Dynamic Maintenance of
Monotone Dynamic Programs
and Applications

Monika Henzinger, Stefan Neumann (@StefanResearch),
Harald Racke, Stefan Schmid (@schmiste_ch)

Institute of Rty
SClGﬁlCC land “é‘g }SEEEIP %% Technische
T Tec I}O ogy o, O KON e Universitat
Austria i - i
* * 2eses,
* *
* * 0% oeen®
* *

STACS, 8.03.2023

Making Dynamic Programming
Dynamic

Monika Henzinger, Stefan Neumann (@StefanResearch),
Harald Racke, Stefan Schmid (@schmiste_ch)

Institute of SR,
SCleﬁlCG land “{%% }SIEE% Technische
T Tec 110 ogy 3,0 KON Universitat
Austria i - i
* * R wst
* *
* * 0% oeen®
* 4 K

STACS, 8.03.2023

Dynamic Programming (DP)

 Dynamic programming (DP) is a fundamental algorithm design paradigm

« Complex problem is broken up into simpler subproblems,
original problem is solved by combining the solutions

e Often prohibitively costly in practice
. We often need time Q(n?) to compute solution

. We even need Q(n?) space to store the DP table!

Speeding Up DPs

* |ots of different conditions that allow solving DPs
more quickly

* Jotal monotonicity, Monge property, certain
convexity and concavity properties, Knuth-Yao
quadrangle-inequality, ...

« SMAWK algorithm computes solution for totally
monotone DP tables in linear time O(n + m)

e N1 = #rows, m = #columns

« Naive computation would take time €2(mn)

= This line of research focussed on static algorithms

Monge property
Lij+ 1y <1+ 1y,
foralli <i'andj <’

12 | 21 | 38 | 76 | 89

47 | 14 | 14 | 29 | 60

21 | 8 | 20| 10 | 71

68 | 16 | 29 | 18 | 76

97 | 8 | 12 | 2 6

Example of totally monotone matrix

example from https://courses.engr.illinois.edu/
cs473/sp2016/notes/06-sparsedynprog.pdf

Dynamic DPs?

 Dynamic algorithms:
Input Is changing over time and we want to maintain a solution

o Goal: Get small (polylogarithmic) update time

 Remember what | said about DPs earlier?

o “Complex problem is broken up into simpler subproblems,
original problem is solved by combining the solutions”™

= Quite similar to how many dynamic algorithms are developed,
so it should be “easy” to turn DPs into dynamic algorithms?

Question:
Is there a condition that implies that
a DP can be made dynamic?

Problem: Arrays Do Not Work for Dynamic DPs

* Problem: When a single entry in the DP table changes,
we often need to recompute €2(m1) entries — even in just a single row

* |f we store the DP as a two-dimensional array,
this rules out the polylog update times that we hoped for

= Can we bypass this limitation by storing the DP table in a smarter way?

Our Results

Answer:
Yes! There is a condition that implies that
a DP can be made dynamic!

If the rows are monotonically increasing

and we allow approximation®,
then we can store the DP table in a smarter way

*... a few more technical conditions apply

Notation

« Consider an n X m DP table T with entries in [0, W]

- The rows are monotoneif /; ; < 1;;,, forallzand

» We say that a DP table T'is an a-approximation of 1°

 We assume the DP can be computed row-by-row

 Dependency tree for the DP: tree which encodes
whether computing row 1 requires solution for row j

0 4 5 | 10 | 17
0 0 | 14 | 29 | 60
0 1 1 2 5
0 | 16 \{9 \29 29
0 8 | 18 | 30 | 31
0 | 42|51 10 (171
0 O | 14 | 30 | 61
O |11]11]21 55
0 [16.3| 30 | 30 | 30
0 | 8.1(18.2| 30 |31.3

Ji

J

General Framework to Make DPs Dynamic

» Assumption: DP has n monotone rows and dependency 0 | 14129160

tree of height O(log n) and rows are “easy to compute”

