
STACS, 8.03.2023

Dynamic Maintenance of
Monotone Dynamic Programs
and Applications
Monika Henzinger, Stefan Neumann (@StefanResearch),
Harald Räcke, Stefan Schmid (@schmiste_ch)

STACS, 8.03.2023

Making Dynamic Programming
Dynamic
Monika Henzinger, Stefan Neumann (@StefanResearch),
Harald Räcke, Stefan Schmid (@schmiste_ch)

Dynamic Programming (DP)

• Dynamic programming (DP) is a fundamental algorithm design paradigm

• Complex problem is broken up into simpler subproblems, 
original problem is solved by combining the solutions

• Often prohibitively costly in practice

• We often need time to compute solution

• We even need space to store the DP table!

Ω(n2)

Ω(n2)

Speeding Up DPs

• Lots of different conditions that allow solving DPs
more quickly

• Total monotonicity, Monge property, certain
convexity and concavity properties, Knuth–Yao
quadrangle-inequality, …

• SMAWK algorithm computes solution for totally
monotone DP tables in linear time

• #rows, #columns

• Naïve computation would take time

➡ This line of research focussed on static algorithms

O(n + m)

n = m =

Ω(mn)

example from https://courses.engr.illinois.edu/
cs473/sp2016/notes/06-sparsedynprog.pdf

12 21 38 76 89

47 14 14 29 60

21 8 20 10 71

68 16 29 15 76

97 8 12 2 6

Example of totally monotone matrix

Monge property

for all and
Ti,j + Ti′ ,j′

≤ Ti,j′
+ Ti′ ,j

i < i′ j < j′

Dynamic DPs?

• Dynamic algorithms: 
Input is changing over time and we want to maintain a solution

• Goal: Get small (polylogarithmic) update time

• Remember what I said about DPs earlier?

• “Complex problem is broken up into simpler subproblems, 
original problem is solved by combining the solutions”

➡ Quite similar to how many dynamic algorithms are developed, 
 so it should be “easy” to turn DPs into dynamic algorithms?

Question:
Is there a condition that implies that

a DP can be made dynamic?

Problem: Arrays Do Not Work for Dynamic DPs

• Problem: When a single entry in the DP table changes, 
we often need to recompute entries — even in just a single row

• If we store the DP as a two-dimensional array, 
this rules out the polylog update times that we hoped for

➡ Can we bypass this limitation by storing the DP table in a smarter way?

Ω(m)

Our Results

Answer:
Yes! There is a condition that implies that

a DP can be made dynamic!

If the rows are monotonically increasing
and we allow approximation*,

then we can store the DP table in a smarter way

*… a few more technical conditions apply

Notation

• Consider an DP table with entries in

• The rows are monotone if for all and

• We say that a DP table is an -approximation of
if for all and

• We assume the DP can be computed row-by-row

• Dependency tree for the DP: tree which encodes
whether computing row requires solution for row

n × m T [0,W]

Ti,j ≤ Ti,j+1 i j

T̃ α T
Ti,j ≤ T̃i,j ≤ α ⋅ Ti,j i j

i j

0 4 5 10 17

0 0 14 29 60

0 1 1 2 5

0 16 29 29 29

0 8 18 30 31

0 4.2 5.1 10 17.1

0 0 14 30 61

0 1.1 1.1 2.1 5.5

0 16.3 30 30 30

0 8.1 18.2 30 31.3

i

j2

j1

i

j1 j2

General Framework to Make DPs Dynamic

• Assumption: DP has monotone rows and dependency
tree of height and rows are “easy to compute”

• Static result: We can compute a -approximation of
the DP table in near-linear time and space

• Every entry is correct up to a multiplicative -factor

• Much more efficient than writing down the entire table as
an array in time

• Dynamic result: When entries in the DP table change, we
can update the entire table in polylogarithmic time

n
O(log n)

(1 + ε)
Õ(n)

(1 + ε)

Ω(mn)

Õ(1)

0 4 5 10 17

0 0 14 29 60

0 1 1 2 5

0 16 29 29 29

0 8 12 20 22

i

j1 j2

O(log n)

Balanced Graph Partitioning

• Problem: 
Given a graph partition the vertices into groups

, such that

each group contains vertices and

 is minimized

• Bicriteria version: Each group may contain up to
vertices, we compare cut-value against optimal solution that has to
satisfy the constraint exactly

• Important pre-processing step in many distributed graph
algorithms, popular heuristics METIS have thousands of citations

G = (V, E, w) k
V1, …, Vk

Vi n/k

cut(V1, …, Vk) = ∑
(u,v)∈E : u∈Vi,v∈Vj

w(u, v)

(1 + ε)n/k

Picture taken from Rais et al.,

https://doi.org/10.20965/jaciii.2019.p0005

Balanced Graph Partitioning

• Our results:

• First static near-linear time algorithm computing a bicriteria
-approximation

• Best polynomial-time algorithm computes a bicriteria
-approximation in time  

(Feldmann and Foschini, 2015)

• First dynamic algorithm with subpolynomial update time for
unweighted graphs which maintains a bicriteria
-approximation under edge insertions and deletions (update
time)

• We simplify and generalize the DP by Feldmann and Foschini

O(lg4 n)

O(lg1.5 n lg lg n) Ω(n4)

no(1)

Ok,ε(1) ⋅ no(1)

Picture taken from Rais et al.,

https://doi.org/10.20965/jaciii.2019.p0005

Fully Dynamic Knapsack

• Problem: 
Given a budget and items with profits and
weights , maximize such that

• Dynamic version: Items are inserted and deleted

• Our result: Maintain a -approximation with update
time

• Improves upon Eberle et al. (2021) who obtained
update time

• Can you improve this result?

