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Dynamic Programming (DP)

• Dynamic programming (DP) is a fundamental algorithm design paradigm


• Complex problem is broken up into simpler subproblems, 
original problem is solved by combining the solutions


• Often prohibitively costly in practice


• We often need time  to compute solution


• We even need  space to store the DP table!

Ω(n2)

Ω(n2)



Speeding Up DPs

• Lots of different conditions that allow solving DPs 
more quickly


• Total monotonicity, Monge property, certain 
convexity and concavity properties, Knuth–Yao 
quadrangle-inequality, …


• SMAWK algorithm computes solution for totally 
monotone DP tables in linear time 


• #rows, #columns


• Naïve computation would take time 


➡ This line of research focussed on static algorithms

O(n + m)

n = m =

Ω(mn)

example from https://courses.engr.illinois.edu/
cs473/sp2016/notes/06-sparsedynprog.pdf

12 21 38 76 89

47 14 14 29 60

21 8 20 10 71

68 16 29 15 76

97 8 12 2 6

Example of totally monotone matrix

Monge property 



for all  and 
Ti,j + Ti′ ,j′ 

≤ Ti,j′ 
+ Ti′ ,j

i < i′ j < j′ 



Dynamic DPs?

• Dynamic algorithms: 
Input is changing over time and we want to maintain a solution


• Goal: Get small (polylogarithmic) update time


• Remember what I said about DPs earlier?


• “Complex problem is broken up into simpler subproblems, 
original problem is solved by combining the solutions”


➡ Quite similar to how many dynamic algorithms are developed, 
 so it should be “easy” to turn DPs into dynamic algorithms?



Question: 
Is there a condition that implies that 

a DP can be made dynamic?



Problem: Arrays Do Not Work for Dynamic DPs

• Problem: When a single entry in the DP table changes, 
we often need to recompute  entries — even in just a single row


• If we store the DP as a two-dimensional array, 
this rules out the polylog update times that we hoped for


➡ Can we bypass this limitation by storing the DP table in a smarter way?

Ω(m)



Our Results



Answer: 
Yes! There is a condition that implies that 

a DP can be made dynamic! 

If the rows are monotonically increasing 
and we allow approximation*, 

then we can store the DP table in a smarter way

*… a few more technical conditions apply



Notation

• Consider an  DP table  with entries in 


• The rows are monotone if  for all  and 


• We say that a DP table  is an -approximation of  
if  for all  and 


• We assume the DP can be computed row-by-row


• Dependency tree for the DP: tree which encodes 
whether computing row  requires solution for row 

n × m T [0,W]

Ti,j ≤ Ti,j+1 i j

T̃ α T
Ti,j ≤ T̃i,j ≤ α ⋅ Ti,j i j

i j

0 4 5 10 17

0 0 14 29 60

0 1 1 2 5

0 16 29 29 29

0 8 18 30 31

0 4.2 5.1 10 17.1

0 0 14 30 61

0 1.1 1.1 2.1 5.5

0 16.3 30 30 30

0 8.1 18.2 30 31.3
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General Framework to Make DPs Dynamic

• Assumption: DP has  monotone rows and dependency 
tree of height  and rows are “easy to compute” 

• Static result: We can compute a -approximation of 
the DP table in near-linear time and space 


• Every entry is correct up to a multiplicative -factor


• Much more efficient than writing down the entire table as 
an array in time 


• Dynamic result: When entries in the DP table change, we 
can update the entire table in polylogarithmic time 

n
O(log n)

(1 + ε)
Õ(n)

(1 + ε)

Ω(mn)

Õ(1)

0 4 5 10 17

0 0 14 29 60

0 1 1 2 5

0 16 29 29 29

0 8 12 20 22

i

j1 j2

O(log n)



Balanced Graph Partitioning

• Problem: 
Given a graph  partition the vertices into  groups 

, such that


each group  contains  vertices and


 is minimized


• Bicriteria version: Each group may contain up to  
vertices, we compare cut-value against optimal solution that has to 
satisfy the constraint exactly


• Important pre-processing step in many distributed graph 
algorithms, popular heuristics METIS have thousands of citations

G = (V, E, w) k
V1, …, Vk

Vi n/k

cut(V1, …, Vk) = ∑
(u,v)∈E : u∈Vi,v∈Vj

w(u, v)

(1 + ε)n/k

Picture taken from Rais et al.,

https://doi.org/10.20965/jaciii.2019.p0005



Balanced Graph Partitioning

• Our results:


• First static near-linear time algorithm computing a bicriteria 
-approximation


• Best polynomial-time algorithm computes a bicriteria 
-approximation in time  

(Feldmann and Foschini, 2015)


• First dynamic algorithm with subpolynomial update time for 
unweighted graphs which maintains a bicriteria 
-approximation under edge insertions and deletions (update 
time )


• We simplify and generalize the DP by Feldmann and Foschini

O(lg4 n)

O(lg1.5 n lg lg n) Ω(n4)

no(1)

Ok,ε(1) ⋅ no(1)

Picture taken from Rais et al.,

https://doi.org/10.20965/jaciii.2019.p0005



Fully Dynamic Knapsack

• Problem: 
Given a budget  and  items with profits  and 
weights , maximize  such that 


• Dynamic version: Items are inserted and deleted


• Our result: Maintain a -approximation with update 
time 


• Improves upon Eberle et al. (2021) who obtained 
update time 


• Can you improve this result?