16 | 29 | 29 | 29
8 | 12 | 20 | 22

o1 O O] O] O
—
—
N
Ol

» Static result: We can compute a (1 + ¢)-approximation of
the DP table in near-linear time and space O(n)

» Every entry is correct up to a multiplicative (1 + &)-factor

 Much more efficient than writing down the entire table as
an array in time C(mn)

 Dynamic result: \When entries in the DP table Change, we
can update the entire table in polylogarithmic time O(1)

¢ 3 o
Ji)

Balanced Graph Partitioning

* Problem:
Given a graph G = (V, E, w) partition the vertices into k groups
Vi, ..., V;, such that

each group V. contains n/k vertices and

cut(Vy,..., V) = Z w(u, v) is minimized
(u,v)EE: ueV,veV;
» Bicriteria version: Each group may contain up to (1 + e)n/k

vertices, we compare cut-value against optimal solution that has to
satisfy the constraint exactly

* |mportant pre-processing step in many distributed graph
algorithms, popular heuristics METIS have thousands of citations

Picture taken from Rais et al.,
https://doi.org/10.20965/jaciii.2019.p0005

Balanced Graph Partitioning

e Our results:

e First static near-linear time algorithm computing a bicriteria
O(lg4 7)-approximation

* Best polynomial-time algorithm computes a bicriteria
O(lg' nlg lg n)-approximation in time Q(n%)
(Feldmann and Foschini, 2015)

* First dynamic algorithm with subpolynomial update time for

unweighted graphs which maintains a bicriteria now
-approximation under edge insertions and deletions (update

time O, (1) - n°Y)

* We simplify and generalize the DP by Feldmann and Foschini Picture taken from Rais et al.,
https://doi.org/10.20965/jaciii.2019.p0005

Fully Dynamic Knapsack

 Problem:
Given a budget B and n items with profits v, ..., v, and

weights wy, ..., w,, maximize Z V; such that Z w; < B
S el

 Dynamic version: ltems are inserted and deleted

« Our result: Maintain a (1 4+ &)-approximation with update
time O(& ™ logz(nW))

* Improves upon Eberle et al. (2021) who obtained
update time O(e ™ 10g4(nW))

e Can you improve this result?

Picture from Wikipedia
https://commons.wikimedia.org/wiki/File:Knapsack.svg

https://commons.wikimedia.org/wiki/File:Knapsack.svg

Further Results

e Two tricks to make rows of DPs monotone

» Lower bounds for Dynamic k-Balanced Graph Partitioning and Dynamic Knapsack
showing that if an algorithm only stores a single solution then update time is high

e Suggests that DP-style implicit solutions are inevitable

* For simultaneous source location: First near-linear time static algorithm and first
dynamic algorithm with subpolynomial update time

» First dynamic algorithm for £ __-Necklace with additive approximation £ ¢ and
update time O(e~?)

How do we get these results?

Store the DP Table’s Monotone Rows using
Piecewise Constant Functions

What is a Piecewise Constant Function?

A piecewise constant function f: [0,7] — [1,W] looks like this:

O N X X Xy 5 X

o The set of tuples (x, y), ..., (xp, yp) encodes the x-coordinates and y-coordinates

 New complexity measure: number of pieces p of the function

- Interpretation: For each row i of the DP table T, we will have a function f; such that f,(j) = T, ;

= | ooking at the function f; reveals the entire i'th row

Efficient Operations

o Let g, /: [0,7] — [0,W] be piecewise constant functions with at most p pieces.
Then we can compute:

o [(x):=min{g(x),(x)} intime é(p) and at most 2p pieces
e (%) = g(x) + h(x) in time O(p) and at most 2p pieces

* Running times are fast if p is small, no dependency on the size of the domain [0,z]!

