
Brief Announcement: Minimizing the Weighted Average Shortest
Path Length in Demand-Aware Networks via

Matching Augmentation
Aleksander Figiel

TU Berlin

Germany

Darya Melnyk

TU Berlin

Germany

André Nichterlein

TU Berlin

Germany

Arash Pourdamghani

TU Berlin

Germany

Stefan Schmid

TU Berlin

Germany

ABSTRACT
Graph augmentation is a fundamental and well-studied problem

that arises in network optimization. We consider a new variant of

this model motivated by reconfigurable communication networks.

In this variant, we differentiate between a given physical network

and the measured communication demands between the nodes.

Our goal is to minimize the weighted average shortest path length

via matching augmentation, where the weights correspond to the

communication frequency of any pair of nodes. We use results

from demand-aware network design to provide a constant-factor

approximation algorithm for adding a matching on a ring in case

only a few nodes in the network cause almost all the communication.

Since the problem is NP-hard, we design and evaluate a series

of heuristics that can deal with arbitrary graphs as underlying

network structures. We evaluate our heuristics on general real-

world communication patterns and show that already with simple

and efficient heuristics we are able to reach near-optimal quality.

CCS CONCEPTS
• Theory of computation→ Theory and algorithms for ap-
plication domains.

KEYWORDS
Matching augmentation; demand-awareness; network design

ACM Reference Format:
Aleksander Figiel, Darya Melnyk, André Nichterlein, Arash Pourdamghani,

and Stefan Schmid. 2024. Brief Announcement: Minimizing theWeighted Av-

erage Shortest Path Length in Demand-Aware Networks via Matching Aug-

mentation. In Proceedings of the 36th ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA ’24), June 17–21, 2024, Nantes, France.

ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3626183.3660264

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA ’24, June 17–21, 2024, Nantes, France

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0416-1/24/06.

https://doi.org/10.1145/3626183.3660264

1 INTRODUCTION
Graph augmentation is a fundamental problem in the area of net-

work design. Consider a communication network where the nodes

are arranged in a graph and communicate with their peers via the

links of the graph. If we add new links to the network, we can

hope for faster communication and lower congestion in the new

network. Graph augmentation for network design has been studied

under two optimization criteria: one is to optimize the worst-case

communication cost which is done by minimizing the diameter of

the network [1, 18]. The other criterion is to optimize the average-

case communication, where the average shortest path length is

minimized between any two peers [8, 11–14]. However, previous

work has mostly assumed that the communication between the

nodes is evenly distributed, i. e., that any two nodes are equally

likely to communicate, independent of their role in the network.

Our work is motivated by the recent studies of deploying optical

circuit switches to construct next-generation datacenter technolo-

gies [6, 9, 17]. The idea is to make the network demand-aware by

using reconfigurable optical switches to provide shorter paths to a

small number of large data flows, on top of an existing datacenter

network based on electrical switches. By offloading considerable

amounts of traffic to optical switches, bandwidth consumption

and congestion on the original network can be reduced. Optical

switches are deployed between an output port and an input port of

electrical switch pair (e.g., the top-of-rack switches in datacenters).

The connections can be reconfigured quickly, thus providing the

option for a network to adapt to the network demand over time.

In this paper, we study how to enhance a graph with a matching.

In particular, we focus on the most fundamental question: adding a

single matching. Our goal is to compute a matching that minimizes

the average path length in the augmented network in a demand-

aware manner, that is, weighted by the communication demand

between two nodes (rather than for all nodes like in previous work).

This approach can be used to reconfigure the network after some

time to adjust to the new demand. For our use cases, we consider

fundamental physical networks of high (super-constant) diameter,

such as 𝑑-dimensional grids, and tori, as they are often used in

distributed architectures.

Our main contributions is studying the problem of Minimiz-

ing Weighted Average Shortest Path Length via Matching Addi-

tion (MWASP) and analyze its complexity and approximability. As

https://doi.org/10.1145/3626183.3660264
https://doi.org/10.1145/3626183.3660264

SPAA ’24, June 17–21, 2024, Nantes, France Aleksander Figiel, Darya Melnyk, André Nichterlein, Arash Pourdamghani, and Stefan Schmid

it turns out to be NP-hard, we propose a constant-factor approxi-

mation algorithm for MWASP on a ring as the underlying infras-

tructure graph. This algorithm groups small segments of nodes

in the ring into super-nodes and then connects these super-nodes

with a known construction from demand aware networks. The idea

behind the grouping is that nodes can help their neighbors of high

demand connect to other high-demand nodes. This construction

limits us to highly skewed demand matrices where only a few nodes

in the network cause almost all the communication.

