

)|N ′| ≤ 2−δ̄
δ̄
k. Then, the slice between ea and eb contains N ,

at most |A| − 1 processes of A and at most |B| − 1 processes of B, which is at most

|A|+ |B| − 2 + 2−δ̄
δ̄
k.

Corollary 4.10. A singleton cluster has size at most (3 + 2(1 − δ̄)/δ̄) · k.

Proof. Since the size of each interval is at most k + 1, we get that each singleton slice
has size at most 2k + (2− δ̄)/δ̄ · k = (3 + 2(1 − δ̄)/δ̄) · k.
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Observation 4.11. Let S and T be 3
4-monochromatic segments with majority color c.

Then, S and T are both contained in the color c cluster.

Lemma 4.12. The size of a color c cluster is at most 2k.

Proof. A color c cluster contains at most k processes of color c. Since the slices in this
cluster are all at least 1/2-monochromatic, the number of processes of other colors in
this cluster is at most k. Thus, the overall number of processes in a color c cluster is at
most 2k.

Lemma 4.13. The scheduling algorithm produces an assignment of processes to servers,
such that the load of each server is at most (3 + 2ǫ)k, for δ̄ ≥ 2/(2 + ǫ).

Proof. By construction, the scheduling algorithm ensures that no server has load greater
that (D+ǫ)k, whereDk is the maximum slice size. Due to Corollary 4.10 and Lemma 4.12
we know that D ≤ 3 + 2(1− δ̄)/δ̄, which is at most 3 + ǫ for δ̄ ≥ 2/(2 + ǫ).

4.5. Cost Analysis

4.5.1. Cost of Intervals

We view parts of the cost of the online algorithm as associated with intervals, as follows.
For an interval I we use costhit(I) to denote the communication cost that the online
algorithm experiences on the cut-edge maintained by the interval, we use costmove(I)
to denote the cost for moving the cut-edge within the interval, and define cost(I) :=
costhit(I) + costmove(I) to be the cost of the interval. Observe that the cost of merging
neighboring slices when deactivating an interval is not counted in cost(I).

Observation 4.14. For an initial interval cost(I) = 0.

We use OPT(I) to denote the cost that the optimum algorithm experiences for mi-
grating processes of I, or for communicating along edges in I.

Lemma 4.15. We have the following lower bounds on the optimum cost of an interval:

1. A non-initial interval I fulfills OPT(I) ≥ 1
2(1− δ̄)|I|.

2. Active intervals fulfill OPT(I) ≥ 1
2 mine xe, where xe is the current request vector.

3. Inactive intervals fulfill OPT(I) ≥ 1
2 mine x

′
e, where x′e is the request vector at the

time I became inactive.

Proof. For the first part I is non-initial, which means that it has grown before. Let I ′

denote the interval I before the most recent growth step. The interval I ′ was grown
because we had mine∈I′ xe ≥ (1 − δ̄)|I ′|. This means if OPT has a cut edge inside I ′ it
experiences cost at least mine∈I′ xe ≥ (1− δ̄)|I ′|; if not it had to recolor at least (1− δ̄)|I ′|
processes in I ′ because the interval I ′ is not δ̄-monochromatic. Consequently we get

OPT(I) ≥ OPT(I ′) ≥ (1− δ̄)|I ′| ≥ 1
2 (1− δ̄)|I| , (1)
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where the last step follows because the growth step at most doubles the length of an
interval.

The second part trivially holds for initial intervals, as the left hand side is 0 in this
case. Intervals that are non-final (i.e., they did not reach the maximum size k + 1 yet),
fulfill mine∈I xe ≤ (1 − δ̄)|I|, as otw. we would grow the interval. Then Equation 1
directly implies the lemma. Final intervals have size k + 1 and therefore the optimum
algorithm must have a cut-edge inside. Hence, OPT(I) ≥ mine∈I xe for such intervals.
The third part immediately follows from Part 2.

Lemma 4.16. For any interval cost(I) ≤ O(1/(1 − δ̄) · log k)OPT(I).

