
Dynamic Maintenance of Monotone Dynamic
Programs and Applications
Monika Henzinger ! �

Faculty of Computer Science, University of Vienna

Stefan Neumann !

KTH Royal Institute of Technology, Stockholm, Sweden

Harald Räcke !�

TU Munich, Munich, Germany

Stefan Schmid !�

TU Berlin, Germany and Fraunhofer SIT, Germany

Abstract
Dynamic programming (DP) is one of the fundamental paradigms in algorithm design. However,
many DP algorithms have to fill in large DP tables, represented by two-dimensional arrays, which
causes at least quadratic running times and space usages. This has led to the development of
improved algorithms for special cases when the DPs satisfy additional properties like, e.g., the Monge
property or total monotonicity.

In this paper, we consider a new condition which assumes (among some other technical as-
sumptions) that the rows of the DP table are monotone. Under this assumption, we introduce
a novel data structure for computing (1 + ε)-approximate DP solutions in near-linear time and
space in the static setting, and with polylogarithmic update times when the DP entries change
dynamically. To the best of our knowledge, our new condition is incomparable to previous conditions
and is the first which allows to derive dynamic algorithms based on existing DPs. Instead of using
two-dimensional arrays to store the DP tables, we store the rows of the DP tables using monotone
piecewise constant functions. This allows us to store length-n DP table rows with entries in [0,W ]
using only polylog(n,W ) bits, and to perform operations, such as (min,+)-convolution or rounding,
on these functions in polylogarithmic time.

We further present several applications of our data structure. For bicriteria versions of k-balanced
graph partitioning and simultaneous source location, we obtain the first dynamic algorithms with
subpolynomial update times, as well as the first static algorithms using only near-linear time and
space. Additionally, we obtain the currently fastest algorithm for fully dynamic knapsack. For
k-balanced partitioning, we show how to monotonize an existing non-monotone DP by Feldmann
and Foschini (Algorithmica’15); for simultaneous source location, we obtain an efficient algorithm
by considering the inverse DP function of the one used by Andreev, Garrod, Golovin, Maggs, and
Meyerson (TALG’09). Our result for fully dynamic knapsack improves upon a recent result by
Eberle, Megow, Nölke, Simon and Wiese (FSTTCS’21).
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1 Introduction

Dynamic programming (DP) is one of the fundamental paradigms in algorithm design. In the
DP paradigm, a complex problem is broken up into simpler subproblems and then the original
problem is solved by combining the solutions for the subproblems. One of the drawbacks
of DP algorithms is that in practice they are often slow and memory-intensive: for inputs
of size n their running time is typically Ω(n2), and when the DP table is stored using a
two-dimensional array they also need space Ω(n2).

This motivated researchers to develop more efficient DP algorithms with near-linear time
and space. Indeed, such improvements are possible under a wide range of conditions on the
DP tables [2, 12,19,22,31,35,45,48,49,64], such as the Monge property, total monotonicity,
certain convexity and concavity properties, or the Knuth–Yao quadrangle-inequality; we
discuss these properties in more detail in Appendix B. When these properties hold, typically
one does not have to compute the entire DP table but instead only has to compute O(n)
DP entries which reveal the optimal solution.

However, we are not aware of any property for DPs that yields efficient dynamic algorithms,
i.e., algorithms that provide efficient update operations when the input changes. One might
find this somewhat surprising because, from a conceptual point of view, many dynamic
algorithms hierarchically partition the input and maintain solutions for subproblems; this
is quite similar to how many DP schemes are derived. Indeed, this conceptual similarity is
exploited by many “hand-crafted” algorithms (e.g., [26,38]) which start with a DP scheme and
then show how to maintain it dynamically under input changes. However, such algorithms
are often quite involved and their analysis often requires sophisticated charging schemes.

Hence, it is natural to ask whether there exists a general criterion which, if satisfied,
guarantees that a given DP can be updated efficiently under input changes.

Our Contributions. The main contribution of our paper is the introduction of a general
criterion which allows to approximate all entries of a DP table up to a factor of 1 + ε. We
show that if our criterion is satisfied by a DP (with suitable parameters) then:

In the dynamic setting, we can maintain a (1 + ε)-approximation of the entire DP table
using polylogarithmic update time (see Theorem 10).
In the static setting, we can compute a (1+ε)-approximation of the DP table in near-linear
time and space (see Theorem 9).
Our criterion essentially asserts that the rows of the DP tables should be monotone and

that the dependency graph of the DP should be a DAG, where the sets of reachable nodes
are small, among some other technical conditions (see Definition 8 for the formal definition).
Our criterion is incomparable to the Monge property, total monotonicity or other criteria
from the literature (see Appendix B for a more detailed discussion).

To obtain our results, we introduce a novel data structure for maintaining DPs which
satisfy our criterion. Our data structure is based on the idea of storing the DP rows using
monotone piecewise constant functions. The monotonicity of the DP rows will allow us to
ensure that our functions only contain very few pieces. Then we show that we can perform
operations on such functions very efficiently, with the running times only depending on the
number of pieces. This is crucial because it allows us to compute an entire (1+δ)-approximate
DP row in time just polylog(W ), even when the DP has Ω(n) columns, assuming that the
DP entries are from [0,W ]. Note that if W ≤ poly(n) then this decreases the running time
for computing an entire row from Ω(n) to just polylog(n). Additionally, this also allows us
to store each row using only polylog(W ) space rather than storing it in an array of size Ω(n).
We present our criterion and the details of our data structure in Section 2.
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As applications of our data structure, we obtain new static and dynamic algorithms for
various problems. We present new algorithms for k-balanced partitioning, simultaneous source
location and for fully dynamic knapsack. Next, we describe these results in detail; we discuss
more related work in Appendix B.

Our Results for Fully Dynamic 0-1 Knapsack. First, we provide a novel algorithm
for fully dynamic 0-1 knapsack. In this problem, the input consists of a knapsack size B ∈ R+
and a set of n items, where each item i ∈ [n] has a weight wi ∈ R+ and a price pi ∈ [1,∞).
The goal is to find a set of items I that maximizes

∑
i∈I pi while satisfying the constraint∑

i∈I wi ≤ B. In the dynamic version of the problem, items are inserted and deleted. More
concretely, we consider the following update operations: insert(pi, wi), in which the price
and weight of item i are set to pi ∈ [1,∞) and wi ∈ R+, respectively, and delete(i), where
item i is removed from the set of items.

Our main result is a dynamic (1 + ε)-approximation algorithm with worst-case update
time ε−2 · log2(nW ) · polylog(1/ε, log(nW )), where W =

∑
i pi. Our algorithm improves

upon a recent result by Eberle, Megow, Nölke, Simon and Wiese [29] that also maintained a
(1 + ε)-approximate solution with update time O(ε−9 log4(nW )).

I Theorem 1. Let ε > 0. There exists an algorithm for fully dynamic knapsack that maintains
a (1 + ε)-approximate solution with worst-case update time 1

ε2 log2(nW ) polylog
( 1
ε log(nW )

)
.

We will also show that we can return the maintained solution I in time O(|I|) and that
we can answer queries whether a given item i ∈ [n] is contained in I in time O(1). This
matches the query times of [29].

To obtain this result, we first derive a slightly slower algorithm as a simple application of
our data structure for maintaining DPs with monotone rows. Then we use this algorithm
together with additional ideas to obtain the theorem (see Section 3).

Since our dynamic algorithm is based on a DP, it is possible that the solution changes
significantly after each update. However, in the appendix (Theorem 34) we prove a lower
bound, showing that every dynamic (1 + ε)-approximation algorithm for knapsack must
either make a lot of changes to the solution after each update or store many (potentially
substantially different) solutions between which it can switch after each update. This implies
that maintaining a single explicit solution with polylogarithmic update times is not possible
and the property of our algorithm cannot be avoided.

Our Results for k-Balanced Partitioning. Our most technically challenging result
is for k-balanced graph partitioning. In this problem, the input consists of an integer k and
an undirected weighted graph G = (V,E, cap) with n vertices, where cap : E → W∞ is a
weight function on the edges with weights in W∞ := [1,W ] ∪ {0,∞}. The goal is to find
a partition V1, . . . , Vk of the vertices such that |Vi| ≤ d|V | /ke for all i and the weight of
the edges which are cut by the partition is minimized. More formally, we want to minimize
cut(V1, . . . , Vk) :=

∑k
i=1
∑
{u,v}∈E∩(Vi×(V \Vi)) cap(u, v).

We note that this problem is highly relevant in theory [5,32–34] and in practice [18,28,
44,55], where algorithms for balanced graph partitioning are often used as a preprocessing
step for large scale data analytics. Obtaining practical improvements for this problem is
of considerable interest in applied communities [18] and, for instance, the popular METIS
heuristic [44] has 1,400+ citations.

Since the above problem is NP-hard to approximate within a factor of n1−ε for any ε > 0
even on trees [34], we consider bicriteria approximation algorithms. Given an undirected
weighted graph G = (V,E, cap), a partition V1, . . . , Vk of V is a bicriteria (α, β)-approximate
solution if |Vi| ≤ βdn/ke for all i and cut(V1, . . . , Vk) ≤ α · cut(OPT), where OPT =
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(V ∗1 , . . . , V ∗k ) is the optimal solution with |V ∗i | ≤ dn/ke for all i. We note that the previously
mentioned hardness result implies that any algorithm that computes a bicriteria (α, 1 + ε)-
approximation for any α ≥ 1 and whose running time depends only polynomially on n, must
have a running time depending super-polynomially on 1/ε, unless P = NP.1

Our main result for the static setting is presented in the following theorem. It gives the
first algorithm with polylogarithmic approximation ratio for this problem with near-linear
running time. More concretely, we compute a bicriteria (O(log4 n), 1 + ε)-approximation in
near-linear time for constant k. For comparison, the best approximation ratio achieved by
a polynomial-time algorithm [34] is a bicriteria (O(log1.5 n log logn), 1 + ε)-approximation
with running time Ω(n4).

I Theorem 2. Let ε > 0 and k ∈ N. Let G = (V,E, cap) be an undirected weighted graph
with n vertices and m edges and edge weights in W∞. Then for the k-balanced partition
problem we can compute:

An (O(log4 n), 1+ε)-approximation in time (k/ε)O(log(1/ε)/ε)·O′(m·log2(W ))+(k/ε)O(1/ε2).2
A (1 + ε, 1 + ε)-approximation in time (k/ε)O(log(1/ε)/ε) ·O′(n ·h2 · log2(W )) + (k/ε)O(1/ε2)

if G is a tree of height h.
A (1, 1 + ε)-approximation in time (k/ε)O(log(1/ε)/ε) ·O′(n4 · log2(W )) + (k/ε)O(1/ε2) if G
is a tree.

Furthermore, we extend our results to the dynamic setting in which the graph G is under-
going edge insertions and deletions. In the following theorem, we present the first dynamic
algorithm with subpolynomial update time for this problem. We again consider bicriteria
approximation algorithms with update and query times depending super-polynomially on 1/ε;
this cannot be avoided since if we computed (α, 1)-approximations for any α ≥ 1 or if we
had a polynomial dependency on 1/ε, then the hardness result from above implies that our
update and query times must be super-polynomial in n (unless P = NP).

I Theorem 3. Let ε > 0 and k ∈ N. Let G = (V,E, cap) be an undirected weighted graph
with n vertices that is undergoing edge insertions and deletions. Then for the k-balanced
partition problem we can maintain:

An (no(1), 1 + ε)-approximate solution with amortized update time (k/ε)O(log(1/ε)/ε) ·no(1) ·
O′(log2(W )) and query time (k/ε)O(1/ε2) if G is unweighted.
A (1 + ε, 1 + ε)-approximate solution with worst-case update time (k/ε)O(log(1/ε)/ε) ·O′(h3 ·
log2(W )) and query time (k/ε)O(1/ε2) if G is a tree of height h.

Our approach is inspired by the DP of Feldmann and Foschini [34]. However, the DP
rows in the algorithm of [34] are not monotone and, hence, their DP cannot directly be sped
up by our approach. Therefore, we first simplify and generalize the exact DP of Feldmann
and Foschini to make it monotone. The DP we obtain eventually is still slightly too complex
to fit into our black-box framework, but we show that the ideas from our framework can still
be used to obtain the result. In Section 4.1, we provide a technical overview.

Again, it is possible that the solution maintained by our algorithm changes substantially
after each update. Similar to above we show in the appendix (Theorem 35) that this cannot
be avoided when considering subpolynomial update times.

1 If we had an algorithm that computes a bicriteria (α, 1 + ε)-approximation in time poly(n, 1/ε) then we
could set ε = 1/(2n) which implies that all partitions have size dn/ke. Thus we can compute a bicriteria
(α, 1)-approximate solution in time poly(n) which contradicts the hardness result, unless P = NP.