We complement our theoretical results with heuristics forMWASP .

Our experimental evaluation demonstrates the efficiency and ef-

fectiveness of our heuristics and our approximation algorithm. We

show that there exists a fast heuristic that performs close to optimal

considering various parameters, and providing insights into cases

that each algorithm can perform the best.

2 MODEL
We are given a set of nodes𝑉 = {𝑣1, . . . , 𝑣𝑛} that communicate over

an underlying infrastructure graph 𝐺 , this graph corresponds to

the physical network. The infrastructure graph is assumed to have

a non-constant diameter and a large number of nodes 𝑛, where

𝑛 is even (so that there always exists a perfect matching). The

communication pattern is described by an 𝑛 × 𝑛 demand matrix 𝐷 .

In this matrix, 𝐷𝑢,𝑣 indicates the frequency with which a node 𝑢

communicates to a node 𝑣 . Observe that the demand matrix is nor-

malized, i.e.,

∑
𝑢,𝑣∈𝑉 ,𝑢≠𝑣 𝐷𝑢,𝑣 = 1, and the demand from one node

to itself is 0, i.e., 𝐷𝑣,𝑣 = 0 ∀𝑣 ∈ 𝑉 . For simplicity, we assume that

the demand matrix is symmetric. Thus, the demand matrix encodes

an edge-weighted, simple, undirected graph. We use dist𝐺 (𝑢, 𝑣) to
denote the distance (the length of a shortest path between) 𝑢 and 𝑣

in 𝐺 . Our objective is to minimize the weighted average shortest

path length Obj𝐷 (𝐺) =
∑
𝑢,𝑣∈𝑉 𝐷𝑢,𝑣 · dist𝐺 (𝑢, 𝑣) in𝐺 for the given

demand matrix 𝐷 .

Our goal is to add a perfect matching 𝑀 to the set of edges

of 𝐺 that minimizes the weighted average shortest path length

in this augmented graph 𝐺 +𝑀 . We consider the case where the

added matching edges behave the same as the edges of the under-

lying graph, i.e., they are indistinguishable from the edges of the

infrastructure graph in terms of their weight and length. We now

defineMinimizing Weighted Average Shortest Path Length

via Matching Addition (MWASP) as finding for a given graph 𝐺

a matching𝑀 that minimizes Obj𝐷 (𝐺 +𝑀).

3 APPROXIMATION ALGORITHM
In this section, we discuss the main algorithm of this paper, which

provably retains a constant factor approximation for a class of

demand matrices. The reason for turning to approximation is that

MWASP is an algorithmically challenging problem:

Theorem 3.1. MWASP is NP-hard, even if the underlying graph

is a cycle and every row and column of 𝐷 has at most two non-zero

elements.

Algorithm 1: Pseudocode for the SuperDAN algorithm.

Input: A ring 𝐺 = (𝑉 , 𝐸) and demand 𝐷 with average

degree ≤ 1, 𝛼 = 12

1 𝐷𝑆 , 𝑓𝑆 ← super graph after merging 𝛼 consecutive nodes

2 𝐻𝑆 ← DAN with ∆avg (𝐻𝑆) ≤ 𝛼 for 𝐷𝑆 using [3]

3 𝑀 ← ∅; 𝑈 ← ∅
4 forall {𝑎, 𝑏} ∈ 𝐸 (𝐻𝑆) do
5 pick any 𝑢 ∈ 𝑓 −1

𝑆
(𝑎) \𝑈 and 𝑣 ∈ 𝑓 −1

𝑆
(𝑏) \𝑈

6 𝑀 ← 𝑀 ∪ {{𝑢, 𝑣}}
7 𝑈 ← 𝑈 ∪ {𝑢, 𝑣}
8 return𝑀

The main idea behind our algorithm, SuperDAN∗, is to design a

higher degree network first and then transferring that result into

matching.

Super-node creation. From our infrastructure graph𝐺 we create a

super-graph 𝑆 by iteratively turning all nodes of𝐺 into super-nodes.

A super-node is a collection of nodes of an underlying graph.

With𝐺 being a ring, we turn it into a super-ring 𝑆 within 𝑛
𝛼 steps.