Proof. Clearly, the lemma holds, if I is an initial interval, since cost(I) = 0. Let I be
a non-initial interval and let x be either the current request vector (if I is still active)
or the request vector at the time I was deactivated. Due to Lemma 4.3 we know that
I has cost at most E[cost(I)] ≤ O(1)mine(xe) + O(log |I|) |I|. Using Lemma 4.15 we
derive that E[cost(I)] ≤ O( 1

1−δ̄
log k)OPT(I).

4.5.2. Cost of the Algorithm

The overall cost of the algorithm consist of five parts. The first part is the communication
cost, which we denote by costhit.

The next three parts are migration costs due to the clustering algorithm. Whenever a
process is moved to an existing cluster the scheduling algorithm may have to also move
this process in order to guarantee that all processes in a group/cluster are scheduled on
the same server. Therefore we define the following costs.

• Moving cost costmove: when an interval moves a cut-edge by a distance of d, d
processes switch the slice that they belong to. This increases the moving cost of
the clustering algorithm by d.

• Merging cost costmerge: when two slices Ss and Sℓ with |Ss| ≤ |Sℓ| are merged the
processes in the smaller slice are moved to the cluster of the larger slice, which
results in a cost of at most |Ss|.

• Monochromatic cost costmono: when a slice S becomes 3
4 -monochromatic for some

color c (and it was not 3
4 -monochromatic before) we move it to the color c cluster

at a cost of |S|.

Observe that there is no cost if we remove a slice from a color c cluster to form a
singleton cluster, as this does not put a constraint on the scheduling algorithm to move
any processes.

The final part of the cost is the migration cost caused by direct actions of the scheduling
procedure to enforce capacity constraints. We call this the rebalancing cost costbal.

Observation 4.17. The communication cost and moving cost are given by the interval
cost, this means costhit =

∑

I costhit(I), and costmove =
∑

I costmove(I)
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Lemma 4.18. The merge cost costmerge of the clustering algorithm is at most O(1/(1 − δ̄)·
log k)

∑

I∈I OPT(I).

Proof. For each non-initial interval I we create an account costmerge(I). We show how
to distribute the merge costs among these accounts such that

costmerge ≤
∑

I∈I

costmerge(I) ≤
∑

I∈I

O(log k)|I| .

Since for every non-initial interval OPT(I) ≥ 1
2 (1− δ̄)|I| according to Lemma 4.15, the

lemma follows.
Merging costs arise only if we deactivate an interval and remove its cut-edge. This

could happen in two cases.

I) First, during a growth step of an interval I, some intervals might become dominated
by I, i.e., they are completely inside I. We deactivate these intervals and remove
their corresponding cut edges. However, an interval that gets dominated by I
must have its cut edge inside I. But then, the cost for merging the slices due to
the deactivation of dominated (by I) intervals is at most |I|. We charge I the cost
|I|. Let I1, I2, . . . , Im denote the growth phases of I, i.e., Im = I and |Ii| = 2i

(unless of course I is a final interval, where |I| = |Im| = k + 1). We derive, that
an interval is charged for Case I at most

∑

i |Ii| ≤ O(1)|I|.

II) Second, during a growth step of an interval J , it may become δ̄-monochromatic.
We deactivate J and remove its cut-edge. We show how to distribute the cost for
the slice merge.
Let L = [a, b], J = [c, d] and R = [e, f ] be adjacent active intervals with cut

edges eℓ, ej and edges er, respectively. Let S′ be the slice between eℓ and ej , and
T ′ the slice between ej and er. Furthermore, let S = [a, d] and T = [c, f ]. Clearly,
|S′| ≤ |S| and |T ′| ≤ |T |. Assume interval J becomes δ̄-monochromatic, i.e., we
have to eliminate the cut-edge ej and merge the incident slices S′ and T ′. If both
S′ and T ′ are 3

4 -monochromatic, then due to Observation 4.11 the slices already
reside in the same cluster, such that no cost is incurred. Otherwise, we move the
smaller slice to the cluster of the bigger slice and pay X = min{|S′|, |T ′|}. We
assume that either S′ or T ′ is not 3

4 -monochromatic.
We introduce additional notation. For adjacent active intervals I and J with

centers ei = (i, i + 1) and ej = (j, j + 1), respectively, we define the center slice
between I and J as the segment C = [i + 1, j]. We say that the active intervals I
and J are incident to the center slice C. Furthermore, we say an inactive interval
I with its center in C is also incident to C. Notice, that an inactive interval is
incident to exactly one center slice and an active interval is incident to exactly two
center slices.
Let Sc be the center slice between L and J , and let Tc be the center slice between