2 We use the notation O′(·) to suppress factors in poly(logn, k, log(1/ε), log log(W )).
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Our Results for Simultaneous Source Location. Next, we provide efficient algo-
rithms for the simultaneous source location problem by Andreev, Garrod, Golovin, Maggs and
Meyerson [4]. In this problem, the input consists of an undirected graph G = (V,E, cap, d)
with a capacity function cap: E →W∞ on the edges and a demand function d : V →W∞ on
the vertices. The goal is to select a minimum set S ⊆ V of sources that can simultaneously
supply all vertex demands. More concretely, a set of sources S is feasible if there exists a
flow from the vertices in S that supplies demand d(v) to all vertices v ∈ V and that does
not violate the capacity constraints on the edges. The objective is to find a feasible set of
sources of minimum size.

We will again consider bicriteria approximation algorithms. Let S∗ be the optimal
solution for the simultaneous source location problem. Then we say that S is a bicriteria
(α, β)-approximate solution if |S| ≤ α |S∗| and if S is a feasible set of sources when all edge
capacities are increased by a factor β.

The following theorem summarizes our main results. It presents the first near-linear time
algorithm for simultaneous source location that computes a (1+ε)-approximate solution while
only exceeding the edge capacities by a O(log4 n) factor. In comparison, the best algorithm
with arbitrary polynomial processing time computes a bicriteria (1, O(log2 n log logn))-
approximate solution in time Ω(n3) [4].

I Theorem 4. Let ε > 0. Let G = (V,E, cap, d) be an undirected weighted graph with
n vertices and m edges. Then for the simultaneous source location problem we can compute:

A (1 + ε, O(log4(n)))-approximation in time3 Õ( 1
ε2m).

A (1 + ε, 1)-approximation in time Õ( 1
ε2h

2 · n) if G is a tree of height h.

Next, we turn to dynamic versions of the problem. We consider the following update oper-
ations: SetDemand(v, d): updates the demand of vertex v to d(v) = d, SetCapacity((u, v), c):
updates the capacity of the edge (u, v) to cap(u, v) = c, Remove(u, v): removes the edge
(u, v), Insert((u, v), c): inserts the edge (u, v) with capacity cap(u, v) = c.

We obtain the first dynamic algorithms with subpolynomial update times for this problem,
which exceed the edge capacities only by a small subpolynomial factor.

I Theorem 5. Let ε > 0. Let G = (V,E, cap, d) be a graph with n vertices and m edges that
is undergoing the update operations given above. Then for the simultaneous source location
problem we can maintain:

A (1 + ε, no(1))-approximation with amortized update time no(1)/ε2 and preprocessing time
O(n2/ε2) if all edge capacities are 1.
A (1+ε, O(log4(n)))-approximation with worst-case update time Õ(1/ε2) and preprocessing
time Õ(m) if we only allow the update operation SetDemand(v, d).
A (1 + ε, O(log2(n) log log(n)))-approximation with worst-case update time Õ(1/ε2) and
preprocessing time poly(n) if we only allow the update operation SetDemand(v, d).
A (1 + ε, 1)-approximate solution with worst-case update time Õ(h3/ε2) and preprocessing
time O(n2/ε2) if G is a tree of height h.

To obtain these results, we use a similar DP approach as the one used by Andreev et
al. [4]. Interestingly, the DP function that we use essentially computes the inverse function
of the one used by Andreev et al. We sketch the details of this approach in Section 4.2.
After making these changes, the theorems become straightforward applications of our data
structure for maintaining DPs with monotone rows.

3 We write Õ(f(n, ε,W )) to denote running times of the form f(n, ε,W ) · polylog(n, ε, logW ).
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Organization of Our Paper. In Section 2 we provide the details of our condition
for DPs with monotone rows. In Section 3 we present our results for 0-1 Knapsack which
nicely illustrate the applicability of our black-box framework from Section 2. We provide
a technical overview of our more involved results for k-Balanced Graph Partitioning and
for Simultaneous Source Location in Section 4. We give an overview of the appendix in
Appendix A. In the appendix we also present more related work and the full proofs of our
results. We present omitted proofs from the main text in Appendix H.

Open Problems and Future Work. In the future, it will be interesting to use our
framework to obtain more dynamic algorithms based on existing DPs. We believe that this
is interesting both in theory and in practice. Furthermore, it is intriguing to ask whether
our criterion from Definition 8 can be generalized. Indeed, our approach was built around
approximating monotone functions using piecewise constant functions, which can be viewed
as piecewiese degree-0 polynomials. An interesting question is whether we can obtain a more
general criterion if we approximate DP rows using pieces of higher-degree polynomials, such
as splines. Results in this direction might be possible; for example, in Appendix G we give a
side result for the case when the functions contain a small number of non-monotonicities and
derive a dynamic algorithm for the `∞-necklace problem.

2 Maintaining Monotone Dynamic Programming Tables

In this section, we introduce our notion of DP tables with monotone rows and the additional
technical assumptions that we are making. Then we present our data structure for efficiently
maintaining DP tables that satisfy our assumptions. In our data structure, we will store the
rows of the DP using piecewise constant functions, which we will introduce first.

List Representation of Piecewise Constant Functions. Let t ∈ R, W ∈ [1,∞) and
setW∞ := {0}∪ [1,W ]∪{+∞}. A function f : [0, t]→W∞ is piecewise constant with p pieces
if there exist real numbers 0 = x0 < x1 < x2 < · · · < xp = t and numbers y1, . . . , yp ∈W∞
such that on each interval [xi−1, xi), f is constant and has value yi. More formally, for all
i ∈ {1, . . . , p} we have f(x) = yi for all real numbers x ∈ [xi−1, xi) and f(xp) = yp. Note
that we need the condition f(xp) = yp such that f is defined on the whole domain.

In the list representation of a piecewise constant function f , we use a doubly linked list
to store the pairs (x1, y1), . . . , (xp, yp). We also store the pairs (xi, yi) in a binary search tree
that is sorted by the xi-values, which allows us to compute a function value f(x) in time
O(log p) for all x ∈ [0, t]. In the following, we assume that all piecewise constant functions
we consider are stored in the list representation with an additional binary search tree.

One of the main observations we use is that many operations on piecewise constant
functions are efficient if there are only few pieces. The following lemma shows that several
operations can be computed in time almost linear in the number of pieces of the function,
rather than in time depending on the size of the domain of f .4 For δ > 0 and y ∈W∞, we
write dye1+δ to denote the smallest power of 1+δ that is at least y, i.e., dye1+δ = min{(1+δ)i :
(1 + δ)i ≥ y, i ∈ N}; we follow the convention that d0e1+δ = 0 and d∞e1+δ =∞.

I Lemma 6. Let t ∈ R and c ∈ R+. Let g, h : [0, t] → W∞ be monotone and piecewise
constant functions with pg and ph pieces, resp. Then we can compute the following functions:

fmin(x) := min{g(x), h(x)} with at most pg + ph pieces in time O((pg + ph) log(pg + ph));

4 We note that computing the operations themselves can be done in linear time. However, since we also
store the pairs (xi, yi) of the list representations in a binary search tree, the running times in the lemma
include an additional logarithmic factor.
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fshift(x) := g(x− c) for x ≥ c, fshift(x) = g(0) for x < c with at most pg pieces in time
O(pg log(pg));
fadd(x) := g(x) + h(x), with at most pg + ph pieces in time O((pg + ph) log(pg + ph));
fround(x) := dg(x)e1+δ for δ > 0 with at most 2+dlog1+δ(W )e pieces in time O(pg log(pg)).

Note that if we set f̃ = dfe1+δ then f̃ is a (1 + δ)-approximation of f in the following sense.
For α > 1, we say that a function f̃ : [0, t]→W∞ α-approximates a function f : [0, t]→W∞
if for all x ∈ [0, t],

f(x) ≤ f̃(x) ≤ α · f(x). (1)

Furthermore, if f is monotone then the rounded function f̃ contains at most O(log1+δ(W ))
pieces. This will be crucial later because this ensures that, if we perform a single rounding
operation for each row of our DP table, the resulting function will have few pieces and
operations on the function can be performed efficiently.

Next, consider functions f1, f2 : [0, t]→W∞. A function f : [0, t]→W∞ is the (min,+)-
convolution f1 ⊕ f2 if for all x ∈ [0, t], f(x) = (f1 ⊕ f2)(x) := minx̄∈[0,x] f1(x̄) + f2(x − x̄).
Such convolutions are highly useful for the computation of many DPs. The following lemma
shows that we can efficiently compute the convolution of piecewise constant functions.

I Lemma 7. Let f1, f2 : [0, t]→W∞ be piecewise constant functions with at most p pieces
and assume that one of them is monotonically decreasing. Then we can compute the function
f : [0, t]→W∞ with f = f1 ⊕ f2 in time O(p2 log p) and f is a piecewise constant function
with O(p2) pieces. Furthermore, after computing f , for any x ∈ [0, t] we can return a value
x̄∗ ∈ [0, t] such that f(x) = f1(x̄∗) + f2(x− x̄∗) in time O(log p).

Now observe that Lemma 7 has a drawback for our approach: The number of pieces (i.e.,
the complexity of the functions) grows quadratically with every application. An important
property which can be used to mitigate this issue is that the result of the convolution is still
a monotone function, as we show in Lemma 22 in the appendix. Later, to keep the number
of pieces in our functions small, after each convolution that we perform via Lemma 7 (and
that might grow the number of pieces quadratically), we perform a rounding operation d·e1+δ
(see Lemma 6). This loses a factor 1 + δ in approximation but guarantees that the resulting
function has O(log1+δ(W )) pieces. This will be crucial to ensure that our functions have
only few pieces.

Maintaining DPs With Monotone Rows. Next, we introduce our DP scheme
formally. We consider DP tables with a finite set of rows I and a set of columns J , with
entries taking values in W∞. We will consider DP tables as functions DP : I × J →W∞.5
Further, we will associate the i’th row of the DP with a function DP(i, ·) : J →W∞, and we
store each such function DP(i, ·) using piecewise constant functions from above.

Next, we introduce the dependency graph for the rows of our DP. More concretely, the
dependency graph D = (I, ED) is a directed graph that has the rows I as vertices and a
directed edge (i′, i) between two rows if for some columns j, j′ ∈ J the entry DP(i′, j′) is
required to compute DP(i, j). We write In(i) = {i′ ∈ I : (i′, i) ∈ ED} to denote the set of
rows i′ that are required to compute row i. For the rest of the paper we will assume that the
dependency graph is a DAG, which is the case for all applications that we study. We will
also write Reach(i) to denote the set of vertices that are reachable from row i in D.

5 Even though our definition may suggest that we only consider two-dimensional DP tables, we do not
require an order on I and we allow I to be any finite set. For example, in Section D we will set I to
3-tuples corresponding to the parameters of a four-dimensional DP.
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Since we assume that the dependency graph is a DAG, we can compute the i’th DP row
as soon as we have computed the solutions for the DP rows in In(i). We assume that this
is done via a procedure Pi that takes as input the DP rows DP(i′, ·) for all i′ ∈ In(i) and
returns the row DP(i, ·) = Pi({DP(i′, ·) : i′ ∈ In(i)}).

Next, we come to our condition which encodes when our scheme applies. In the definition
and for the rest of the paper, we write ADP to refer to an approximate DP table, which
approximates the exact DP table DP. Let β > 1. We say that ADP β-approximates DP if
DP(i, j) ≤ ADP(i, j) ≤ βDP(i, j) for all i ∈ I, j ∈ J .

I Definition 8. A DP table is (h, α, p)-well-behaved if it satisfies the following conditions:
1. (Monotonicity:) For all i ∈ I, the function DP(i, ·) is monotone.
2. (Dependency graph:) The dependency graph is a DAG and |Reach(i)| ≤ h for all i ∈ I.
3. (Sensitivity:) Suppose β > 1 and for all i′ ∈ In(i), we obtain a β-approximation ADP(i′, ·)

of DP(i′, ·). Then applying Pi on the ADP(i′, ·) yields a β-approximation of DP(i, ·), i.e.,

DP(i, ·) ≤ Pi({ADP(i′, ·) : i′ ∈ In(i)}) ≤ β · DP(i, ·).

4. (Pieces:) For each procedure Pi there exists an approximate procedure P̃i such that:
(a) P̃i({ADP(i′, ·) : i′ ∈ In(i)}) is an α-approximation of Pi({ADP(i′, ·) : i′ ∈ In(i)}),
(b) P̃i can be computed as the composition of a constant number of operations from
Lemma 6 and and at most one application of Lemma 7, and
(c) P̃i returns a monotone piecewise constant function with at most p pieces.

The definition is motivated in the following way: our operations on the piecewise constant
functions have efficient running times when the functions are monotone and have few pieces.
This is ensured by Properties (1), 4(b), and 4(c). Next, rounding errors cannot compound
too much if each row can only reach h other rows and the sensitivity condition is satisfied.
This is ensured by Properties (2), (3), and 4(a).