In the step 𝑖 , we contract the consecutive nodes 𝑣𝑖 ·𝛼+1, . . . 𝑣 (𝑖+1) ·𝛼
into super-node 𝑠𝑖 . We define 𝑓𝑆 : 𝑉 (𝐺) ↦→ 𝑉 (𝑆) to be the mapping

between nodes and corresponding super-nodes. The demand 𝐷𝑆

on the super-graph is

𝐷𝑆 (𝑎, 𝑏) =
∑︁

𝑢,𝑣∈𝑉
𝑓𝑆 (𝑢)=𝑎,𝑓𝑆 (𝑣)=𝑏

𝐷𝑢,𝑣

In our algorithm, we set 𝛼 = 12. For simplicity, we assume 𝑛 to be

divisible by 𝛼 . Note that this assumption could be avoided with a

more sophisticated creation of the super-nodes that ignores some

nodes without communication demand.

DAN on super-graph. After creating the super-graph, we use the

construction of [3] to build a demand-aware network
†
(DAN) with

a degree at most 12 ∆avg on top of the super-graph, where ∆avg

denotes the average degree of the super-demand-graph. A recent

paper [7] improved this bound to 4 ∆avg +1.
Matching assignment inside a super-node. We now transform

the edges of the DAN on top of super-nodes into a matching on

the original graph. Note that the constructed DAN has maximum

degree 12 ∆avg ≤ 12, by assumption. Thus, for each super-node 𝑣 we

can map each incident edge to a different node in 𝑓 −1

𝑆
(𝑣) and obtain

a matching in 𝐺 . See Algorithm 1 for an overview on SuperDAN.

Theorem 3.2. Given a ring graph 𝐺 with a demand graph 𝐷 of

average degree at most
1

𝛼 , then for 𝛼 = 12 SuperDAN computes in

𝑂 (𝑛2 · log𝑛) time a matching𝑀 for which

Obj𝐷 (𝐺 +𝑀) ≤ 𝑐 · min

matching𝑀 ′

on V(G)

Obj𝐷 (𝐺 +𝑀′)

for some non-negative constant 𝑐 that depends only on 𝛼 .

∗
We choose this name beacuse our algorithm combines the ideas of super-graph

creation and then building a demand-aware network on top of it.

†
This is a graph on the super-nodes satisfying the communication demands.

BA: Minimizing the Weighted Average Shortest Path Length in Demand-Aware Networks via Matching Augmentation SPAA ’24, June 17–21, 2024, Nantes, France

FB-A FB-B FB-C
Data set

0

2000

4000

6000

8000

Av
er

ag
e

we
ig

ht
ed

 d
ist

an
ce

Fast Greedy
Matching on demands
SuperChord
SuperDAN

Figure 1: This considers the three Facebook data set in-
stances [16], and shows the cost of our fastest algorithms
on it. We choose these four algorithms given the sheer size of
the data sets, which have 13, 733, 18, 897, 27, 358 nodes respec-
tively.

We remark that Theorem 3.2 would be able to achieve 𝛼 = 5

if we replace the algorithm from Avin et al. [3] by the algorithm

recently proposed in [7]; the proof is analogous.

4 HEURISTICS
In this section, we discuss some of our heuristics.

SuperChord. Based on the idea of creating super-graphs, we aim

to benefit from the well-known Chord [19] protocol. To this end,

we create a super-graph by combining 𝑥 =
𝑊 (𝑛 ·ln 2)

ln 2
consecutive

nodes, where𝑊 represents Lambert𝑊 function, and lg the natural

logarithm function
‡
. We then build the Chord on the

𝑛
𝑥 super-nodes

of the super-graph. The resulting graph has degree log(𝑛𝑥). We set

𝑥 =
𝑊 (𝑛 ·ln 2)

ln 2
as it ensures 𝑥 = log(𝑛𝑥). This allows us to view the

log(𝑛𝑥) outgoing edges of a super-node as matching edges initiated

from the nodes within the super-node.

We remark that the Chord algorithm ensures a log𝑛 diame-

ter (considering degree log𝑛) [19]. As the size of super-nodes is

𝑂 (log𝑛), we can ensure that any two nodes can reach each other

via a shortest path of length 𝑂 (log𝑛), which in turn implies that

SuperChord is an 𝑂 (log𝑛) approximation.

Matching on demands. This algorithm uses the demand graph that

we introduced before, in which each edge is weighted by its demand,

except the infrastructure edges. The algorithm then considers the

maximummatching on the demand graph as its output. The running

time of this algorithm is 𝑂 (𝑛3), given the currently best maximum

weighted matching algorithm [5].

Fast greedy. The fast greedy algorithm starts by sorting all pairs

of nodes based on their demand in descending order. Starting with

the edge of highest demand, it considers the next valid edge in the

sorted list as the next matching edge.

5 EXPERIMENTAL EVALUATION
To evaluate our results, we consider real-world instances. By doing

so, we show the benefits of each algorithm in the wild.