J and R, respectively. We distribute the cost X to the intervals incident to the
center slices Sc and Tc.
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We show that each interval I is charged at most O(log k)|I|. The basic argument
is that whenever an interval I is charged a cost O(|I|), one of its incident center
slices doubles its size. Observe, that due to Corollary 4.10 and Lemma 4.12 the
size of a center slice is at most O(k). Furthermore, an interval is incident to at
most two center slices. Hence, if an interval is charged O(log k)|I| merge cost, then
its incident center slices must reach the maximum possible size.
Observe, that J cannot be an initial interval, since it became δ̄-monochromatic.

However, if L or R are initial intervals, we cannot charge them. Instead we charge
J the additional cost (which is at most constant).
Assume, w.l.o.g that |Sc| ≤ |Tc|. We distinguish between two cases:

A) Assume that S′ is not 3
4 -monochromatic or L ∩ J 6= ∅. Let MS be the set

of non-initial intervals with centers in S and let M =
∑

I∈MS
|I|. Clearly,

X ≤ |S′| ≤ |S|. If L ∩ J 6= ∅, then X ≤ |S| ≤ |L| + |J |. If S′ is not 3
4 -

monochromatic and L ∩ J = ∅, then we apply Lemma 4.8 on L and J and
derive that X ≤ |S| < 4(M + |J |+ |L|).

We distribute the cost X among the intervals inMS ∪ {J,L}. We charge each
interval I ∈ MS∪{J,L} the cost 4|I|. If L is an initial interval, then we charge
instead J the additional constant cost. Then, 4(M + |J | + |L|) ≥ X, i.e., we
distributed all cost X.

Now, we fix an interval I ∈ MS∪{J,L} and assume that I does not grow during
future time steps (i.e., we analyze a fixed growth phase of an interval). After
the deactivation of J , the interval I ∈ MS ∪ {J,L} is incident to the center
slice Z = Tc ∪ Sc with |Z| ≥ 2|Sc|. Thus, for I one of its incident center slices
at least doubles its size. Hence, if we charge I O(log k) times (each time |I|)
for Case A, its incident center slices reach their maximum size. We conclude
that I pays at most O(log k)|I| for Case A.

B) Now, assume that S′ is 3
4 -monochromatic and L ∩ J = ∅. Since S′ is 3

4 -
monochromatic, then T ′ must be non-34 -monochromatic. LetMT be the set of
non-initial intervals with centers in T and let M =

∑

I∈MT
|I|. If J ∩ R 6= ∅,

then clearly, X ≤ |T | ≤ |J |+ |R|. Otherwise, we apply Lemma 4.8 on J and R
and derive that X ≤ |T | < 4(M + |R|+ |J |).

We distribute the cost X among the intervals in MT ∪ {J,R}. We charge

each interval I ∈ MT ∪ {J,R} the cost 4 |I|
|T |X. If R is an initial interval, we

charge instead J the additional constant cost. Then,
∑

I 4
|I|
|T |X = 4

|T |(M +

|J |+ |R|)X ≥ X, i.e., we distributed all cost X.

Now, we fix an interval I ′ ∈ MT ∪ {J,R} and assume that I ′ does not grow
during future time steps (i.e., we analyze a fixed growth phase of an interval).
After the deactivation of J , I ′ is incident to the center slice Z = Tc ∪Sc. Since
L ∩ J = ∅, then X ≤ |S| ≤ 2|Sc|, i.e., the center slice Z increases its size by

at least 1
2X. Now, assume that I ′ is charged repeatedly 4 |I′|

|T1|
X1, 4

|I′|
|T2|

X2, . . .

for Case B. Clearly, |T | = |T1| ≤ |T2| ≤ ..., since due to merges the segment T
only grows. Assume, that at some point I ′ experiences at least 8|I ′| cost due
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to Case B. Then, 8|I ′| ≤
∑

i 4
|I′|
|Ti|

Xi ≤ 8 |I′|
|T |

∑

i
1
2Xi, i.e., |T | ≤

∑

i
1
2Xi := Y .