Even though the definition might look slightly technical at first glance, it applies in many
settings. In particular, Property (2) is satisfied when the dependency graph is a rooted tree
of height h in which all edges point towards the root; this is the case in all of our applications.
The other conditions are immediately satisfied by our DP for 0-1 Knapsack in Section 3 and
the DP for simultaneous source location in Section E. However, our DP for balanced graph
partitioning violates Property (4b) of Definition 8. Hence, we will also consider a weaker
assumption in Section C.2 which, however, will not allow for nice black-box results, such as
Theorems 9 and 10 below.

Next, we state our main results. They imply that we obtain static (1 + ε)-approximation
algorithms running in near-linear time and space for (Õ(1), ln(1+ε)/Õ(1), Õ(1))-well-behaved
DPs. They also show that under this assumption, we can dynamically maintain (1 + ε)-
approximate DP solutions with polylogarithmic update times.

Our main theorem for static algorithms is as follows.

I Theorem 9. Consider an (h, α, p)-well-behaved DP. Then we can compute an approximate
DP table ADP which αh+1-approximates DP in time and space O(|I| · p2 log(p)).

Later, we will apply the theorem to DPs with dependency trees of logarithmic heights
h = O(logn), we will set the approximation ratio to α = ln(1 + ε)/(h+ 1), and the number
of pieces to p = polylog(W ). This will yield our desired algorithms with near-linear running
time Õ(|I|) and space usage. Note that this is a big improvement upon the brute-force
running times and space usages of Ω(|I| · |J |).
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The proof of the theorem follows from observing that when moving from one vertex to
another in the dependency graph, we lose a multiplicative α-factor in the approximation
ratio; as each vertex can only reach h other vertices, this will compound to at most αh+1.
Combining the assumptions on the functions P̃i and the results from Lemmas 6 and 7, we get
that each row ADP(i, ·) can be computed in time O(p2 log(p)) which gives O(|I| · p2 log(p))
total time.

We also give the following extension to the dynamic setting which shows that if one of
the DP rows changes, we can update the entire table efficiently.

I Theorem 10. Consider an (h, α, p)-well-behaved DP and suppose that row i is changed.
Then we can update our approximate DP table ADP such that after time O(h · p2 log(p)) it is
an αh+1-approximation of DP.

As before, we will typically use the theorem with h = O(logn), α = ln(1 + ε)/(h+ 1) and
p = polylog(W ). This will then result in our desired polylogarithmic update times. Note
that this is a significant speedup compared to storing the DP tables using two-dimensional
arrays: in that case even updating a single row would take time Ω(|J |), which in many
applications would already be linear in the size of the input.

The theorem follows from observing that after a row i changes, we only have to update
those rows which can be reached from i in the dependency graph. But these can be at most h
and each of them can be updated in time O(p2 log(p)) by Lemmas 6 and 7.

3 Fully Dynamic Knapsack

In 0-1 knapsack, the input consists of a knapsack size B ∈ R+ and a set of n items, where
each item i ∈ [n] has a weight wi ∈ R+ and a price pi ∈ [1,∞). The goal is to find a set of
items I that maximizes

∑
i∈I pi while satisfying the constraint

∑
i∈I wi ≤ B. For a set of

items I ⊆ [n], we refer to the sum
∑
i∈I wi as the weight of I.

For the rest of this section we set W =
∑
i pi and t =

∑
i∈[n] wi.

Next, we first derive a dynamic algorithm with update time Õ(log3(n) log2(W )/ε2) which
is based on our framework for DPs with monotone rows. Then we will use this algorithm as
a subroutine to obtain a faster algorithm with update time Õ(log2(nW )/ε2) in Section 3.2;
this will prove Theorem 1.

I Theorem 1. Let ε > 0. There exists an algorithm for fully dynamic knapsack that maintains
a (1 + ε)-approximate solution with worst-case update time 1

ε2 log2(nW ) polylog
( 1
ε log(nW )

)
.

Below we will also show that we can return the maintained solution I in time O(|I|) and
that we answer queries whether a given item i ∈ [n] is contained in I in time O(1). This
matches the query times of [29].

3.1 Knapsack via Convolution of Monotone Functions
First, we give a brief recap of the knapsack approach by Chan [21]. We consider the more
general problem of approximating the function fJ : [0, t] → R+, where J ⊆ [n] is a set of
items and

fJ(x) = max
{∑
i∈I

pi :
∑
i∈I

wi ≤ x, I ⊆ J

}
. (2)
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Intuitively, the value fJ(x) corresponds to the best possible knapsack solution if we can
only pick items which are contained in J and if the weight of the solution can be at most x.
Therefore, f[n](B) corresponds to the optimum solution of the global knapsack instance.

Note that for each J ⊆ [n], fJ (x) is a monotonically increasing piecewise constant function:
Indeed, consider x′ ≤ x. Any solution I ⊆ J that is feasible for x′ (i.e., the weight of I
is at most x′) is also a feasible solution for x. Thus, fJ(x′) ≤ fJ(x) and, therefore, fJ is
monotonically increasing. Furthermore, fJ is piecewise constant since each function value
fJ(x) corresponds to a solution I ⊆ J and the number of choices for I ⊆ J is finite.

Next, note that if we have two disjoint subsets J1, J2 ⊆ [n] then it holds that fJ1∪J2 is
the (max,+)-convolution of fJ1 and fJ2 , i.e., for all x it holds that

fJ1∪J2(x) = max
x̄

fJ1(x̄) + fJ2(x− x̄).

This can be seen by observing that for each x, the optimum solution I for the instance J1∪J2
with weight at most x can be split into two disjoint solutions I1 ⊆ J1 and I2 ⊆ J2 such that
I1 has weight x̄ and I2 has knapsack weight at most x− x̄ (for suitable choice of x̄ ∈ [0, x]).
We conclude that if we have two knapsack instances over disjoint sets of items J1 and J2,
then we compute the solution for the knapsack instance with items J1 ∪ J2 by computing
the (max,+)-convolution of fJ1 and fJ2 .

The Exact DP. The previous paragraphs imply a simple way of computing the exact
solution of a knapsack instance: For each item i ∈ [n], compute the function f{i} and
then recursively merge the solutions for sets of size 2j , j = 1, . . . , dlogne, by computing
(max,+)-convolutions until we have computed the global solution f[n]. We perform the
recursive merging of the solutions using a balanced binary tree, resulting in a tree of height
O(logn).

More concretely, we build a rooted balanced binary tree T with n leaf nodes, where all
edges point towards the root. We have one leaf f{i} for each item i. Each internal node u
in T is associated with a function fJu

as per Equation (2), where Ju is the set of all items in
the subtree rooted at u. To simplify notation, we will also refer to fJu

as fu.
Now we consider the exact computation of the DP. This will reveal the procedures Pi

from Definition 8. As base case, for each i ∈ [n], the i’th leaf of T contains the function f{i},
which is a piecewise constant function that has value 0 on the interval [0, wi) and value pi on
the interval [wi, t].

Next, in each internal node u of T with children u1 and u2, we set fu to the (max,+)-
convolution of fu1 and fu2 . By induction it can be seen that for every node u in T , it holds
that Ju = Ju1 ∪ Ju2 and thus Ju is the set of all items whose corresponding leaf is contained
in the subtree Tu. Hence, for the root r of T it holds that fr = f[n] and fr(B) is the optimal
solution for the global knapsack instance.

In the following, we check that our DP satisfies Properties (1–3) of Definition 8.
First, note that the tree T from above is also the dependency graph of our DP. Hence,

our DP has a row for every vertex of T and thus O(n) rows in total. Furthermore, since T
has height O(logn) and all edges point towards the root, every vertex can reach at most
h = O(logn) vertices. Hence, Property (2) of Definition 8 is satisfied.

Second, we observe that in both cases above, the function f{i} and fu which correspond to
the rows of our DP table are monotonically increasing (we argued this above for all functions
fJ). Thus, Property (1) is satisfied.

Third, observe that Property (3) is also satisfied since (max,+)-convolution satisfies our
sensitivity condition.
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We conclude that the first three properties of Definition 8 are satisfied. Unfortunately,
this does not yet imply that we can obtain efficient algorithms: Note that if we compute the
exact DP bottom-up then we compute one convolution per node and thus the total running
time of this approach is O(n · t(p)), where p is an upper bound on the number of pieces in our
functions and t(p) is the time it takes to compute a (max,+)-convolution of two functions
with p pieces. However, observe that computing the convolutions can potentially take a large
amount of time because the number of pieces of the functions might grow quadratically after
each convolution (see Lemma 7). We will resolve this issue below using rounding.

The Approximate DP. Next, we consider approximations which will reveal the functions
P̃i from Definition 8.

First, note that we need to compute (max,+)-convolutions of monotonically increasing
functions efficiently. We observe that this can be done efficiently using our subroutine from
Lemma 7 for the (min,+)-convolution of monotonically decreasing functions: Indeed, suppose
that f is the (max,+)-convolution of two monotonically increasing functions g and h, then
for all x it holds that

f(x) = max
x̄
{g(x̄) + h(x− x̄)} = −min

x̄
{−g(x̄) + (−h(x− x̄))}.

Now observe that −g and −h are monotonically decreasing functions and, therefore, f =
−((−g)⊕ (−h)), where ⊕ denotes the (min,+)-convolution. Thus, we can use the efficient
routine for (min,+)-convolution from Lemma 7 with the same running time.6

Now we can define the subroutines P̃i. Let δ > 0 be a parameter that we set later.
Whenever we compute a function fu via a (max,+)-convolution, we use the efficient subroutine
from Lemma 7. After computing the convolution, we set fu = dfue1+δ via the subroutine
from Lemma 6.

Observe that this approach satisfies Property (4a) of Definition 8 with α = 1 + δ.
Furthermore, Property (4b) is satisfied since we only use a single convolution and a single
rounding step. Finally, Property (4c) is also satisfied because the resulting function is
monotone and has p = O(log1+δ(W )) after the rounding.

The above arguments show that our DP is (h, α, p)-well-behaved for h = dlogne, α = 1+δ,
δ = ln(1+ε)/dlogne and p = O(log1+δ(W )) = O(log(W )/δ). Hence, Theorem 10 immediately
implies the following lemma.

I Lemma 11. Let ε > 0. There exists an algorithm that computes a (1 + ε)-approximate
solution for 0-1 knapsack in time n · 1

ε2 log2(n) log2(W ) · polylog( 1
ε log(nW )).

We note that we can return our solution I in time |I| log(n) · polylog( 1
ε log(nW )) as

follows. Recall that our global objective function value is achieved by fr(B) and that
fr(B) = fu1(x̄∗) + fu2(B − x̄∗), where u1 and u2 are the nodes below the root node r of
the dependency tree. Now using the second part of Lemma 7 we can get the value of x̄∗ in
time O(log p). If fu1(x̄∗) > 0 we recurse on fu1(x̄∗) and if fu2(B − x̄∗) > 0 we also recurse
on fu2(B − x̄∗). At some point we will reach a leaf node i and we include i in the solution
iff f{i}(x) > 0. Note that since we only recurse for function values which are strictly larger
than zero, for each item that we include into the solution we have to follow a single path
in the dependency tree of height O(logn) and our work in each internal node is bounded

6 We note that, formally, Lemma 7 can only be applied on functions with non-negative values. However,
this can be achieved by adding a number C to −g and −h, which is an upper bound on the values taken by
g and h, and at the end we subtract the constant function 2C, i.e., we set f = −((−g+C)⊕(−h+C))−2C.
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by O(log p). This gives the total time of O(|I| log(n) log(p)) and our claim follows from our
choice of p above.

Extension to the Dynamic Setting. Next, we extend our result to the dynamic
setting. For the sake of simplicity, we assume that n is an upper bound on the maximum
number of available items (items in S) and given to our algorithm in the beginning.7 We
consider update operations that insert and delete items from the set. More concretely, we
consider the following update operations:

insert(pi, wi), in which i is added to S by setting the price and weight of item i to
pi ∈W∞ and wi ∈ R+, respectively, and
delete(i), where item i is removed from the set of items.
Our implementation is as follows. In the preprocessing phase, we build the same tree T

as above and use the subroutine from above to compute the function f{i}. For the operation
delete(i), we set pi = 0 and wi = 0, which changes exactly one row of our DP table. For
the operation insert(pi, wi), we set the price and weight of item i to pi and wi, resp., which
again changes a single row in our DP table. After changing such a row, we recompute the
global DP solution via Theorem 10. Since the DP is (h, α, p)-well-behaved with the same
parameters as above, the theorem implies the following proposition.

I Proposition 12. Let ε > 0. There exists an algorithm for the fully dynamic knap-
sack problem that maintains a (1 + ε)-approximate solution with worst-case update time
1
ε2 log3(n) log2(W ) · polylog

( 1
ε log(nW )

)
.

Observe that with the same procedure as for the static algorithm, we can return our
solution I in time |I| log(n) · polylog( 1

ε log(nW )). Furthermore, given an item i ∈ [n], we
can return whether i ∈ I in time log(n) · polylog( 1

ε log(nW )). This can be done by using the
same query procedure as in the static setting, where we only recurse on the unique subtree
in the depedency tree that contains the node for item i.