B n v1, …, vn
w1, …, wn ∑

i∈I

vi ∑
i∈I

wi ≤ B

(1 + ε)
O(ε−2 log2(nW))

O(ε−9 log4(nW))

Picture from Wikipedia

https://commons.wikimedia.org/wiki/File:Knapsack.svg

https://commons.wikimedia.org/wiki/File:Knapsack.svg

Further Results

• Two tricks to make rows of DPs monotone

• Lower bounds for Dynamic -Balanced Graph Partitioning and Dynamic Knapsack
showing that if an algorithm only stores a single solution then update time is high

• Suggests that DP-style implicit solutions are inevitable

• For simultaneous source location: First near-linear time static algorithm and first
dynamic algorithm with subpolynomial update time

• First dynamic algorithm for -Necklace with additive approximation and
update time

k

ℓ∞ ±ε
O(ε−2)

How do we get these results?

Store the DP Table’s Monotone Rows using
Piecewise Constant Functions

What is a Piecewise Constant Function?

• A piecewise constant function looks like this:

• The set of tuples encodes the -coordinates and -coordinates

• New complexity measure: number of pieces of the function

• Interpretation: For each row of the DP table , we will have a function such that

➡ Looking at the function reveals the entire ’th row

f : [0,t] → [1,W]

(x1, y1), …, (xp, yp) x y

p

i T fi fi(j) = Ti,j

fi i

Efficient Operations

• Let be piecewise constant functions with at most pieces. 
Then we can compute:

• in time and at most pieces

• in time and at most pieces

• Running times are fast if is small, no dependency on the size of the domain !

• The -convolution of and in time , i.e., 
	

• But this function might have pieces, 
which might cause high running times if we use it multiple times

g, h : [0,t] → [0,W] p

fmin(x) := min{g(x), h(x)} Õ(p) 2p

fadd(x) := g(x) + h(x) Õ(p) 2p

p [0,t]

(max , +) f = g ⊕ h g h Õ(p2)
f(x) = max

x′ ∈[0,x]
g(x′) + h(x − x′)

Θ(p2)

Ensuring Few Pieces

• How do we ensure that the number of pieces stays small?

• We round to powers of :

• If for all , then only takes values

• If is monotone, we have ≤1 piece for each value and thus has at most pieces

• We can perform all operations from before in time

f(x) 1 + δ ⌈f(x)⌉1+δ = min{(1 + δ)i : (1 + δ)i ≥ f(x), i ∈ ℕ}

f(x) ∈ [1,W] x ⌈f(x)⌉1+δ O(log1+δ(W))

f ⌈f ⌉1+δ O(log1+δ(W))

logO(1)
1+δ (W)

Why is this Useful in DPs?

• We store the rows of the DP table as piecewise constant functions

• We compute entire rows in polylogarithmic time, using operations for our
piecewise constant functions (rather than computing them entry-by-entry)

• Recall our assumption: DP has monotone rows and dependency tree of
height and rows are “easy to compute”

• “easy to compute”: to compute a row, we use only operations of type
 and and at most one -convolution

• After computing a row, we perform a rounding step

• Bounds the number of pieces, 
allows us to compute each row in time

• Since the dependency tree has small height, 
error does not compound too much

i fi

n
O(log n)

O(1)
min{g, h} g + h (max , +)

⌈f ⌉1+δ

Õ(1)

0 4 5 10 17

0 0 14 29 60

0 1 1 2 5

0 16 29 29 29

0 8 12 20 22

i

j1 j2

O(log n)

Often DPs Have Monotone Rows

• For many optimization problems, the columns correspond to budget constraints (e.g., Knapsack)

• ’th column = “Maximum objective function with budget at most ”

• Monotone rows appear automatically

• Sometimes we have exact budget constraints (“with budget exactly ”)

• Often the DP can be adapted such that it works in the “budget at most ”-setting

• In the paper, we do this for -Balanced Graph Partitioning

• Sometimes other tricks can help

• For simultaneous source location, a DP by Andreev et al. did not fit our framework (e.g., used negative values)

• In the paper, we consider the “inverse” of this DP — takes only positive values, fits into our framework

k k

k

k

k

Conclusion

Making Dynamic Programming Dynamic
Monika Henzinger, Stefan Neumann (@StefanResearch), Harald Räcke, Stefan Schmid (@schmiste_ch)

• We provide a general framework such that if

a DP has monotone rows, the dependency tree is of
small height and rows are “easy to compute”,

then we can compute a -approximate solution in
near-linear time and dynamically with polylog update times

• First near-linear time and dynamic algorithms for
-Balanced Graph Partitioning

• Fastest fully dynamic algorithm for Knapsack

• Can you improve it?