Then, we know that the center slice Z grows by at least Y ≥ |T | ≥ |Tc|, which
means that |Z| ≥ 2|Tc|, i.e., the size of the center slice Z doubles, while we
charge interval I ′ at most O(1)|I ′|. Hence, if we charge I ′ overall O(log k)|I ′|
merging cost, its incident center slices reach their maximum size. We conclude,
that interval I ′ pays for Case B at most O(log k)|I ′|.

Let I be an interval and let I1, I2, . . . , Im denote the growth phases of I, i.e., Im = I
and |Ii| = 2i (unless of course I is a final interval, where |I| = |Im| = k+1). From
the above two cases (A and B) we derive that during each growth phase Ii is
charged at most O(log k)|Ii|. Thus, the overall cost that we charge I is at most
costmerge(I) ≤

∑

iO(log k)|Ii| ≤ O(log k)|I|.

Summarizing over all cases we conclude that for each non-initial interval I the merge
cost costmerge(I) is at most O(log k)|I|.

Lemma 4.19. The monochromatic cost costmono of the clustering algorithm is at most
O(1)(costmove+costmerge).

Proof. At the beginning, every slice is a 1-monochromatic segment and therefore con-
tained in a colored cluster. Assume, at some point a slice S becomes 3

4 -monochromatic.
For S to leave a colored cluster and become 3

4 -monochromatic again, S should have
experienced at least (34 −

1
2 )|S| change in size (due to moves and merges) since it left a

colored cluster. The cost for migrating S to the colored cluster is |S|. Then, the cost for
all ”colored” migrations is at most O(1) times the overall moving and merge cost.

Lemma 4.20. The rebalancing cost costbal of the algorithm is at most O(1ǫ )(costmove+
costmerge+costmono).

Proof. Initially, each server has load k. Assume, that after the clustering step server
s has load L with L > (D + ǫ)k, i.e., server s becomes imbalanced. The costs of the
cluster migrations due to the rebalancing procedure are at most L. We know, that after
the previous rebalancing step for server s the corresponding server had load at most D.
Hence, in the time between the previous and the current rebalancing, server s observed
at least L − D migrations. These migrations were due to the clustering algorithm,
since the rebalancing procedure do not place more than D processes on a server. Since

L
L−D ≤

D+ǫ
ǫ ≤ D+1

ǫ (for ǫ ≤ 1), we conclude that the cost of the rebalancing procedure

is at most O(1ǫ )(costmove+costmerge+costmono) (since D is constant).

Lower Bound

Now, we show a lower bound on the cost of an optimum algorithm. Lemma 4.15 already
gives us a lower bound for the cost of OPT on an interval I. The following lemma shows
that a process is not contained in too many intervals, which allows us to extend the
lower bound.
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Lemma 4.21. A process p is contained in at most O(log k) intervals.

Proof. We say an interval I has rank r, if it has performed (r − 1) growth steps. Note
that its length is then usually |I| = 2r, unless of course I is a final interval (then its
length is k + 1). A process p is contained in at most 2 intervals of rank 1 and at most
4 intervals of rank 2. Let I and J be two active intervals in I with rank r ≥ 3. Let I ′

and J ′ denote the intervals I and J before their most recent growth step, respectively.
Assume the distance between I’s center and J ’s center is less than |I|

4 . Then I ′ ⊆ J and
J ′ ⊆ I. But then, during the last growing phase of either I or J , one of them should
have dominated the other one, a contradiction. In case I or J is a monochromatic or
dominated interval, we can argue the same argument about the previous growing phases
of I and J , where both of them were active. Then, the centers of I and J are at least
at a distance of |I|

8 apart.
This means a process p is contained in at most 8 intervals I of rank r ≥ 3. Since there

are at most log k + 1 ranks, the lemma follows.

Lemma 4.22. The cost of the optimal static algorithm OPT is at least 1
O(log k)

∑

I OPT(I).

Proof. For a process p we denote by OPT(p) the cost that the optimal algorithm ex-
periences for migrating process p. Further, for an edge e we use OPT(e) to denote
the cost that the optimal algorithm experiences for communicating along e. Then,
OPT =

∑

pOPT(p) +
∑

eOPT(e).