We note that the above proposition already improves upon the update time in the result
of Eberle et al. [29] in terms of the dependency on 1

ε but it has a worse dependency on
log(nW ). However, our query time is slower than the O(1)-time query operation in [29].
We will resolve these issues in the next subsection, where we will use the algorithm from
Proposition 12 as a subroutine.

3.2 Dynamically Maintaining a Small Instance
Next, we we obtain a faster dynamic algorithm with update time Õ( 1

ε2 log2(nW )) by combin-
ing the algorithm from Proposition 12 and with ideas from Eberle et al. [29]. Our high-level
approach is as follows. First, we partition the items into a small number of price classes.
Then we take a few items of small weight from each price class. This will give a very small
knapsack instance X for which we maintain an almost optimal solution using the subroutine
from Proposition 12; since this instance is very small (i.e., |X| � n), the update time for
maintaining this instance essentially becomes O( 1

ε2 log2(W )), i.e., we lose the O(log3 n) term
that made the update time in the proposition too costly. For the rest of the items which are
not contained in X, we show that we can compute a good solution using fractional knapsack,

7 It is possible to drop this assumption using an amortization argument. More concretely, every time the
number of items is less than n/2 or more than n, we rebuild the data structure with a new value of n.
Each rebuild can be done in time O(nt(n)), where t(n) is our update time. Since this only happens after
Ω(n) updates occured, we can amortize this cost over the updates that appeared since the last rebuild.
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which can be easily solved using a set of binary search trees. Then it remains to show that
the combination of the two solutions is a (1 + ε)-approximation.

The main differences of our algorithm and the one by Eberle et al. [29] are as follows.
Eberle et al. also partition the items into a small number of price classes. They also combine
solutions for a small set of heavy items X and solutions based on fractional knapsack for the
other items. However, they have to enumerate many different sets X and they also guess
the approximate price of the fractional knapsack solution; more concretely, they enumerate
Θ( 1

ε2 log(W )) choices for X and the number of guesses they have to make for the fractional
knapsack solution is Θ( 1

ε log(W )). Thus they have to consider Θ( 1
ε3 log2(W )) guesses and

for each of them they have to compute approximate solutions, which takes time Θ( 1
ε4 ) for

each X since they have to run a static algorithm from scratch. In our approach, we only
have to consider a single set X which we maintain in our data structure from Proposition 12,
which saves us a lot of time. Furthermore, the piecewise constant function, in which we store
the solution for X, essentially “guides” our Θ( 1

ε log(W )) guesses for the weight of fractional
knapsack solution. In our analysis we have to be slightly more careful to ensure that our
guesses for the weight of the fractional knapsack solution guarantee the correct approximation
ratio.

Definitions. We assume that ε < 1 and that 1/ε is an integer. More concretely, we run
the algorithm with ε′ = max{ 1

i : 1
i ≤ ε, i ∈ N}. Set L = dlog1+ε(W )e and recall that we set

W =
∑
i pi.

We define the price classes V` = {i : (1 + ε)` ≤ pi < (1 + ε)`+1}. In the following, we
assume that all items from price class V` have price exactly (1 + ε)`+1. We only lose a factor
of 1 + ε by making this assumption. Furthermore, we set V 1/ε

` to the set of 1/ε items from
V` with smallest weights wi (breaking ties arbitrarily). We also define V ′` = V` \ V 1/ε

` .
Next, we set X =

⋃
`≥0 V

1/ε
` and Y =

⋃
`≥0 V

′
` for all ` ≥ 0. Note that X and Y partition

the set of items and |X| = 1
ε · L = O(ε−2 log(W )).

Now our strategy is to use our algorithm from Proposition 12 to maintain a solution for
the items in X. Then we show how we can combine the solution for X with a solution for Y
that is based on fractional knapsack and a charging argument.

Data Structures. For each ` ∈ [L], we maintain V` sorted non-decreasingly by weight.
We also maintain the set X in a binary search tree, in which we sort the items by their

index, and we maintain our data structure from Proposition 12 on the items in X.
Furthermore, let U` =

⋃
`′≤` V

′
`′ denote the set of all items that are not contained in X

and of price class at most `. For each `, we maintain the set U` in a binary search tree T in
which the items are stored as leaves and sorted by their density pi

wi
. In each internal node u

of T , we store the total weight of the items in the subtree Tu rooted at u and the total profit
of the items in Tu. Observe that this allows us to answer queries of the type: “Given a
budget b, what is the value of the optimal fractional8 knapsack solution in U` with weight at
most b?” in time O(logn).

Updates. Now consider an item insertion or deletion and suppose that the updated
item is of price class V`. We first update the sets V`, U`′ for `′ ≤ ` and the sets X and Y .
Note that for each of these sets at most one item can be removed and inserted. Thus, these
steps can be done in time O(` · log(n)) = O(ε−1 log(W ) log(n)).

Next, if X changed in the previous step, then we also perform the corresponding updates

8 In fractional knapsack, we may use items fractionally. An optimal solution is achieved by sorting the
items items by their density and greedily adding items to the solution until we have used up our budget b.
This approach uses at most one item fractionally (namely, the one at which we use up our budget).
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in the data structure from Proposition 12. Since |X| = O(ε−2 log(W )) holds by construction
of X, the update operations for the data structure maintaing the knapsack solution for X
take a total time of

O

(
ε−2 log3(|X|) log2(W ) · polylog

(
1
ε

log(|X|W )
))

= O

(
ε−2 log2(W ) · polylog

(
1
ε

log(nW )
))

.

Furthermore, we can explicitly write down our solution IX for the items in X in time
ε−2 log(W ) · polylog( 1

ε log(nW )) since |X| = O(ε−2 log(W )). Also, for each i ∈ IX , we can
set a bit indicating that i ∈ IX . Note that the time for writing down IX and setting the bits
is subsumed by the update time above.

Queries. Returning the value of a solution: We return the value of a global knapsack
solution as follows.

Consider the data structure from Proposition 12 which maintains a solution for the items
in X. Note that this solution is stored as a piecewise constant function with p ≤ L pieces
and consider the list representation (x1, y1), . . . , (xp, yp) of this function.

Our strategy is as follows: For each i = 1, . . . , p, we consider a solution which spends
budget xi on items in X and budget B − xi on items in Y . Then we take the maximum over
all of the solutions we have considered. More concretely, for given i = 1, . . . , p, we obtain our
solution as follows. We pick `i such that (1 + ε)`i = dε · yie1+ε (see Lemma 13 below for a
justification of this choice). Now we use the binary search tree for U`i to find the highest
profit that we can obtain from fractional knapsack on items in U`i

⊆ Y if we can spend
budget at most b = B − xi. Let y′i be the value of this query after removing any profit that
we gain from the (at most one) fractionally cut item. We also store the density of the final
item that is contained in the fractional knapsack solution. Now we return the maximum of
yi + y′i over all i = 1, . . . , p.

Note that since the solution for X has at most L = O(ε−1 log(W )) pieces and for each of
them we perform a single query in a binary search tree, the total time for return the solution
value is O(ε−1 log(W ) log(n)). Note that this time is subsumed by the update time.

Returning the entire solution: Now we can return our global solution I in time O(|I|) as
follows. Observe that I is composed of the solution IX for the items in X and of the items in
the fractional knapsack solution. During our updates, we already stored the items in IX and
can write them down in time O(|IX |). Next, to return the items from the fractional knapsack
solution, recall that we stored the density of the final item in the fractional knapsack solution.
Thus, we only have to output the items ordered non-decreasingly by their density, while we
are above the desired density-threshold. This can be done in time linear in the size of the
fractional knapsack solution. This is essentially the same query procedure as in [29].

Returning whether an item is in the solution: Furthermore, observe that the above implies
that we can answer whether an item i ∈ [n] is contained in our solution in time O(1): If
i ∈ X then we already stored a bit whether i ∈ IX . If i 6∈ X then we can check whether i is
in the fractional knapsack solution by checking whether its density is above or below the
threshold given by the final item in the fractional knapsack solution.

Analysis. We start by making some simplifications to OPT. We let OPT′ denote the
version of OPT in which for each ` ∈ [L], we pick the |OPT∩V`| items of smallest weight from
V`. This only loses a factor of 1+ ε. Next, define OPT′X = OPT′ ∩X and OPT′Y = OPT′ ∩Y .
Observe that by how we picked OPT′, it holds that OPT′Y ∩V` 6= ∅ iff

∣∣OPT′ ∩V`
∣∣ > 1/ε.

Let pX denote the total price of items in OPT′X and let wX denote the total weight of
the items in OPT′X . Let f denote the piecewise constant function that stores the solution
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for the items in X. Observe that by Proposition 12 we have that

pX ≤ f(wX) ≤ (1 + ε)pX .

Also, the function value f(wX) is part of a piece (xi∗ , yi∗) with xi∗ ≤ wX and yi∗ = f(wX).
The next lemma justifies why we set `i such that (1 + ε)`i = dε · yie1+ε in our algorithm.

To this end, let `i∗ be such that (1 + ε)`i∗ = dε · yi∗e1+ε and let `Y be the price class of the
most valuable item in OPT′Y . In the lemma we show that `i∗ ≥ `Y . We will use this to show
that our solution for X of profit yi∗ is valuable enough such that we can charge a fractionally
cut item from fractional knapsack onto the solution from X and only lose a factor of (1 + ε)2.

I Lemma 13. It holds that `i∗ ≥ `Y .

Proof. Since OPT′Y ∩V ′`Y
6= ∅,

∣∣OPT′ ∩V`Y

∣∣ > 1/ε and thus OPT′X contains all 1/ε items
from V

1/ε
`Y

. Hence, pX ≥ 1
ε · (1 + ε)`Y . From above we get f(wX) = yi∗ and f(wX) ≥ pX .

By choice of `i∗ ,

(1 + ε)`i∗ = dε · yi∗e1+ε = dε · f(wX)e1+ε ≥ dε · pXe1+ε ≥
⌈
ε · 1
ε

(1 + ε)`Y

⌉
1+ε

= (1 + ε)`Y .

This implies `i∗ ≥ `Y . J

Next, consider the the fractional knapsack solution that we obtain from our query. Note
that this solution has a profit that is at least as large as the profit of OPT′Y (since fractional
knapsack is a relaxation of 0-1 knapsack). Furthermore, the fractional solution uses at
most one item fractionally and this item is from U`i∗ and has value at most (1 + ε)`i∗ =
dε · yi∗e1+ε ≤ (1 + ε)ε · yi∗ . Thus, we can charge this item on OPT′X and lose a factor of at
most (1 + ε)2.

We conclude that the solution yi∗+y′i∗ is a (1+ ε)O(1)-approximation of OPT. Combining
this with our previous running time analysis, we obtain Theorem 1.

4 Technical Overview

We now present an overview of two techniques for making DPs fit our framework. We will
briefly discuss how we monotonized the DP for k-balanced partitioning and how we inverted
the DP for simultaneous source location. Due to space constraints, we only present excerpts
of our algorithms and we only consider special cases. More concretely, for both problems we
will consider the special case when the input graph is a binary tree. In the appendix we will
show that the results can be extended to general graphs.

4.1 Monotonizing the DP of Feldmann and Foschini
We start by considering the k-balanced graph partitioning problem. Recall that in this
problem, the input is a graph G = (V,E, cap), where cap : E →W∞ is a weight function on
the edges, and an integer k. As discussed in the introduction, we assume that we can violate
the partition sizes by a (1 + ε)-factor and our goal is to find a partition V1, . . . , Vk of the
vertices such that |Vi| ≤ d(1+ε) |V | /ke for all i and such that we minimize cut(V1, . . . , Vk) :=∑k

i=1
∑
{u,v}∈E∩(Vi×(V \Vi)) cap(u, v).

For the sake of better exposition, here we only consider the special case in which G is a
binary tree; in Appendix D.4 we show how to drop this assumption.
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In the following we present a DP in which the rows are monotone and we show how to
efficiently perform operations on these solution vectors using monotone piecewise constant
functions. Our DP is related to the DP by Feldmann and Foschini [34] which is non-monotone
and thus our DP can be viewed as the monotonization of the DP by Feldmann and Foschini.
We believe that our technique to monotonize the DP will have further applications in the
future.

High-Level Description of the DP. Our DP is computed bottom-up starting at the
leaves of the tree and then moving up in the tree. For each vertex v, we will compute a DP
solution of minimum cost that encodes whether the edge to the parent p of v is cut and
which edges shall be cut inside the subtree Tv that is rooted at v. Note that the removal of
the cut edges in our solution will decompose the tree into disjoint connected components
and exactly one of them contains v’s parent p. Additionally, we store information about the
number of vertices that are still connected to the parent p (and, therefore, to the outside of
Tv) after the cut edges are removed. We will assume that when we compute the DP cell for
a vertex v, we have access to the solutions for both of its children.