‡
If the number of super-nodes is not a power of two, then we consider the super-

graph with closest and smaller power of two as the number of super-nodes.

Real-world demands.Our algorithms have been tested on a range

of real-world datacenter traces [2] that has been the base of compari-

son for many previous works [4, 10, 15]. In particular, we focused on

the Meta (formerly known as Facebook) dataset [16]. This dataset

contains communication between racks and servers within three

data center clusters (Database, Web Services, and Hadoop, sorted by

their number of nodes) which we call 𝐴 to𝐶 respectively. We focus

on the communications between racks. Furthermore, we summarize

each dataset into a list, in which the frequency of communication

between each rack pair is listed.

Results.Our results indicate that our algorithms using super-graphs,

in particular SuperDAN, can be a good option to reduce the cost in

real-world instances, in conjunction with other greedy algorithms.

See Figure 1 for the results.

ACKNOWLEDGMENTS
This project has received funding from the European Research

Council (ERC) under the Grant agreement No. 864228 (AdjustNet),

2020-2025.

REFERENCES
[1] Florian Adriaens and Aristides Gionis. 2022. Diameter Minimization by Short-

cutting with Degree Constraints. In ICDM.

[2] Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. 2020. On the

Complexity of Traffic Traces and Implications. In ACM SIGMETRICS.

[3] Chen Avin, Kaushik Mondal, and Stefan Schmid. 2020. Demand-aware network

designs of bounded degree. Distributed Computing (2020).

[4] Marcin Bienkowski, David Fuchssteiner, and Stefan Schmid. 2023. Optimizing

Reconfigurable Optical Datacenters: The Power of Randomization. In SC. ACM.

[5] Ran Duan and Seth Pettie. 2014. Linear-Time Approximation for Maximum

Weight Matching. J. ACM (2014).

[6] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali

Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin

Vahdat. 2011. Helios: a hybrid electrical/optical switch architecture for modular

data centers. ACM SIGCOMM CCR (2011).

[7] Aleksander Figiel, Janne H Korhonen, Neil Olver, and Stefan Schmid. 2023.

Demand-Aware Network Design with Steiner Nodes and a Connection to Virtual

Network Embedding. arXiv preprint arXiv:2308.10579 (2023).

[8] Andrew Gozzard, Max Ward, and Amitava Datta. 2018. Converting a network

into a small-world network: Fast algorithms for minimizing average path length

through link addition. Information Sciences (2018).

[9] Matthew Nance Hall, Klaus-Tycho Foerster, Stefan Schmid, and Ramakrishnan

Durairajan. 2021. A Survey of Reconfigurable Optical Networks. In OSN.

[10] Kathrin Hanauer, Monika Henzinger, Stefan Schmid, and Jonathan Trummer.

2022. Fast and heavy disjoint weighted matchings for demand-aware datacenter

topologies. In IEEE INFOCOM.

[11] Jon Kleinberg. 2000. The small-world phenomenon: an algorithmic perspective.

In STOC.

[12] Adam Meyerson and Brian Tagiku. 2009. Minimizing Average Shortest Path

Distances via Shortcut Edge Addition. In RANDOM.

[13] Manos Papagelis, Francesco Bonchi, and Aristides Gionis. 2011. Suggesting ghost

edges for a smaller world. In ACM CIKM.

[14] Nikos Parotsidis, Evaggelia Pitoura, and Panayiotis Tsaparas. 2015. Selecting

shortcuts for a smaller world. In SIAM SDM.

[15] Arash Pourdamghani, Chen Avin, Robert Sama, and Stefan Schmid. 2023.

SeedTree: A Dynamically Optimal and Local Self-Adjusting Tree. In IEEE INFO-

COM. IEEE.

[16] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.

2015. Inside the social network’s (datacenter) network. In ACM SIGCOMM CCR.

[17] Neta Rozen-Schiff, Klaus-Tycho Foerster, Stefan Schmid, and David Hay. 2023.

Chopin: Combining Distributed and Centralized Schedulers for Self-Adjusting

Datacenter Networks. In OPODIS.

[18] A. A. Schoone, H. L. Bodlaender, and J. Van Leeuwen. 1987. Diameter increase

caused by edge deletion. J. Graph Theory (1987).

[19] Ion Stoica, Robert Tappan Morris, David R. Karger, M. Frans Kaashoek, and Hari

Balakrishnan. 2001. Chord: A scalable peer-to-peer lookup service for internet

applications. In ACM SIGCOMM.

	Abstract
	1 Introduction
	2 Model
	3 Approximation Algorithm
	4 Heuristics
	5 Experimental Evaluation
	Acknowledgments
	References

