
Preacher: 
Network Policy Checker for 
Adversarial Environments

Kashyap Thimmaraju, Liron Schiff and Stefan Schmid

1



Backdoors and exploits

• Network devices are very effective attack 
vectors
• Provide access to internal networks

• Transparent to many security measures

• Hard to detect

• Mostly used by state actors
• Exploiting 0-day vulnerabilities

• Compromising supply chains

2



• A compromised network device can
run arbitrary malicious code.
• Modify traffic

• To attack network hosts (including DoS)

• Report false configuration and state
• To evade detection

• Two attack building blocks:

Attack model
Internet

Admin

3



Attack model (cont.)

• Attack examples:
a) Denial of service

b) Port-scan

c) Mirroring

d) MitM

e) Covert channel

f) Re-route

4



Naïve solution:

Trajectory Sampling (TS)

• Sample packets
• Global set of hash values

• Send samples to verifier
• Attacker corrupt them on the way

• Compare trajectories to policy

• Good for traffic monitoring, but not 
suited adversarial settings

AdminVerifier

Internet

- Attacker avoids them 

5



Split Assignment Trajectory 
Sampling (SATS) [Lee&Kim DSN06]

• Sample packets
• Independent sets of hash values

• Send samples to verifier
• Switch should use encryption

• Compare trajectories to policy

• Designed for adversarial settings

• But…

AdminVerifier

Internet

- Attacker avoids them 

6



SATS Limitations

• Sample packets
• Security guarantees?

• Fixed-hash-crafted injection!

• Switch compatibility

• Control plane security
• Messages (samples and assignments)

• Endpoints (verifier etc.)

• Compare trajectories to policy
• Obtain policy (network compatibility)?

• Scalability?

AdminVerifier

Internet

7



Preacher

• An improved trajectory sampling solution

• Harnesses programmable network technologies

• Uses robust and distributed design

• Includes a security analysis and a prototype

• Addresses all SATS limitations

8



Contributions

• Sample packets
• Security guarantees

• Fixed-hash-crafted injection

• Switch compatibility

• Control plane security
• Messages (samples and assignments)

• Endpoints (verifier etc.)

• Compare trajectories to policy
• Obtain policy (network compatibility)

• Scalability

✓ Analysis + evaluations

✓ Dynamic assignment

✓ SDN switch

✓ OpenFlow encryption

✓ Distributed design

✓ SDN controller

✓ Parallel design

9



Preacher Scheme

• Cooperates with controller and 
routing apps
• Sends hash assignments (switch 

configuration)

• Receives samples (e.g., PacketIns)

• Obtains a policy

• Verifies samples
• For each sample computes other 

expected samples (using the policy)

• Detects inconsistencies (with timeouts)

Internet

Controller

Topology
Incoming 
Samples

Switch 
config.

Preacher

Hash 
assignment

Verification

Routing app. 
(policy)

10



Preacher Scheme – Distributed and Parallel

Internet

Controller

Topology
Incoming 
Samples

Switch 
config.

Preacher

Hash 
assignment

Verification

Routing app. 
(policy)

Use redundancy to improve 
security and fault tolerance!

11



Preacher Scheme – Distributed and Parallel

• Hash Assignment
• Each assigner configures a subset of switches 

(or pairs)

• Compromise or malfunction of one assigner 
is not fatal

• Verification
• Each verifier is responsible for a subset of 

hashes, and receives a subset of the samples.

• Better performance and security (depending 
on subset overlaps)

Internet

Hash assignment

Assigner

Assigner

Assigner

Verification

Verifier

Verifier

Verifier

Use redundancy to improve 
security and fault tolerance!

12



Security Analysis 

• An attack occurs along a directed path
• Where the packet should have traversed

• Detection requirement
• Attacked packet hash is assigned before 

and after attack

• Same for drop and inject

• Hash assignments
• Each switch is assigned with p of hash 

space. p is very small (𝑝 ≪
1

𝑛
).

• Independent vs. pairs assignment

Internet

13



Security Analysis 

• Detection probability
• For independent assignment:

𝑃𝑖𝑎 = 1 − 1 − 𝑝 𝑘1 ∙ 1 − 1 − 𝑝 𝑘2 ≈ 𝑝2𝑘1𝑘2

• For pairs assignment:

𝑃𝑝𝑎 > 1 − 1 −
𝑝

𝑛 − 1

𝑘1𝑘2
≈
𝑝𝑘1𝑘2
𝑛 − 1

• We assume #packets-till-detection follows 
geometric distribution.

• We use common packet rates to get 
expected detection time.

• We use common data center link capacities 
to derive expected total samples’ rate (pps).

𝑘1 𝑘2

14



Evaluation

• Prototype based on ONOS-1.4 with OpenFlow 1.3 as controller.
• Used services: Flow objective, Flow rule, Device, Packet-in

• Clos topology with k=4
• Open vSwitch (OvS) for switches

• Experiments goals:
• Verifying analysis
• Evaluating overheads

• Switch
• Controller

• Evaluating throughput

1 core ≈ 1000 pps 15



Detection Time vs. Resources

• With pairs-assignment
• Attacks in small network can easily 

be detected within minutes

• In big networks ~10 servers (~100 
cores) are needed.

• With simple independent 
assignment
• Even in small networks it is very 

hard to detect.

• In big networks it is infeasible.

16



Future work

• Implementation with more programmable network devices

• hardware switches, P4 switches and smart NICs

• Experimenting at SDN datacenters

17



Summary

• Preacher harnesses programmable network technologies

• Uses distributed design to ensure robustness and security

• Provides provable security

• Open source prototype is available at: 

www.github.com/securedataplane/preacher

18