More concretely, when we have computed a solution for a subtree Tv, i.e., we know which
edges incident to nodes in this subtree we are going to remove (note that the edge leading to
the parent of v is incident to Tv and thus we consider it as part of this solution), we store
the following information in the DP table. First, we store its cost, i.e., the total capacity of
all edges that are incident to vertices in Tv and that are cut. As described above, we would
also like to store the number of vertices that are connected to the parent of v and the sizes
of connected components inside Tv. However, there are two difficulties: (1) We cannot store
the number of vertices that are connected to the root exactly because this would result in
a too large DP table. Instead, we store the cheapest solution in which vertices of at most
some given number are still connected to the parent of v. As we will see, this approach gives
rise to monotonically decreasing functions and allows for a very efficient computation of the
DP table. (2) We store implicitly the size of all connected components that are created
after the cut edges are removed and that lie completely inside Tv. As before, storing these
sizes exactly would result in a very large DP table and, therefore, we store them concisely
using the concept of a signature. The signatures will help us to characterize the sizes of the
components inside Tv very efficiently.

Signatures. We call a connected component in Tv large if it contains at least εd|V | /ke
vertices and otherwise we call it small. Let t = dlog1+ε(1/ε)e+ 1, and let M = dk/εe+ 1. A
signature is a vector g = (g0, . . . , gt−1) ∈ [M−1]t. Observe that each Pi is an integer between
0 and M − 1 and hence there are M t = (k/ε)O(ε−1 log(1/ε)) different signatures. Intuitively,
an entry Pi in g tells us roughly how many components of size (1 + ε)i · εd|V | /ke there are
in the DP solutions that we consider. Due to space constraints, we refer to the appendix for
the formal definition.

For x ∈ N, we let e(x) ∈ [M − 1]t denote the signature of a single component with x

vertices. More precisely, we set e(x) to the vector that has e(x)j = 1 for j = arg min{j ∈
N : x ≤ (1 + ε)j · εd|V | /ke} and e(x)j = 0, otherwise. If x < εd|V | /ke, we define e(x) = ~0.

Formal DP Definition. Now we describe the DP formally. An entry DP(v, g, cut, x) ∈
W∞ in the DP table for a vertex v is indexed by a signature g, a Boolean value cut and
x ∈ [n]. We will consider the tuples (v, g, cut) as the rows I of the DP table and x as the
columns; we associate each such row with a function DP(v, g, cut, ·) : [n]→W∞. Note that
our DP has |V | ·M t · 2 = (k/ε)O(ε−1 log(1/ε)) · n rows. Also, note that it has columns n; later,
even though x only takes discrete values, we will allow x to take values in [0,∞).

An entry DP(v, g, cut, x) describes the optimum cost of cutting edges incident on the
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subtree Tv (including the cost of maybe cutting the edge to the parent of v). We will refer
to the set of vertices in Tv that are still connected to the parent of v after the cut edges are
removed as the root component. We impose the following conditions on DP(v, g, cut, x):

Once the cut edges are removed, the root component U ⊆ Tv has at most x vertices, i.e.,
|U | ≤ x.
If cut is set to true then the edge between v and its parent is cut, otherwise it is kept.
The vertices inside Tv that (once the cut edges are removed) are not connected to the
parent of v form connected components that are consistent with the signature g.
Next, we observe that if we fix a vertex v, a signature g and a value for cut, then the

resulting function DP(v, g, cut, ·) is monotonically decreasing in x.

I Observation 14. Let v ∈ V , g ∈ [M − 1]t be a signature and cut ∈ {true, false}. Then the
function DP(v, g, cut, ·) : [0,∞)→ R+ is monotonically decreasing.

Proof. By definition, DP(v, g, cut, x) stores the cost of the optimum solution in which there
are at most x vertices in the root component. Since x ≤ x′, the solution DP(v, g, cut, x) is also
a feasible solution for DP(v, g, cut, x′). Hence, DP(v, g, cut, ·) is monotonically decreasing. J

Comparison With the DP by Feldmann and Foschini. When comparing our DP
with the one by Feldmann and Foschini [34] then one of the crucial changes is that in our
DP, x encodes an upper bound on the number of vertices in the root component. Previously,
Feldmann of Foschini considered root components with exactly x vertices. This is why their
DP was non-monotone and why one can view our DP as the monotonization of the DP
in [34]. However, we also generalize the DP to the setting with vertex weights and, as we will
see below, parts of our algorithm for computing the DP approximately are rather involved.

4.1.1 Computing the DP
We now give a flavor of what our algorithms for computing the DP look like. We start
by showing how to compute the exact DP solution DP(v, ·, ·, ·) for a vertex v of the tree,
where v has parent p and children vl, vr and it is connected to them via edges ep, el and er,
respectively.

Computing the DP is based on several case distinctions; here, we only consider the case
in which v is an internal vertex of the tree we do not cut the edges el and er. All other cases
are presented in the appendix.

When computing a DP row given by DP(v, ·, ·, ·), we will only require access to the DP
rows DP(vl, ·, ·, ·) and DP(vr, ·, ·, ·). This implies that the dependency tree of the DP is a
tree and has the same height as our input graph G (recall that here we assume that G is a
binary tree). Note that the height of the tree also implies an upper bound on the number of
reachable nodes.

Exact Computation. We start with the exact computation. Here, we can afford to
iterate over all values x ∈ [n] and g ∈ [M − 1]t to compute DP(v, ·, ·, ·). Therefore, we
consider the values for x and g as input to our algorithm.

Since we assume that we do not cut the edges el and er, we have to select subsolutions
for Tvl

and Tvr
, where each subsolution is characterized by the upper bound xl (resp. xr)

and its signature gl (resp. gr).
First, suppose that we cut the edge ep. If we let xl and xr denote the number of vertices of

the root components for the subsolutions, then the vertex v will be included in a component
of size xl + xr + 1 afterwards. Hence, we can combine the subsolutions to a solution for
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signature g as long as gl + gr + e(xl + xr + 1) = g. Consequently we set for every x ∈ [0,∞),

DPB(v, g, true, x) = cap(v, p)+ min
xl,xr,gl+gr=g−e(xl+xr+1)

DP(vl, gl, false, xl)+DP(vr, gr, false, xr).

Second, suppose that we do not cut ep. Again we have to set DPB(v, g, false, x) = ∞
for all signatures g and all x ∈ [0, 1), because v can reach p. For x ≥ 1 we have to select xl
and xr such that they sum to x− 1 as this guarantees that at most x vertices can reach the
parent p. Consequently, we set for all x ∈ [1,∞)

DPB(v, g, false, x) = min
gl+gr=g,xl+xr=x−1

DP(vl, gl, false, xl) + DP(vr, gr, false, xr).

Here, we can afford to exhaustively enumerate all O(M tn2) possibilities in the min-
operations above.

Approximate Computation. Now let us consider the approximate computation. We
denote the approximate DP solution by ADP. We assume that we have already computed the
children solutions ADP(vl, g, cut, ·) and ADP(vr, g, cut, ·) and that they are stored using our
data structure from Section 2. We will maintain as an invariant that each of these functions
has at most p = O(log1+δ(W )) pieces and we will ensure this by rounding our solution at the
end of every step, i.e., by setting ADP(v, g, cut, ·) = dADP(v, g, cut, ·)e1+δ using the rounding
procedure from Lemma 6. This will ensure the following two properties: (1) The functions
ADP(v, g, cut, ·) never have more than O(log1+δ(W )) pieces by Lemma 6. Thus, we can
perform all of our operations very efficiently. (2) For the function at the root of the tree,
the approximation error is at most (1 + δ)h, where h is the height of the tree. By picking
δ = O(ε/h), we will achieve that we obtain a (1 + ε)-approximate solution at the root. Now
we proceed to the explanation of our computation.

If we do not cut the edge to the parent of v, we proceed similar to the exact DP above.
We start by setting ADPB(v, g, false, x) =∞ for all x ∈ [0, 1). Next, for x ∈ [1,∞) we wish
to set

ADPB(v, g, false, x) = min
gl+gr=g,xl+xr=x−1

ADP(vl, gl, false, xl) + ADP(vr, gr, false, xr) (3)

= min
gl+gr=g

min
xl+xr=x−1

ADP(vl, gl, false, xl) + ADP(vr, gr, false, xr). (4)

Note that for fixed gl and gr, the inner min-operation in the second line describes a (min,+)-
convolution due to the constraint xl + xr = x− 1. Therefore, in the inner min-operation we
compute a convolution ADP(vl, gl, false, ·)⊕ ADP(vr, gr, false, ·) and shift the result by 1 via
the shift operation from Lemma 6 (where for x ∈ [0, 1) we set ADPB(v, g, false, x) =∞). We
need time O(p2 log p) for computing the convolution according to Lemma 7. To compute
the outer minimum in Equation (4), we iterate over all gl ∈ [M − 1]t using Lemma 6 and
thus perform O(M t) minimum computations over piecewise constant functions with at most
p2 pieces. Hence, we need time O(M tp2 log(M tp2)) according to Lemma 21. By Lemma 22,
ADPB(v, g, false, ·) is monotonically decreasing since it is the minimum over convolutions of
two monotonically decreasing functions.

If we cut the edge to the parent of v, then for all x ∈ [0,∞) we would like to set

ADPB(v, g, true, x) = cap(v, p) + min
xl,xr,gl+gr=g−e(xl+xr+1)

ADP(vl, gl, false, xl) + ADP(vr, gr, false, xr).

Note that here we need to be careful as the range of gl and gr depends on the choice of xl+xr.
Since there are Ω(n) possible values for xl+xr, we cannot afford to iterate over all values that
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xl + xr can take. Instead, we will show that we only need to consider O(log(k/ε)/ε) different
pairs (xl, xr) by exploiting the monotonicity of ADP(vl, gl, false, ·) and ADP(vr, gr, false, ·).

First, observe that we can assume xl ≤ |Tvl
| and xr ≤ |Tvr

|: increasing the upper bounds
on the number of vertices of the root component further would mean that the root component
contains than all vertices inside the sub-tree, which is impossible. Thus, xl + xr + 1 ∈ [1, n].

Second, we partition the interval [1, n] into O(log(k/ε)/ε) intervals. We have intervals
Ij = (ξj−1, ξj ] with ξj = (1 + ε)jεdn/ke for all j = 1, . . . , log1+ε(k/ε). In addition, we add
an “interval” I0 := [εdn/ke, εdn/ke] and the interval I−1 := [1, εdn/ke). We set ξ0 = εdn/ke
and we set ξ−1 to the largest integer that is less than εdn/ke. Observe that for all j ≥ −1
and x ∈ Ij , we have e(x) = e(ξj), i.e., the value of e(x) does not change inside the interval
Ij . Below, this property will allow us to separate the conditions on xl + xr and on gl + gr.

Now we can rewrite the above expression as

ADPB(v, g, true, x) =
cap(v, p) + min

j
min

xl+xr+1∈Ij

min
gl+gr=g−e(ξj)

ADP(vl, gl, false, xl) + ADP(vr, gr, false, xr).

Third, note that now the two min-operations only depend on the choice of j and,
importantly, the minimum over gl and gr does not depend on the choice of xl + xr any-
more. Therefore, we can swap the order of the two min-operations. Furthermore, since
ADPB(v, g, false, x) is monotonically decreasing with x, we can restrict the choice of xl
and xr such that xl + xr + 1 is the largest number in the corresponding interval Ij , i.e.,
xl + xr + 1 = ξj . Thus,

ADPB(v, g, true, x) =
cap(v, p) + min

j
min

gl+gr=g−e(ξj)
min

xl+xr+1=ξj

ADP(vl, gl, false, xl) + ADP(vr, gr, false, ξj − xl − 1).

Next, we explain how the above expression can be computed efficiently. Let us first argue
how we can efficiently compute the inner min-operation of the above expression. We start by
observing that this min-operation is not a convolution since in the constraint we sum up to
ξi which is a constant (rather than to the variable x). Now recall that ADP(vl, gl, false, ·) and
ADP(vr, gr, false, ·) are piecewise constant functions with O(p) pieces by our invariants. Since
xl, xr ≥ 0 this implies that there are only O(p2) choices for xl and xr such that xl, xr ∈ Ij
and either a new piece starts in ADP(vl, gl, false, xl) or in ADP(vr, gr, false, xr). Thus, we can
iterate over all these pairs (xl, xr) and evaluate ADP(vl, gl, false, xl) + ADP(vr, gr, false, xr),
where xr = ξj − xl − 1. Thus, we can compute the inner min-operation in time O(p2 log p).
We note that since this min-operation is considering a super-constant number of terms, this
DP is not well-behaved (it violates Property (4b) of Definition 8). This is why in our analysis
we will use the more general notion from Section C.2.

Next, we can compute the outer two min-operations by simply iterating over j and all
choices for gl and setting gr = g− e(ξj)− gl as above in O(M t · log(k/ε)/ε) iterations. Hence,
we obtain a running time of O(M tp2 log p · log(k/ε)/ε).