+ The (max , +)-convolution f = g @ / of g and h in time O(p?), i.e.,
f(x) = max gx’) + h(x — x')

x'e[0,x]

. But this function might have ®(p?) pieces,
which might cause high running times if we use it multiple times

Ensuring Few Pieces

 How do we ensure that the number of pieces stays small?
. We round f(x) to powers of 1 +&: [f(x)],.5s = min{(1 +6)": (1 +8)' > f(x),i € N}
» If f(x) € [1,W] for all x, then |f(x)] .5 only takes O(log,,s(W)) values
» If fis monotone, we have <1 piece for each value and thus |f | .5 has at most O(log,, s(W)) pieces

« We can perform all operations from before in time logO(l)(W)

1+o6
/A
1 (wg)'*3 l—_{_("ﬂ g
(- .)i-oz__ o . —_— — -~ —
L6 Teegr _
(ks)’ — — 7[‘ 6()

Why is this Useful in DPs?

O(logn)
 We store the rows i of the DP table as piecewise constant functions f;
 We compute entire rows in polylogarithmic time, using operations for our
piecewise constant functions (rather than computing them entry-by-entry) O | 4 | 5 10| 17
* Recall our assumption: DP has n monotone rows and dependency tree of 0 0 |14] 29| 60
height O(log n) and rows are “easy to compute” 0 3 3 5 5
 “easy to compute”: to compute a row, we use only O(1) operations of type 0 | 16 | 29 | 29 | 29
min{ g, h} and g + h and at most one (max , +)-convolution
0 8 | 12 | 20 | 22
» After computing a row, we perform a rounding step [f] .5
 Bounds the number of pieces, 5
allows us to compute each row in time O(1) v A _
Je T ‘(‘\ N
* Since the dependency tree has small height, nf? b —
error does not compound too much &,_,, N —7

0 NoX X X 5oX

Often DPs Have Monotone Rows

* For many optimization problems, the columns correspond to budget constraints (e.g., Knapsack)

 k’th column = “Maximum objective function with budget at most k”

 Monotone rows appear automatically
« Sometimes we have exact budget constraints (“with budget exactly k”)
« Often the DP can be adapted such that it works in the “budget at most k”-setting

» In the paper, we do this for k-Balanced Graph Partitioning
* Sometimes other tricks can help
* For simultaneous source location, a DP by Andreev et al. did not fit our framework (e.g., used negative values)

* |n the paper, we consider the “inverse” of this DP — takes only positive values, fits into our framework

Conclusion

Making Dynamic Programming Dynamic

Monika Henzinger, Stefan Neumann (@StefanResearch), Harald Racke, Stefan Schmid (@schmiste_ch)

 We provide a general framework such that if

a DP has monotone rows, the dependency tree is of
small height and rows are “easy to compute”,

then we can compute a (1 + €)-approximate solution in
near-linear time and dynamically with polylog update times

* First near-linear time and dynamic algorithms for k
-Balanced Graph Partitioning

* Fastest fully dynamic algorithm for Knapsack
e Can you improve it?

* We believe there will be many applications in the future

0] 4]510[17
0] 0/[14/29]60
0l1]/1]2]5 ﬂ‘?x Ologn)
0 |16]29 29|29 b
0| 8 [12]20]22 S
1)
S
Yo — —
0 NoX X %5 X

sl

Austria

Institute of
Science and
Technology

Application:
Fully Dynamic Knapsack

Our main technical contribution in the paper is for k-Balanced Graph Partitioning.
But the result for fully dynamic Knapsack is very illustrative for our approach.