B n v1, …, vn
w1, …, wn ∑

i∈I

vi ∑
i∈I

wi ≤ B

(1 + ε)
O(ε−2 log2(nW))

O(ε−9 log4(nW))

Picture from Wikipedia

https://commons.wikimedia.org/wiki/File:Knapsack.svg

https://commons.wikimedia.org/wiki/File:Knapsack.svg


Further Results

• Two tricks to make rows of DPs monotone


• Lower bounds for Dynamic -Balanced Graph Partitioning and Dynamic Knapsack 
showing that if an algorithm only stores a single solution then update time is high


• Suggests that DP-style implicit solutions are inevitable


• For simultaneous source location: First near-linear time static algorithm and first 
dynamic algorithm with subpolynomial update time


• First dynamic algorithm for -Necklace with additive approximation  and 
update time 

k

ℓ∞ ±ε
O(ε−2)



How do we get these results?



Store the DP Table’s Monotone Rows using 
Piecewise Constant Functions



What is a Piecewise Constant Function?

• A piecewise constant function  looks like this:


• The set of tuples  encodes the -coordinates and -coordinates


• New complexity measure: number of pieces  of the function


• Interpretation: For each row  of the DP table , we will have a function  such that 


➡ Looking at the function  reveals the entire ’th row

f : [0,t] → [1,W]

(x1, y1), …, (xp, yp) x y

p

i T fi fi( j) = Ti,j

fi i



Efficient Operations

• Let  be piecewise constant functions with at most  pieces. 
Then we can compute:


•  in time  and at most  pieces


•  in time  and at most  pieces


• Running times are fast if  is small, no dependency on the size of the domain !


• The -convolution  of  and  in time , i.e., 
	 


• But this function might have  pieces, 
which might cause high running times if we use it multiple times

g, h : [0,t] → [0,W] p

fmin(x) := min{g(x), h(x)} Õ(p) 2p

fadd(x) := g(x) + h(x) Õ(p) 2p

p [0,t]

(max , + ) f = g ⊕ h g h Õ(p2)
f(x) = max

x′ ∈[0,x]
g(x′ ) + h(x − x′ )

Θ(p2)



Ensuring Few Pieces

• How do we ensure that the number of pieces stays small?


• We round  to powers of :  


• If  for all , then  only takes  values


• If  is monotone, we have ≤1 piece for each value and thus  has at most  pieces


• We can perform all operations from before in time 

f(x) 1 + δ ⌈f(x)⌉1+δ = min{(1 + δ)i : (1 + δ)i ≥ f(x), i ∈ ℕ}

f(x) ∈ [1,W] x ⌈f(x)⌉1+δ O(log1+δ(W))

f ⌈f ⌉1+δ O(log1+δ(W))

logO(1)
1+δ (W)



Why is this Useful in DPs?

• We store the rows  of the DP table as piecewise constant functions 


• We compute entire rows in polylogarithmic time, using operations for our 
piecewise constant functions (rather than computing them entry-by-entry) 

• Recall our assumption: DP has  monotone rows and dependency tree of 
height  and rows are “easy to compute”


• “easy to compute”: to compute a row, we use only  operations of type 
 and  and at most one -convolution


• After computing a row, we perform a rounding step 


• Bounds the number of pieces, 
allows us to compute each row in time 


• Since the dependency tree has small height, 
error does not compound too much

i fi

n
O(log n)

O(1)
min{g, h} g + h (max , + )

⌈f ⌉1+δ

Õ(1)

0 4 5 10 17

0 0 14 29 60

0 1 1 2 5

0 16 29 29 29

0 8 12 20 22

i

j1 j2

O(log n)



Often DPs Have Monotone Rows

• For many optimization problems, the columns correspond to budget constraints (e.g., Knapsack)


• ’th column = “Maximum objective function with budget at most ”


• Monotone rows appear automatically


• Sometimes we have exact budget constraints (“with budget exactly ”)


• Often the DP can be adapted such that it works in the “budget at most ”-setting


• In the paper, we do this for -Balanced Graph Partitioning


• Sometimes other tricks can help


• For simultaneous source location, a DP by Andreev et al. did not fit our framework (e.g., used negative values)


• In the paper, we consider the “inverse” of this DP — takes only positive values, fits into our framework

k k

k

k

k



Conclusion
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• We provide a general framework such that if


a DP has monotone rows, the dependency tree is of 
small height and rows are “easy to compute”,


then we can compute a -approximate solution in 
near-linear time and dynamically with polylog update times


• First near-linear time and dynamic algorithms for 
-Balanced Graph Partitioning


• Fastest fully dynamic algorithm for Knapsack


• Can you improve it?