Finally, we note that as ADPB(v, g, true, x) is independent of x, it is a constant. Thus,
ADPB(v, g, true, x) is a piecewise constant function with a single piece and it is monotonically
decreasing.

Rounding Step. As noted earlier, after computing the solutions ADPB(v, g, false, ·) and
ADPB(v, g, true, ·), we also round the solution by setting ADPB(v, g, cut, ·) = dADPB(v, g, cut, ·)e1+δ
for cut ∈ {true, false} to ensure that we only have p = O(log1+δ(W )) pieces in the result-
ing function. Note that this is the only approximate operation we perform and all other
operations above have been exact.
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4.2 Inverting the DP of Andreev et al.
Now we briefly describe our DP for simultaneous source location. Recall that in this problem,
the input consists of an undirected graph G = (V,E, cap, d) with a capacity function
cap: E → W∞ and a demand function d : V → W∞. The goal is to select a minimum set
S ⊆ V of sources that can simultaneously supply all vertex demands. More concretely, a set
of sources S is feasible if there exists a flow from the vertices in S that supplies demand d(v)
to all vertices v ∈ V and that does not violate the capacity constraints on the edges. The
objective is to find a feasible set of sources of minimum size.

Here, we will again assume the special case in which G is a binary tree; we show in
Appendix E.3 how to drop this assumption.

DP Definition. Given a vertex v and a value x ∈ R, we let DP(v, x) denote the minimum
number of sources that we need to place in the subtree Tv such that when v receives flow at
most x from its parent then all demands in Tv can be satisfied. We note that x can take
positive and negative values: for x ≥ 0 this corresponds to the setting in which flow is sent
from the parent of v into Tv and for x < 0 this corresponds to the setting in which flow is sent
from Tv towards the parent of v. We further follow the convention that when the demands
in Tv cannot be satisfied when v receives flow x from its parent, then we set DP(v, x) =∞.

Observe that this DP has rows I = V and columns J = R. Furthermore, DP(v, ·) is
monotonically decreasing since for x < x′, any solution in which Tv receives flow at most x
from the parent of v is also feasible when Tv receives flow at most x′ from the parent of v.
This satisfies Property (1) of Definition 8.

The Inverse DP. Interestingly, our DP is very related to the one by Andreev et al. [4].
They defined a function f(v, i) which, given a vertex v and an integer i ∈ N, denotes the
minimum amount of flow that v needs to receive from its parent if all demands in Tv need to
be satisfied and if we can place i sources in the subtree Tv. Similar to above, f(v, i) takes
positive values if the demand in Tv can only be satisified by receiving flow from the parent
of v and it takes negative values if the demand in Tv is already satisfied by the sources in
the subtree Tv and v can send flow to its parent.

Now observe that our DP can essentially be viewed as the “inverse” of f(v, i). More
formally, observe that DP(v, x) = f−1(v, x) := min{i : f(v, i) ≤ x}.

The reason why we chose the inverse formulation for our DP is as follows. To ensure that
our algorithms are efficient, we have to make sure that our monotone piecewise constant
functions have only few pieces. One natural way to do is using rounding. However, since
the function values of f are positive and negative, it is not clear how we should perform the
rounding. For example, to only use a small number of pieces for representing f , we would
have to use different rounding mechanisms for those function values in [−1, 1] and those in
[−W,W ]\ [−1, 1], where W is the largest edge capacity: Indeed, if we rounded the values of f
to powers of (1 + δ)j then there are only O(log1+δ(W )) function values in [−W,W ] \ [−1, 1]
but there are infinitely many function values in [−1, 1]. Similarly, if we rounded to multiples
of δ then there are only O(1/δ) function values in [−1, 1] but this would lead to O(W/δ)
function values in [−W,W ] \ [−1, 1]. In both cases, our functions would have too many pieces
and we would have to pick a rounding function which provides a tradeoff between these two
cases. Furthermore, we would have to find an analysis that shows that this “more involved”
rounding function does not introduce much too error.

In our DP we bypass these issues because we move the negative numbers into the domain
of the function DP(v, ·) : R → [n + 1]. Then in the codomain we only have non-negative
numbers to which we can apply the standard rounding function d·e1+δ in a straightforward
way. This also has the positive side effects that instead of getting factors of polylog(W ) in
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our running times, we only get factors of polylog(n) because our codomain became [n+ 1]
rather than some potentially large interval [−W,W ]. We believe this technique of considering
inverse DPs will be useful in the future to compute approximate solutions for DPs that can
take positive and negative values.

Due to lack of space, we present the details for computing the DP in Appendix E.
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A Organization of the Appendix

Our appendix is organized as follows:
In Appendix B we discuss more related work.
Appendix C introduces preliminaries.
Appendix D presents our results for k-balanced partitioning.
Appendix E presents our results for simultaneous source location.
Appendix F presents our recourse lower bounds for algorithms which only maintain few
solutions.
Appendix G presents our generalization to functions with non-monotonicities and our
results for `∞-necklace.
Appendix H presents missing proofs.

B Further Related Work

Speeding up DP algorithms is a well-studied topic, which has received attention for several
decades [2,12,19,22,31,35,45,48,49,64]. This line of work has led to several conditions, which,
if satisfied, imply that the underlying DP can be solved more efficiently. These conditions
include, for example, the Monge property, total monotonicity, certain convexity and concavity
properties, or the Knuth–Yao quadrangle-inequality, which are often related to each other.
For example, it is known that DP tables which satisfy the Monge property are also totally
monotone. One of the most popular methods in this area is the SMAWK algorithm [2] which
runs in near-linear time in the number of columns of the DP table if the DP table is totally
monotone. More concretely, a DP table is totally monotone if for each submatrix A of the
DP table and for every pair of consecutive rows i and i + 1 in A, the minimum entry for
row i+ 1 appears in a column that is equal to or greater than the minimum entry for row i.

However, these conditions are quite different from our conditions in Definition 8 and
they are essentially incomparable. For the purpose of illustration, we will briefly argue this
for total monotonicity and Definition 8; similar arguments can also be made for the Monge
property and other criteria. On one hand, the totally monotone matrices do not imply that
the rows of the DP table are monotone. Indeed, when the rows are monotone then finding
the columns with the minimum entries is trivial (they are always in the first or last column,
depending on whether we consider monotonically increasing or decreasing rows, respectively).
Hence, total monotonicity does not imply our condition from Definition 8. On the other
hand, the ordering of the rows is highly important for the conditions above: just swapping
two rows of a totally monotone DP table can break total monotonicity. In our case, the
rows can be ordered arbitrarily in the DP table, as long as their dependency graph has good
properties. Hence, our property does not imply total monotonicity. This shows that these
definitions are incomparable.

Recently, Varma and Yoshida [60] and Kumabe and Yoshida [46] studied the sensitivity
of graph algorithms and of DP algorithms. They studied how much the solutions of such
algorithms change when a random element from the input is deleted. For several problems
including knapsack they showed that these algorithms have small sensitivity. However, we
show in Section F that when insertions are allowed, dynamic algorithms must have high
recourse or they have to maintain many different solutions.

The k-balanced graph partitioning problem has received a lot of attention in the theory
community [5, 32–34]. The problem is also highly relevant in practice [18,28,44,55], where
algorithms for balanced graph partitioning are often used as a preprocessing step for large
scale data analytics. For the special case of k = 2, this corresponds to the minimum
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bisection problem and Feige and Krauthgamer [33] presented polynomial-time algorithms
with polylogarithmic approximation ratios. For k ≥ 3, Andreev and Räcke [5] showed
that no polynomial-time algorithm can achieve a finite approximation ratio unless P = NP.
They also showed how to compute a bicriteria (O(log1.5(n)/ε2), 1 + ε)-approximate solution
in polynomial time. Feldmann and Foschini [34] obtained a polynomial-time bicriteria
(O(log1.5(n) log logn), 1 + ε)-approximation algorithm which has the advantage that the
approximation ratio does not depend on the parameter ε of the partition sizes. Even et
al. [32] showed that one can compute a bicriteria (O(logn), 2)-approximation in polynomial
time.

The simultaneous source location problem that we study is closely related to the source
location problem introduced by Tamura et al. [56,57], in which a minimum number of sources
must be selected to be able to satisfy any single demand in an undirected edge-capacitated
graph. Arata et al. [7] showed that the problem is NP-hard and presented an exact algorithm
for the variant with uniform vertex costs. In the simultaneous source location problem that
was introduced by Andreev et al. [5] and that we study in this paper, all demands must be
satisfied simultaneously. Andreev et al. provide an O(logD)-approximation algorithm, where
D is the sum of demands, and a matching hardness result for this problem in general graphs.
They also present an exact polynomial-time algorithm when the input graph is a tree and
show that this result can be extended to general graphs when the edge capacities can be
violated by a O(log2 n log logn)-factor, where n is the number of vertices in the graph.

Chan [21] showed that one can consider the solutions for the 0-1 knapsack as monotone
piecewise constant functions and used this insight to obtain faster algorithms. Recently, these
results were improved by Jin [43] who showed how to compute a (1 + ε)-approximation for 0-1
knapsack with n items in time Õ(n+ ε−9/4). Bringmann and Cassis [15] derived faster exact
algorithms for 0-1 knapsack using bounded monotone min-plus-convolution. Aouad and
Segev [6] study the incremental knapsack problem, where the capacity constraint is increased
over time and the goal is to find nested subsets of items which maximize the average profit;
we note that this is different from our setting, where the goal is to obtain efficient update
times, while the solutions may change arbitrarily over time.

An `1-necklace alignment problem was first considered by Toussaint [58], motivated by
computational music theory and rhythmic similarity [59]. Toussaint focused on a scenario
where the beads lie at integer coordinates. Ardila et al. [8] studied the problem for binary
strings. There also exist results for different distance measures between two sets of points on
the real line in which not every points needs to be matched [25], as well as for computing
the similarity of two melodies when they are represented as closed orthogonal chains on a
cylinder [3]. Bremner et al. [14] showed that `2-necklace alignment can be solved in time
O(n logn), where n is the number of beads, using FFT. They also showed that `∞-necklace
alignment can be solved using a constant number of (min,+)-operations and obtained
subquadratic-time algorithms for `1- and `∞-necklace alignment.

A common subroutine that is employed when solving DPs is (min,+)-convolution; note
that this subroutine is also of high importance in all of our algorithms. The complexity of
(min,+) convolution has received significant attention in the literature [9–11,14,17,20,23,24,
27,41,42,47,50]. It was shown that naive algorithm with running time O(n2) can be improved
to time n2/2Ω(

√
logn) [14, 61] by a reduction to All Pairs Shortest Path [14] using Williams’

algorithm for the latter [14]. However, so far, no O(n2−ε)-time algorithm was found, which
led to the MinConv hardness conjecture in fine-grained complexity theory [27, 41]. The
conjecture is particularly appealing because it implies other conjectures such as the 3-SUM
and the All-Pairs Shortest Paths conjectures, and dozens of lower bounds that follow from
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them (see [27,62]). There further exist many conditional lower bounds from the MinConv
conjecture and several MinConv-equivalent problems are known, e.g., related to the knapsack
problem or to subadditive sequences [27, 41], among others [1, 10, 27, 30, 41, 42, 47, 50]. There
have also been improvements for efficiently approximating the (min,+)-convolution in the
case of large weights [17] for the exact (min,+)-matrix product with bounded differences [16].

C Preliminaries

We introduce some preliminaries that we will use in the rest of the paper. For the sake of
better readability, we present some of the proofs in Appendix H. We write [m] to denote the
set {0, 1, . . . ,m}.

Throughout the paper, we will consider input graphs G = (VG, EG, capG) with n vertices
and m edges, where capG : EG →W∞ ∪ {∞} is a weight function that for an edge e ∈ EG
describes the capacity of the edge. To simplify notation we extend capG to all vertex pairs
and define

capG(x, y) =
{

capG({x, y}) {x, y} ∈ EG
0 otherwise. .

Additionally, for disjoint sets A,B ⊆ VG, we set capG(A,B) :=
∑

(a,b)∈A×B capG(a, b) and
capG(A) := capG(A, V \A). We drop the subscript G of the capacity function cap whenever
the graph is clear from the context.

Let (VT , ET , r) be a rooted tree. For a vertex v ∈ VT we use Tv to denote the subtree
rooted at v and we say that the degree of v is its number of children. The height h of T is
the length of the longest path from the root to a leaf.

C.1 Räcke Tree
A Räcke tree [52] (or tree cut sparsifier) T = (VT , ET ) for an undirected graph G = (VG, EG)
is a weighted, rooted tree in which the leaf nodes correspond to vertices of G. For a vertex
v ∈ VT , we write Vv ⊆ VG to denote the set of leaf vertices in Tv. Naturally, an edge e = (u, v)
of T corresponds to a cut in G, namely to the cut formed by the set Vu ∩ Vv in G. The
capacity capT of the tree edge (u, v) is set to the capacity of this cut, i.e., to capG(Vu ∩ Vv).