• We believe there will be many applications in the future

(1 + ε)

k

0 4 5 10 17
0 0 14 29 60
0 1 1 2 5
0 16 29 29 29
0 8 12 20 22

i

j1 j2

O(log n)

Appendix

Application:
Fully Dynamic Knapsack

Our main technical contribution in the paper is for -Balanced Graph Partitioning.

But the result for fully dynamic Knapsack is very illustrative for our approach.

k

Fully Dynamic Knapsack

• Problem: 
Given a budget and items with profit and
weights , maximize such that

• Dynamic version: Items are inserted and deleted

• Our result: Maintain a -approximation with update
time

• Improves upon Eberle et al. (2021) who obtained
update time

B n v1, …, vn
w1, …, wn ∑

i∈I

vi ∑
i∈I

wi ≤ B

(1 + ε)
O(ε−2 log2(nW))

O(ε−9 log4(nW))

Picture from Wikipedia

https://commons.wikimedia.org/wiki/File:Knapsack.svg

https://commons.wikimedia.org/wiki/File:Knapsack.svg

Warm-Up: Existing Algorithm

• How can we solve Knapsack using piecewise constant functions?

• Consider an item with profit and weight

• Set maximum profit if we can spend weight and can only use
items in the set

i vi wi

f{i}(w) = w
{i}

Two Items

• Suppose now we have two items and such that and

• Set maximum profit if we can spend weight and can only use
items in the set

• Then looks like this:

i j vi ≤ vj wi ≤ wj

f{i,j}(w) = w
{i, j}

f{i,j}(w)

How to Compute ?f{i,j}(w)

• Observe that can be computed via a -convolutionf{i,j}(w) (max , +)

General Case of More Than Two Items

• More generally, set maximum profit if we can
spend weight and can only use items in the set

• is the optimal solution for the global problem

• If then

• Algorithm:

• Compute the DP bottom-up

• In each internal node, 
we compute as -convolution of and

• Then we set

fJ(w) =
w J

f[n](B)

J = J1
·∪ J2 fJ(w) = max

0≤w′ ≤w
fJ1

(w′) + fJ2
(w − w′)

fJ (max , +) fJ1
fJ2

fJ = ⌈fJ⌉1+δ

Analysis

• Algorithm:

• In each internal node we compute as -convolution of and

• Then we set

• Approximation ratio:

• At each level, we lose approximation factor because of rounding

• Since the dependency tree has height , our approximation ratio is
 for

• Running time:

• Each function has at most pieces, 
thus convolution takes time

• Using as above, total time is

fJ (max , +) fJ1
fJ2

fJ = ⌈fJ⌉1+δ

1 + δ

O(log n)
(1 + δ)O(log n) ≤ exp(δ ⋅ O(log n)) ≤ 1 + ε δ = log(1 + ε)/O(log n)

O(log1+δ(W))
O(log2

1+δ(W))

δ O(n ⋅ ε−2 log2(W)log2(n))

Dynamic Knapsack

• Dynamic version:

• Suppose we can change item profits and
weights

• Update : set and

• After update for item , 
recompute leaf–root path from node to root

• Takes update time

• But we can be even faster:  
update time

(i, v, w) vi = v wi = w

i
i

O(ε−2 log2(W)log3(n))

O(ε−2 log2(nW))

Faster Dynamic Knapsack

• Partition the items into weight classes

• Set to the items from of smallest weight,

• Consider the items of smallest weight from each class, 

and the other items

• Note that

• Maintain using our data structure from before, 
since is small, update time is

• Maintain in binary search trees, sorted by density

Vℓ = {i : (1 + ε)ℓ ≤ vi < (1 + ε)ℓ+1}

V1/ε
ℓ 1/ε Vℓ V′ ℓ = Vℓ∖V1/ε

ℓ

1/ε X = ⋃
ℓ≥0

V1/ε
ℓ

Y = ⋃
ℓ≥0

V′ ℓ

|X | = ℓ ⋅ 1/ε = O(ε−2 log(W))

X
|X | O(ε−2 log2(nW))

Y vi/wi

Answering Queries

• We maintain using our data structure from before

• Solution is stored as a piecewise constant function with pieces

• Every time a new piece starts, objective function value increases

• Returning a solution. For each do:

• Spend budget on solution from and budget on solution from
using fractional knapsack

• Fractional knapsack solution can be queried from binary search trees

• In the analysis, we prove that removing the item which is fractionally
cut in the fractional knapsack solution is not a problem

X

(x1, y1), …, (xp, yp)

i = 1,…, p

xi X B − xi Y

