
SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

Improved Fast Rerouting Using
Postprocessing
Klaus-Tycho Foerster (University of Vienna, Austria)

Andrzej Kamisiński (AGH University of Science and Technology in Kraków, Poland)

Yvonne-Anne Pignolet (DFINITY, Switzerland)

Stefan Schmid (University of Vienna, Austria)

Gilles Tredan (LAAS-CNRS, France)

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

A tale of arborescences and donuts..

2

...and their connection to routing

https://www.freepik.com/free-vector/green-trees_794232.htm

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

Outline

1. Model and Objectives

2. Arborescence-based Fast Rerouting

3. Postprocessing Framework

4. Case Studies

5. Conclusion and Outlook

3

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

 Motivation

4

Approaches for maximal resilience are known [Chiesa et al. TON17]
=> What about stretch, load and other performance criteria?
 [CCR18,Infocom19,DSN19]
=> Despite NP-hardness results and beyond special cases?

Static Fast Rerouting (FRR)
● Seamless failover
● Precomputed failover-routes

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

Model

Network: strongly r-connected di-graph

Model and Objectives

5

In case of failure:
static local re-routing based on

● SRC, DST, in-port
● incident failures

 No header
rewriting, no

communication,
deterministic

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

Model

Network: strongly r-connected di-graph

Model and Objectives
Objectives

Load
Maximum additional link utilization due
to rerouting

Stretch
Maximum additional hops due to
rerouting

SRLG
Shared Risk Link Groups

Path independence
No shared intermediate nodes to
destination

6

In case of failure:
static local re-routing based on

● SRC, DST, in-port
● incident failures

 No header
rewriting, no

communication,
deterministic

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

Arc-disjoint Arborescence Decomposition

7

● Arborescence = a rooted directed spanning tree

● Decomposition: union of r-arborescences uses each link at most once

s.t.

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

Arborescence FRR

8

● Assign numbers to arborescences, pick arborescence 1
● Forward to next hop according to current arborescence

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

Arborescence FRR

9

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

Arborescence FRR

10

Decomposition
influences

length/load/..

● Assign numbers to arborescences, pick arborescence 1
● Forward to next hop according to current arborescence
● If forwarding link is not available, use link of next arborescence

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

How good is Arborescence FRR?

11

Theorem 1: Deterministic local fast failover algorithms resilient to k − 1
failures, have competitive additive stretch of Ω(n/(k − 1))
(can be met by arborescence-based re-routing on donut graph).

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

Improve Decompositions

12

How to transform T1 into T2?

Observation:
outgoing from

same node

(u,v) ↔ (u,x)
...

(x,w) ↔ (x,u)

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

Swapping Conditions

13

An arborescence swap e=(u,v) with e’=(u,v’) is valid if

I. e ∈ Ti, e’ ∈ Tj and
○ v′ is not on the path from v to the root in Tj
○ v is not on the path from v’ to the root in Ti

II. e ∈ Ti and e’ not in any Tj and
○ v is not on the path from v′ to the root in Ti

or

Observation:
Validity

computable in
O(n)

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

Post-Processing Algorithm

14

Theorem 2.
Post-processing algorithm never introduces cycles and always converges.

Objective function

Decomposition Improved
decomposition

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

Case study 1

15

Traffic scenario optimization

● Flows differ in size and importance
● Links differ in failure probability

=> Minimize stretch/load of
 important flows
 given a failure model

http://koiossian.com/synesis-solutions/synesis-network-flow-analytics/

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

Traffic Scenario

16

Stretch Minimization Load Minimization

 Down 50% !
 50%
lower!

 Down 50% !
 Down to
0 failures!

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

Case study 2

17

Direct decomposition optimization

● Shared Risk Link Groups (SRLG)

=> Links in SRLG in same arborescences

● Path independence

=> No shared intermediate nodes on
 routes to destination

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

SLRG and Independence

18

SLRG Independence

 High % of
SRLG links
in last arbs

 98 % of
paths are

independent

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

Conclusions

FRR to provide QoS in addition to basic connectivity

● FRR with arborescence decompositions can be
asymptotically optimal wrt stretch

● Simple post-processing framework with
convergence guarantee

Case studies demonstrate applicability for
stretch, load, independence, SRLG

Future work
- Bounds on improvement achieved
- Alternative post-processing strategies

19

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet20

SRDS 2019 - Improved FRR Using Preprocessing - Y.A. Pignolet

Post-Processing Algorithm

21

Theorem 2.
Post-processing algorithm never introduces cycles and always converges.

Input: arborescence decomposition T, objective function
Output: improved decomposition

1. improved := True
2. while improved do
3. improved := False
4. for each node v do
5. for all pairs of outgoing edges from v do
6. if swapping condition met and objective function improves
7. swap edges in T
8. improved := True