Fully Dynamic Knapsack

 Problem:
Given a budget B and n items with profit v;, ..., v, and

weights wy, ..., w,, maximize Z V; such that w; < B
S el

 Dynamic version: ltems are inserted and deleted

« Our result: Maintain a (1 4+ &)-approximation with update
time O(e~*log*(nW))

* Improves upon Eberle et al. (2021) who obtained
update time O(e ™ 10g4(nW))

Picture from Wikipedia
https://commons.wikimedia.org/wiki/File:Knapsack.svg

https://commons.wikimedia.org/wiki/File:Knapsack.svg

Warm-Up: Existing Algorithm

 How can we solve Knapsack using piecewise constant functions?
» Consider an item 1 with profit v; and weight w;

. Set f;;(w) = maximum profit if we can spend weight w and can only use
items in the set {i} f"’f"*

’ m— f m[")

0 " W
|m e 'ou" ;‘l"‘ ." MLO

Two ltems

- Suppose now we have two items 7 and j such that v; < v;and w; < w;

¢ Set f{i,j}(w) = maximum profit if we can spend weight w and can only use

items in the set {1, j} g 3
VA .
. . A T ———
+ Then f; 4(w) looks like this: o
e ? | >
O Wi W& W;'Hg
we Cuw({ WC Com wtC Cen we. Com

How to Compute f,; .,(w)?

« Observe that f{i’j}(w) can be computed via a (max, +)-convolution
A A
i - (\“/> = e - (w') T (Ul)
Y L/'e[o, w] l @
7\
) | \
e ban N
tem & | (

General Case of More Than Two Items

 More generally, set f,(w) = maximum profit if we can
spend weight w and can only use items in the set J

» Ji,(B) is the optimal solution for the global problem

. [fJ=J,UJ,thenf,(w) = max fll(W/) +f,2(w — W)

O<w'<w

* Algorithm:
 Compute the DP bottom-up

* |In each internal node,
we compute f; as (max , +)-convolution of f; and f}

« Thenwe set f; = [f7] 45

Analysis

e Algorithm:
- In each internal node we compute f; as (max , +)-convolution of f; and f;

» Thenwe setf; = [f7] |15

 Approximation ratio:

At each level, we lose approximation factor 1 + 6 because of rounding L0,

b
» Since the dependency tree has height O(log n), our approximation ratio is - N,

(1 + 6)90en) < exp(5 - O(logn)) < 1+ e for 6 = log(1 + £)/O(log n) /‘7\ PR N
- \
gl g'z_ . \

* Running time: o 0.
- Each function has at most O(log, s(W)) pieces, /\0 A o O O O

thus convolution takes time 0(10g%+5(W)) ‘{ (3 {23 {31 “—} ST 4"‘“3 2“:(

- Using & as above, total time is O(n - €~ log*(W)log?(n))

Dynamic Knapsack

 Dynamic version:

* Suppose we can change item profits and
weights

» Update(i,v,w):setv.=vandw,=w

« After update for item 1,
recompute leaf-root path from node 1 to root

. Takes update time O(e ~*log*(W)log’(n))

e But we can be even faster:
update time O(e~* log*(nW))

Faster Dynamic Knapsack

» Partition the items into weight classes V, = {i: (1 +)’ < v, < (1 + e)’ 1)

e Set V}/ " to the 1/¢ items from V, of smallest weight, V, = VK\V}/“:

Consider the 1/¢ items X = U V}/g of smallest weight from each class,

>0
and the other items ¥ = U V.
>0 V
-
+ Notethat |X| =7 - 1/e = O(e 2log(W)) ¢ 1
« Maintain X using our data structure from before, Vi’- -
since | X| is small, update time is O(¢ % log*(nW)) e o
— 7

» Maintain Y in binary search trees, sorted by density v./w, A

Answering Queries

« We maintain X using our data structure from before

e Solution is stored as a piecewise constant function with pieces
(X715 Y1)s +- o5 (X, V)

* Every time a new piece starts, objective function value increases

* Returning a solution. Foreachi = 1,..., p do:

 Spend budget x: on solution from X and budget B — x; on solution from Y
using fractional knapsack

* Fractional knapsack solution can be queried from binary search trees

* In the analysis, we prove that removing the item which is fractionally
cut in the fractional knapsack solution is not a problem

V.
v, |[W
V-
\/,Q_ L
G
Ve —~
—
X Y