For a graph H = (VH , EH) and two disjoint subsets A,B ⊆ VH , we write

mincutH(A,B) := min
S⊆VH :A⊆S,B⊆S̄

capH(S)

to denote the minimum capacity of a cut that separates A and B. By definition of the
edge capacities in T we have mincutT (A,B) ≥ mincutG(A,B) for any two disjoint subsets
A,B ∈ VG. For the sake of completeness, we prove this property in Appendix H.5.

The goal of a Räcke tree T is to approximate the cut-structure of G, i.e., to guarantee
that for all disjoint sets of vertices A,B ⊆ VG,

mincutG(A,B) ≤ mincutT (A,B) ≤ q ·mincutG(A,B) ,

for a small value q ≥ 1. The parameter q is called the quality of the Räcke tree.
In the static setting, Räcke trees with polylogarithmic quality guarantees can be computed

in nearly linear time [51, 54]. When larger running times are allowed, better qualities can be
achieved [13,37,53].
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I Theorem 15 (Peng [51]). Let G be a connected undirected graph with n vertices and
m edges. Then there exist an algorithm that computes a Räcke tree of height O(logn) for G
with quality O(log4 n) in time Õ(m).

Furthermore, there has recently been interest in maintaining Räcke trees dynamically [36,
40]. Here, we will use a result by Goranci, Räcke, Saranurak and Tan who showed that one
can maintain Räcke trees for unweighted graphs dynamically with subpolynomial update
time.

I Theorem 16 (Goranci, Räcke, Saranurak and Tan [36]). Let G be an undirected, unweighted
graph with n vertices that is undergoing edge insertions and deletions. There exists a
deterministic algorithm with amortized update time no(1) that maintains a Räcke tree for G
with quality no(1) and height O(log1/6 n).

C.2 Okay-Behaved DPs
We introduce a more general DP condition compared to the one in Definition 8 which,
however, will not allow us to obtain results like Theorems 9 or 10. We will consider the same
type of DP tables as in Section 2.

I Definition 17. A DP is okay-behaved if it fulfills the sensitivity condition of well-behaved
DPs: Suppose β > 1 and for all i′ ∈ In(i), we obtain a β-approximation ADP(i′, ·) of DP(i′, ·)
(as per Equation (1)). Then applying Pi on the ADP(i′, ·) yields a β-approximation of DP(i, ·),
i.e.,

DP(i, ·) ≤ Pi({ADP(i′, ·) : i′ ∈ In(i)}) ≤ β · DP(i, ·).

We also use routines P̃i to compute the DP rows ADP(i, ·). Again, if for all i it holds
that P̃i({ADP(i′, ·) : i′ ∈ In(i)}) is an α-approximation of Pi({ADP(i′, ·) : i′ ∈ In(i)}), we say
that ADP(1, ·), . . . ,ADP(n, ·) is an α-approximate DP solution.

In the dependency graph, we call a vertex without any incoming edges a leaf. The level
of a vertex u is the length of the longest path from a leaf to u. Similar to the proof of
Theorem 9 we can show the following approximation guarantee for the approximate solutions
ADP(i, ·) and the exact solutions DP(i, ·).

I Lemma 18. Let i be a vertex of the dependency graph with level `. Then the entry ADP(i, ·)
in the α-approximate ADP-solution for a okay-behaved DP problem fulfills

DP(i, ·) ≤ ADP(i, ·) ≤ α`+1 · DP(i, ·).

Next, suppose the dependency graph of the DP that we consider is derived from a tree as
follows. Let T = (VT , ET , r) be a rooted tree with root r and height h. We assume that the
children of a vertex are ordered from left to right. The dependency graph that we associate
with T is simply a directed copy of T in which we direct each edge towards the root. More
precisely, the dependency graph contains copies of all vertices in VT and for each vertex v
(except for r) an edge to its parent p. Clearly, this set of edges induces a DAG in which
the longest path has at most h edges. The following lemma summarizes the properties of
approximate DP solutions when using this approach.

I Lemma 19. Consider a rooted tree T = (VT , ET , r) with height h. Consider an okay-
behaved DP and the ADP-solution ADP(i, ·) corresponding to the dependency graph described
above. Assume that each P̃i is an α-approximation of Pi and can be computed in time at
most t. Then ADP(r, ·) is an αh+1-approximation of DP(r, ·) and can be computed in time
O(|VT | · t).
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The main difference of this lemma together with the definition of okay-behaved DPs and
Theorem 9 with well-behaved DPs is as follows. When applying Theorem 9, we only have to
consider how many pieces our functions have and we do not have to bother about deriving
running times bound for computing the operations on our functions (because the additional
conditions from the well-behaved DPs imply good running time bounds). Here, we have
to check less conditions for okay-behaved DPs (in particular, we do not have to bound the
number of pieces or operations) but we have to provide our own running time analysis.

Later, when we consider dynamic algorithms, we will have to consider the scenario when
the underlying tree T changes due to edge insertions and deletions (and therefore might
become a forest). In that case, the dependency graph and the DP solutions DP(i, ·) and
ADP(i, ·) change over time as well. The following lemma asserts that when a vertex i is
affected by an edge insertion or deletion, we only have to recompute the solutions DP(j, ·)
and ADP(j, ·) for vertices j that are reachable from i in the dependency graph and that there
are at most h such vertices.

I Lemma 20. Consider a rooted tree T = (VT , ET , r) with height h that is undergoing
edge insertions and deletions. Then after each insertion or deletion, we can recompute an
ADP-solution with the same guarantees as in Lemma 19 in time O(h · t), where t is the time
it takes to compute the functions P̃i.

Lemma 6 already provided a way to compute the minimum of two monotone piecewise
constant functions. When more than two functions are involved in the minimum computation,
the following version gives improved guarantees.

I Lemma 21. Let fi : [0, t] → W∞, i ∈ {1, . . . , k} be piecewise constant functions that
are either all monotonically increasing or all monotonically decreasing. Then fmin(x) :=
mini{fi(x)} can be computed in time O(

∑
i pi · log(

∑
i pi)), where pi denotes the number of

pieces of function fi.

We also note the following well-known lemma for sake of completeness.

I Lemma 22. Let f1, f2 : [0, t]→W∞ and suppose that one of f1 and f2 is monotonically
decreasing. Then f = f1 ⊕ f2 is monotonically decreasing.

D Balanced Graph Partitioning

In this section, we provide an algorithm for the k-balanced graph partitioning problem. In
this problem, the input consists of a graph G = (V,E, cap), where cap : E →W∞ is a weight
function on the edges, and an integer k. The goal is to find a partition V1, . . . , Vk of the
vertices such that |Vi| ≤ d|V | /ke for all i and the weight of the edges which are cut by the
partition is minimized. More formally, we want to minimize cut(V1, . . . , Vk) :=

∑
i cap(Vi),

where cap(Vi) =
∑
{u,v}∈E∩(Vi,V \Vi) cap(u, v).

Since the above problem is NP-hard to approximate within any factor n1−ε for any ε
even on trees [34], we consider bicriteria approximation algorithms. Given a weighted graph
G = (V,E, cap), we say that a partition V1, . . . , Vk of V is an (α, β)-approximate solution
if |Vi| ≤ βdn/ke for all i and cut(V1, . . . , Vk) ≤ α · cut(OPT), where OPT = (V ∗1 , . . . , V ∗k ) is
the optimal solution with |V ∗i | ≤ dn/ke for all i.

Our first main result in this section is summarized in the following theorem. We use the
notation O′(·) to suppress factors in poly(logn, k, log(1/ε), log log(W )).
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I Theorem 2. Let ε > 0 and k ∈ N. Let G = (V,E, cap) be an undirected weighted graph
with n vertices and m edges and edge weights in W∞. Then for the k-balanced partition
problem we can compute:

An (O(log4 n), 1+ε)-approximation in time (k/ε)O(log(1/ε)/ε)·O′(m·log2(W ))+(k/ε)O(1/ε2).9
A (1 + ε, 1 + ε)-approximation in time (k/ε)O(log(1/ε)/ε) ·O′(n ·h2 · log2(W )) + (k/ε)O(1/ε2)

if G is a tree of height h.
A (1, 1 + ε)-approximation in time (k/ε)O(log(1/ε)/ε) ·O′(n4 · log2(W )) + (k/ε)O(1/ε2) if G
is a tree.

Furthermore, we can also extend our results to the dynamic setting in which the graph
G is undergoing edge insertions and deletions. Our second main result in this section is
summarized in the following theorem.

I Theorem 3. Let ε > 0 and k ∈ N. Let G = (V,E, cap) be an undirected weighted graph
with n vertices that is undergoing edge insertions and deletions. Then for the k-balanced
partition problem we can maintain:

An (no(1), 1 + ε)-approximate solution with amortized update time (k/ε)O(log(1/ε)/ε) ·no(1) ·
O′(log2(W )) and query time (k/ε)O(1/ε2) if G is unweighted.
A (1 + ε, 1 + ε)-approximate solution with worst-case update time (k/ε)O(log(1/ε)/ε) ·O′(h3 ·
log2(W )) and query time (k/ε)O(1/ε2) if G is a tree of height h.

Our DP approach is inspired by the DP of Feldmann and Foschini [34]. However, the DP
cells in the algorithm of Feldmann and Foschini are not monotone and, therefore, their DP
cannot directly be sped up by the fast convolution of monotone functions approach. Hence,
we first simplify and generalize their DP to make it monotone such that we can apply the
fast convolution of monotone functions approach.

We note that in our static and dynamic algorithms, we can output the corresponding
solutions similarly to what we descriped after Proposition 12 for knapsack.

To obtain these results, we will first describe an exact DP in Section D.1 for the special
case of binary trees. Then we will show how to compute the DP more efficiently by introducing
approximation in Section D.2. In Section D.3 we show how to return a solution based on our
DP table. Sections D.4 and D.5 provide extensions from binary trees to more general graphs
and to the dynamic setting, respectively.

D.1 The Exact DP
When describing the DP, we will make two assumptions. First, we assume that the input
graph T = (V,E) is a binary tree (we show in Section D.4 how to remove this assumption).
Second, we consider a slight generalization of the k-balanced partition problem on trees;
we note that we did not mention this generalization in Section 4. In this generalization,
we suppose that each vertex is assigned a weight by a weight function w : V → {0, 1}.10

For convenience we set w(U) =
∑
u∈U w(u) for all U ⊆ V and refer to w(U) as the weight

of the vertices in U . Now our goal will be to find a partition V1, . . . , Vk of V such that
w(Vi) ≤ (1 + ε)dw(V )/ke for all i and we will compare against OPT = (V ∗1 , . . . , V ∗k ), where
OPT is the optimal solution with w(V ∗i ) ≤ dw(V )/ke for all i. Note that by setting w(v) = 1

9 We use the notation O′(·) to suppress factors in poly(logn, k, log(1/ε), log log(W )).
10We note that our proofs and algorithms also work for more general weight functions w : V → R+.

However, in that case the functions DP(v, g, cut, ·) that we will introduce later will become more
complicated to compute and, therefore, we stick with the simpler case of vertex weights in {0, 1}.
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for all v ∈ V , we obtain the standard k-balanced partition problem and, therefore, our variant
is a strict generalization.

The reason for considering the above generalization is that later we want to use our
algorithm to find a balanced partitioning of general graphs G = (V ′, E′) using a Räcke
tree T = (V,E) (see Section C.1). However, the vertices V ′ of G are just a subset of the
vertices V of the Räcke tree T (since the vertices of G correspond to leaves in T and the
internal nodes of T do not correspond to any vertices in G). Thus, if we assigned weight
w(v) = 1 to all vertices in T and computed a balanced partitioning of T , this would not
necessarily correspond to a balanced partitioning of G. Instead, later we will consider the
weight function which assigns weight 1 to all leaves in T (corresponding to the vertices in G)
and weight 0 to all internal nodes of T (which can be ignored when deriving a partitioning of
G). Then each set Vi in T will correspond to a set V ′i in G with w(Vi) = |V ′i |. In particular,
if w(Vi) ≤ (1 + ε)dw(V )/ke then we will obtain that |V ′i | ≤ (1 + ε)d|V ′| /ke and, therefore,
the sets V1, . . . , Vk imply a balanced partition V ′1 , . . . , V ′k of G.

High-Level Description of the DP. We start by giving a high-level description of the
DP. The DP is computed bottom-up starting at the leaves of the tree G and then moving up.
For each vertex v, we will compute a DP solution of minimum cost that encodes whether
the edge to the parent p of v is cut and which edges shall be cut inside the subtree Tv
that is rooted at v. Note that the removal of the cut edges in our solution will decompose
the tree into disjoint connected components and exactly one of them contains v’s parent p.
Additionally, we store information about the weight of the vertices that are still connected to
the parent p (and, therefore, to the outside of Tv) after the cut edges are removed. We will
assume that when we compute the DP cell for a vertex v, we have access to the solutions for
both of its children.