• We believe there will be many applications in the future

(1 + ε)

k
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i
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O(log n)



Appendix



Application: 
Fully Dynamic Knapsack

Our main technical contribution in the paper is for -Balanced Graph Partitioning.

But the result for fully dynamic Knapsack is very illustrative for our approach.

k



Fully Dynamic Knapsack

• Problem: 
Given a budget  and  items with profit  and 
weights , maximize  such that 


• Dynamic version: Items are inserted and deleted


• Our result: Maintain a -approximation with update 
time 


• Improves upon Eberle et al. (2021) who obtained 
update time 

B n v1, …, vn
w1, …, wn ∑

i∈I

vi ∑
i∈I

wi ≤ B

(1 + ε)
O(ε−2 log2(nW))

O(ε−9 log4(nW))

Picture from Wikipedia

https://commons.wikimedia.org/wiki/File:Knapsack.svg

https://commons.wikimedia.org/wiki/File:Knapsack.svg


Warm-Up: Existing Algorithm

• How can we solve Knapsack using piecewise constant functions?


• Consider an item  with profit  and weight 


• Set maximum profit if we can spend weight  and can only use 
items in the set 

i vi wi

f{i}(w) = w
{i}



Two Items

• Suppose now we have two items  and  such that  and 


• Set maximum profit if we can spend weight  and can only use 
items in the set 


• Then  looks like this:

i j vi ≤ vj wi ≤ wj

f{i,j}(w) = w
{i, j}

f{i,j}(w)



How to Compute ?f{i,j}(w)

• Observe that  can be computed via a -convolutionf{i,j}(w) (max , + )



General Case of More Than Two Items

• More generally, set maximum profit if we can 
spend weight  and can only use items in the set 


•  is the optimal solution for the global problem


• If  then 


• Algorithm: 

• Compute the DP bottom-up


• In each internal node, 
we compute  as -convolution of  and 


• Then we set 

fJ(w) =
w J

f[n](B)

J = J1
·∪ J2 fJ(w) = max

0≤w′ ≤w
fJ1

(w′ ) + fJ2
(w − w′ )

fJ (max , + ) fJ1
fJ2

fJ = ⌈fJ⌉1+δ



Analysis

• Algorithm: 

• In each internal node we compute  as -convolution of  and 


• Then we set 


• Approximation ratio: 

• At each level, we lose approximation factor  because of rounding


• Since the dependency tree has height , our approximation ratio is 
 for 


• Running time: 

• Each function has at most  pieces, 
thus convolution takes time 


• Using  as above, total time is 

fJ (max , + ) fJ1
fJ2

fJ = ⌈fJ⌉1+δ

1 + δ

O(log n)
(1 + δ)O(log n) ≤ exp(δ ⋅ O(log n)) ≤ 1 + ε δ = log(1 + ε)/O(log n)

O(log1+δ(W ))
O(log2

1+δ(W ))

δ O(n ⋅ ε−2 log2(W )log2(n))



Dynamic Knapsack

• Dynamic version: 

• Suppose we can change item profits and 
weights


• Update : set  and 


• After update for item , 
recompute leaf–root path from node  to root


• Takes update time 


• But we can be even faster:  
update time 

(i, v, w) vi = v wi = w

i
i

O(ε−2 log2(W)log3(n))

O(ε−2 log2(nW))



Faster Dynamic Knapsack

• Partition the items into weight classes 


• Set  to the  items from  of smallest weight, 


• Consider the  items  of smallest weight from each class, 

and the other items 


• Note that 


• Maintain  using our data structure from before, 
since  is small, update time is 


• Maintain  in binary search trees, sorted by density 

Vℓ = {i : (1 + ε)ℓ ≤ vi < (1 + ε)ℓ+1}

V1/ε
ℓ 1/ε Vℓ V′ ℓ = Vℓ∖V1/ε

ℓ

1/ε X = ⋃
ℓ≥0

V1/ε
ℓ

Y = ⋃
ℓ≥0

V′ ℓ

|X | = ℓ ⋅ 1/ε = O(ε−2 log(W))

X
|X | O(ε−2 log2(nW))

Y vi/wi



Answering Queries

• We maintain  using our data structure from before


• Solution is stored as a piecewise constant function with pieces 



• Every time a new piece starts, objective function value increases


• Returning a solution. For each  do:


• Spend budget  on solution from  and budget  on solution from  
using fractional knapsack


• Fractional knapsack solution can be queried from binary search trees


• In the analysis, we prove that removing the item which is fractionally 
cut in the fractional knapsack solution is not a problem

X

(x1, y1), …, (xp, yp)

i = 1,…, p

xi X B − xi Y