∑

I OPT(I) =
∑

I(
∑

p∈I OPT(p) +
∑

e∈I OPT(e))

=
∑

p |{I : p ∈ I}|OPT(p) +
∑

e |{I : e ∈ I}|OPT(e)

≤ O(log k)
∑

pOPT(p) +O(log k)
∑

eOPT(e)

= O(log k)OPT

The inequality is due to Lemma 4.21

Now, we summarize the overall cost of our online algorithm.

Theorem 2.2. There is a randomized algorithm that solves the dynamic balanced graph
partitioning problem for ring demands with expected cost O( 1

ǫ2 log
2 k)OPT and resource

augmentation 3 + ǫ, where OPT is the cost of an optimal static algorithm.

Proof. Let ǫ′ := min{ ǫ2 , 1} and δ̄ := max{ 2
2+ǫ ,

14
15}. We execute the slicing procedure

with δ̄ and the scheduling procedure with ǫ′ parameters. Due to Observation 4.17 and
Lemma 4.15 we derive that costhit+costmove ≤

∑

I cost(I) ≤
2

1−δ̄

∑

I OPT(I). Further-

more, due to Lemma 4.18 we know that costmerge is at mostO((1−δ̄)−1 log k)
∑

I OPT(I).
Lemmas 4.20 and 4.19 state that costmono +costbal ≤ O(1/ǫ)(costmove+costmerge). Let
costonl denote the overall costs of the online algorithm. Then,

costonl = costhit+costmove+costmerge+costmono +costmig

≤ O((ǫ(1− δ̄)−1 log k)
∑

I∈I OPT(I)

≤ O((ǫ−2 log k)
∑

I∈I OPT(I), for δ̄ ≥ 2/2 + ǫ′ .
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Applying Lemma 4.22 (
∑

I OPT(I) ≤ O(log k)OPT), we derive that our costs are at
most O(log2(k)/ǫ2)OPT.

Lemma 4.13 states that for δ̄ ≥ 2/(2 + ǫ′) the scheduling algorithm places at most
3 + 2ǫ′ = 3 + ǫ processes on each server, which concludes the proof.

5. Conclusion

We presented the first polylogarithmically-competitive online algorithms for the balanced
graph partitioning problem for a scenario where the communication pattern inherently
and continuously requires inter-server communications and/or migrations. In particular,
we described two different approaches, one for the static model and one for the dynamic
one, and proved their competitiveness accordingly.

Our work opens several interesting directions for future research. In particular, it
would be interesting to study lower bounds on the achievable competitive ratio in the
two models. The main open question regards whether polylogarithmic-competitive al-
gorithms can also be achieved under more general communication patterns.
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A. Smooth Minimum Approximation

Let x = (x1, x2, . . . , xn)
T ∈ R

n be an n dimensional vector. The function smin(x) :=
− ln(

∑

i e
−xi) smoothly approximates the minimum function min(x) = min(x1, x2, . . . , xn).

Fact A.1.

(i) The function smin(x) approximates the minimum up to an additive term:

min(x)− lnn ≤ smin(x) ≤ min(x)

(ii) The gradient ∇smin(x) is a probability distribution.

Proof.

(i) Let x∗ = min(x). Using facts
∑

i e
−xi ≥ e−x∗ and

∑

i e
−xi ≤ ne−x∗, we get

x∗ − lnn = − ln(ne−x∗) ≤ − ln(
∑

i e
−xi) ≤ − ln(e−x∗) = x∗

(ii) The i-th component of the gradient is ∇smin(x)i =
e−xi∑
i e

−xi
≥ 0. The sum of all

components is exactly 1.

The change of the smin function is well approximated by its gradient. Formally:

Lemma A.2.

(i) For all vectors x, ℓ ≥ 0, ℓi ≤ 1,

smin(x+ ℓ)− smin(x) ≥ 1
2∇smin(x)T ℓ

(ii) For all vectors x, ℓ ≥ 0,

‖∇smin(x+ ℓ)−∇smin(x)‖1 ≤ 2∇smin(x)T ℓ

Proof.

(i) Let A =
∑n

i=1 e
−xi . Then,

smin(x+ ℓ)− smin(x) = − ln( 1
A

∑

i e
−(xi+ℓi))

= − ln( 1
A

∑

i e
−xi + e−xi(e−ℓi − 1))

= − ln(1 + 1
A

∑

i e
−xi(e−ℓi − 1))

≥ − 1
A

∑

i e
−xi(e−ℓi − 1)

= 1
A

∑

i e
−xi(1− e−ℓi)

≥ 1
A

∑

i e
−xi ℓi

2 = 1
2∇smin(x)T ℓ

The first inequality follows by applying the fact ln(1+z) ≤ z. The second inequality
follows because 1− e−z ≥ z

2 , for 0 ≤ z ≤ 1.
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(ii) Since both ∇smin(x + ℓ) and ∇smin(x) are probability distributions, the sum of
their components is 1. Consider the change of the components going from x to x+ℓ.
The sum of increasing components must equal the sum of decreasing components.
Now, let I be the set of indices that are decreasing. Consider such a component
i ∈ I. Then,

∇smin(x)i −∇smin(x+ ℓ)i =
e−xi

∑

j e
−xj
−

e−(xi+ℓi)

∑

j e
−(xj+ℓj)

≤
e−xi − e−(xi+ℓi)

∑

j e
−xj

=
e−xi(1− e−ℓi)

∑

j e
−xj

≤
e−xiℓi
∑

j e
−xj

In the first inequality we used that since l ≥ 0,
∑

j e
−(xj+ℓj) ≤

∑

j e
−xj must hold.

In the last inequality we used the fact that 1− e−ℓi ≤ ℓi. Then,

‖∇smin(x+ ℓ)−∇smin(x)‖1 = 2
∑

i∈I

∇smin(x)i −∇smin(x+ ℓ)i

≤ 2
∑

i∈I

e−xiℓi
∑

j e
−xj

≤ 2
n
∑

i=1

e−xiℓi
∑

j e
−xj

= 2∇smin(x)T ℓ

Now we generalize the smin function. We define a function

sminc(x) := c · smin(1cx).

for a constant c ≥ 1. The advantage of the sminc(x) function over smin(x) is that we can
control the gradients change using the constant c. On the other side the approximation
of the minimum becomes worse. The following properties apply to sminc(x):

Lemma A.3.

(i) The function sminc(x) approximates the minimum up to an additive term:

min(x)− c lnn ≤ sminc(x) ≤ min(x)
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(ii) ∇sminc(x) is a probability distribution. Furthermore,

∇sminc(x) = ∇smin(
1

c
x) .

(iii) For all vectors x, ℓ ≥ 0, ℓi ≤ 1,

sminc(x+ ℓ)− sminc(x) ≥
1
2∇sminc(x)

T ℓ

(iv) For any vectors x, ℓ ≥ 0,

‖∇sminc(x+ ℓ)−∇sminc(x)‖1 ≤
2
c∇sminc(x)

T ℓ

Proof. Let x′ = 1
cx and ℓ′ = 1

c ℓ. Since c ≥ 1, we have that x′, ℓ′ ≥ 0 and ℓi ≤ 1.

(i) Using Fact A.1 we obtain:

sminc(x) = csmin(1cx) ≤ nmin(1cx) = min(x)

sminc(x) = csmin( 1nx) ≥ n(min(1cx)− lnn) = min(x)− c ln n

(ii) Using Fact A.1 we obtain:

∇sminc(x)i =
∂sminc(x)

∂xi

= c
∂smin(x′)

∂x′i

∂x′i
∂xi

=
∂smin(x′)

∂x′i

= ∇smin(
1

c
x)i

(iii) Using Lemma A.2 (i) we obtain:

sminc(x+ ℓ)− sminc(x) = c(smin(x′ + ℓ′)− smin(x′))

≥ c
1

2
∇smin(x′)T ℓ′

=
1

2
∇sminc(x)

T ℓ

(iv) Using Lemma A.2 (ii) we obtain:

‖∇sminc(x+ ℓ)−∇sminc(x)‖1

= ‖∇smin(x′ + ℓ′)−∇smin(x′)‖1

≤ 2∇smin(x′)T ℓ′

=
2

c
∇sminc(x)

T ℓ
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