More concretely, when we have computed a solution for a subtree Tv, i.e., we know which
edges incident to nodes in this subtree we are going to remove (note that the edge leading to
the parent of v is incident to Tv and thus we consider it as part of this solution), we store
the following information in the DP table. First, we store its cost, i.e., the total capacity of
all edges that are incident to vertices in Tv and that are cut. As described above, we would
also like to store the weight of the vertices that are connected to the parent of v and the
sizes of connected components inside Tv. However, there are two difficulties: (1) We cannot
store the weight of the vertices that are connected to the root exactly because this would
result in a too large DP table. Instead, we store the cheapest solution in which vertices of at
most some given weight are still connected to the parent of v. As we will see, this approach
gives rise to monotonically decreasing functions and allows for a very efficient computation of
the DP table. (2) We store implicitly the size of all connected components that are created
after the cut edges are removed and that lie completely inside Tv. As before, storing these
sizes exactly would result in a very large DP table and, therefore, we store them concisely
using the concept of a signature. The signatures will help us to characterize the sizes of the
components inside Tv very efficiently.

Signatures. We call a connected component in Tv large if it contains vertices of total
weight at least εdw(V )/ke and otherwise we call it small. Let t = dlog1+ε(1/ε)e+ 1, and let
M = dk/εe+ 1. A signature is a vector g = (g0, . . . , gt−1) ∈ [M − 1]t. Observe that each gi
is an integer between 0 and M − 1 and hence there are M t = (k/ε)O(ε−1 log(1/ε)) different
signatures. Intuitively, an entry gi in g tells us roughly how many components of weight
(1 + ε)i · εdw(V )/ke there are in the DP solutions that we consider. The precise definition is
as follows.

Let S = {S1, . . . , Sr} be a set of connected components inside Tv (e.g., think of S as the
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components that are created after removing the cut edges in the DP solution for vertex v).
We say that a signature vector g = (g0, . . . , gt−1) ∈ [M − 1]t is consistent for S if we can
match the connected components in S to entries in g as follows. For each large component
Sj we let `(Sj) = arg min{i ∈ [t] : w(Sj) ≤ (1 + ε)i · εdw(V )/ke}, i.e., `(Sj) is the smallest
number i such that Sj has weight at most (1 + ε)i · εdw(V )/ke. Let si ∈ [M − 1] denote the
number of times the value i ∈ [t] has been chosen in this process, i.e., si = |{j : `(Sj) = i}|,
and let s = (s0, . . . , st−1) denote the resulting vector. We say that g is consistent with the
set of components S if g = s. Thus, the above matching process can be viewed as rounding
up the component sizes and counting the number of components of each size.

For x ∈ N, we let e(x) ∈ [M − 1]t denote the signature of a single component with total
weight x. More precisely, we set e(x) to the vector that has e(x)j = 1 for j = arg min{j ∈
N : x ≤ (1 + ε)j · εdw(V )/ke} and e(x)j = 0, otherwise. If x < εdw(V )/ke, we define e(x) = ~0.

D.1.1 DP Definition
Now we describe the DP formally. An entry DP(v, g, cut, x) ∈W∞ in the DP table for a vertex
v is indexed by a signature g, a Boolean value cut and x ∈ [n]. We will consider the tuples
(v, g, cut) as the rows I of the DP table and x as the columns; we associate each such row with
a function DP(v, g, cut, ·) : [n]→W∞. Note that our DP has |V |·M t ·2 = (k/ε)O(ε−1 log(1/ε)) ·n
rows. Also, note that it has columns n; later, even though x only takes discrete values, we
will allow x to take values in [0,∞).

It describes the optimum cost of cutting edges incident on the subtree Tv (including the
cost of maybe cutting the edge to the parent of v). We will refer to the set of vertices in
Tv that are still connected to the parent of v after the cut edges are removed as the root
component. We impose the following conditions on DP(v, g, cut, x):

Once the cut edges are removed, the root component U ⊆ Tv has total weight at most x,
i.e., w(U) ≤ x.
If cut is set to true then the edge between v and its parent is cut, otherwise it is kept.
The vertices inside Tv that (once the cut edges are removed) are not connected to the
parent of v form connected components that are consistent with the signature g.
We observe that if we fix a vertex v, a signature g and a value for cut, then the resulting

function DP(v, g, cut, ·) is monotonically decreasing in x. This will be the crucial property
for the rest of the section.

I Observation 23. Let v ∈ V , g ∈ [M − 1]t be a signature and cut ∈ {true, false}. Then the
function DP(v, g, cut, ·) : [0,∞)→ R+ is monotonically decreasing.

Proof. By definition, DP(v, g, cut, x) stores the cost of the optimum solution in which
the vertices in the root component have weight at most x. Now observe that for x ≤
x′, the solution DP(v, g, cut, x) is also a feasible solution for DP(v, g, cut, x′). Therefore,
DP(v, g, cut, ·) must be monotonically decreasing. J

Since the DP cells are monotonically decreasing in x, we will use the shorthand notation
DP(v, g, cut,∞) to denote the solution minx DP(v, g, cut, x). Note that this minimum is
obtained for the largest x-value at which DP(v, g, cut, ·) changes.

D.1.2 Computing the DP
In the following, we describe how to compute DP(v, ·, ·, ·) exactly. For computing DP(v, ·, ·, ·)
we simply iterate over all possible choices of x, g and cut. Note that since each vertex has
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weight in {0, 1}, the function DP(v, g, cut, ·) only changes for x ∈ [n+ 1] (i.e., when x is an
integer). Thus, we only need to consider n+ 1 choices for x. We conclude that to compute
DP(v, ·, ·, ·) for a fixed vertex v, there are O(M t ·n) parameter choices that we need to iterate
over.

In our descriptions we use p to denote the parent of v, and vl and vr to denote v’s left
and right child, respectively, if these exist.

Case 1: v is a leaf. If we cut the edge to the parent of v, then the cost is cap(v, p),
there are no vertices in the root component and v forms its own connected component with
signature e(w(v)). Thus, we set DP(v, e(w(v)), true, x) = cap(v, p) for all x ∈ [0,∞) and we
set DP(v, g, true, x) =∞ for all x ∈ [0,∞) and for all signatures g 6= e(w(v)).

Now suppose we do not cut the edge (v, p) to the parent of v. Then we do not have to
pay any cost since we are not cutting any edge, the weight of vertices in the root component
is w(v) and the signature is g = 0 since there are no connected components in Tv that are
not connected to p. Therefore, for all x ∈ [0, w(v)) we set DP(v, 0, false, x) =∞ and for all
x ∈ [w(v),∞) we set DP(v, 0, false, x) = 0. For all signatures g 6= 0 and all x ∈ [0,∞), we
set DP(v, g, false, x) =∞.

Case 2: v is not a leaf. If v is not a leaf then we assume that it has exactly two children
vl and vr (if it has only one child, we can add a second child v′ with w(v′) = 0, cap(v, v′) = 0
and then v′ has no impact on the solution). We assume that for both vl and vr, we have
already computed the solutions DP(vl, g, cut, x) and DP(vr, g, cut, x) for all possible values
of x, g and cut.

Let el = (v, vl) and er = (v, vr) denote the edges to the respective child and let ep = (p, v)
denote the edge to the parent p of v. In the following we distinguish four cases (A, B,
C, D) depending on which of these edges we decide to cut. For each case, we compute
DPcase(v, g, cut, x)-values, case ∈ {A,B,C,D}, which are the optimum values under the
condition that we cut el and er according to the case. The final entry DP(v, g, cut, x) is then
obtained by minimizing over all cases, i.e., by setting

DP(v, g, cut, x) = min
case∈{A,B,C,D}

DPcase(v, g, cut, x)

for all x, g, cut.

Case A: cut el and er. Suppose we cut el and er. Then, given x and g, we have to select
subsolutions for the left and right sub-tree such that the weight of vertices that can reach p
is at most x and the connected components inside are consistent with g.

First, assume we cut the edge ep. Then the cost for cutting this edge is cap(v, p).
Furthermore, the weight of vertices inside Tv that can reach p is zero and, hence, the value
of x is irrelevant by the monotonicity of DP(v, g, cut, ·). Next, if we have a solution with
signatures gl and gr in the left and right subtree, respectively, we can combine these solutions
as long as gl + gr + e(w(v)) = g (as the vertex v forms a single component of weight w(v)
since we cut both edges el and er). Note that in the subsolution for the child vl, the value
of x does not play a role for the feasibility of the solution DP(v, g, cut, x) since the size of
the root component in Tvl

is already encoded in gl. Therefore, to obtain minimum cost we
consider DP(vl, gl, true,∞); by symmetry, the same holds for vr. Therefore, we set for all
x ∈ [0,∞),

DPA(v, g, true, x) = cap(v, p)+ min
gl+gr=g−e(w(v))

{DP(vl, gl, true,∞)+DP(vr, gr, true,∞)}. (5)

Second, assume we do not cut the edge to the parent p. Then there will be at least one
vertex (namely v) that can reach p. Hence, DPA(v, g, false, x) =∞ for all signatures g and
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x ∈ [0, w(v)). For x ∈ [w(v),∞), we can combine the solutions as above and we set

DPA(v, g, false, x) = min
gl+gr=g

{DP(vl, gl, true,∞) + DP(vr, gr, true,∞)}. (6)

Case B: cut neither el nor er. Next, suppose we cut neither el nor er. In this case we
have to select subsolutions for Tvl

and Tvr
, where each subsolution is characterized by the

upper bound xl (resp. xr) and its signature gl (resp. gr).
First, suppose that we cut the edge ep. If we let xl and xr denote the exact weight of

the root components for the subsolutions, then the vertex v will be included in a component
of size xl + xr + w(v) afterwards. Hence, we can combine the subsolutions to a solution
for signature g as long as gl + gr + e(xl + xr + w(v)) = g. Consequently we set for every
x ∈ [0,∞),

DPB(v, g, true, x) =
cap(v, p) + min

xl,xr,gl+gr=g−e(xl+xr+w(v))
DP(vl, gl, false, xl) + DP(vr, gr, false, xr).

Second, suppose that we do not cut ep. Then again we have to set DPB(v, g, false, x) =∞
for all signatures g and all x ∈ [0, w(v)), because the vertex v of weight w(v) can reach p. For
x ≥ w(v) we have to select xl and xr such that they sum to x−w(v) as this guarantees that
vertices of weight at most x can reach the parent p. Consequently, we set for all x ∈ [w(v),∞)

DPB(v, g, false, x) = min
gl+gr=g,xl+xr=x−w(v)

DP(vl, gl, false, xl) + DP(vr, gr, false, xr).

Case C: cut el but not er. Now suppose we cut the edge to the left child vl but we do not
cut the edge to the right child vr. In this case, v stays connected to the root component of
vr and we need to choose a subsolution with parameters xr and gr for Tvr and a subsolution
with parameter gl for Tvl

. Note that since we cut el, the upper bound on the weight of the
root component of vl is irrelevant as this is implicitly encoded in gl.

First, suppose we cut ep. If we let xr denote the exact weight of the root component for the
subsolution in Tvr then v will be included in a component of size xr+w(v) afterwards. Hence,
we can combine the subsolutions to a solution for signature g as long as gl+gr+e(xr+w(v)) =
g. Consequently, for every x ∈ [0,∞) we set

DPC(v, g, true, x) = cap(v, p)+ min
xr,gl+gr=g−e(xr+w(v))

DP(vl, gl, true,∞)+DP(vr, gr, false, xr).

(7)

Second, suppose we do not cut ep. Then we have to set DPC(v, g, false, x) = ∞ for all
signatures g and all x ∈ [0, w(v)), because vertex v with weight w(v) can reach p. For
x ∈ [w(v),∞), we have to select xr ≤ x−w(v) as this guarantees that vertices of total weight
at most x can reach the parent p. Due to the monotonicity of DP(vr, gr, false, ·) we can just
choose xr = x− w(v). Consequently, for all x ∈ [w(v),∞) we set

DPC(v, g, false, x) = min
gl+gr=g,xr=x−w(v)

DP(vl, gl, true,∞) + DP(vr, gr, false, xr). (8)

Case D: cut er but not el. Symmetric to Case C.

Next, we argue that this DP is okay-behaved, i.e., it satisfies Definition 17. In particular,
we note that this DP is not well-behaved because it does not satisfy Property (4b) of
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Definition 8 since in Case 2, Step B below we will have to perform too many min-operations
(see Equation (11)). We will also show that the DP’s dependency graph is exactly the input
tree and hence the conditions of Lemma 19 are satisfied. Furthermore, all entries for a DP
cell DP(v, ·, ·, ·) can be computed in time O(M2tn3) by simply enumerating all choices in the
different min-operations above.

I Lemma 24. The DP is okay-behaved and the dependency tree and the input tree T are
identical. Furthermore, given a vertex v, we can compute all entries in DP(v, ·, ·, ·) in time
O(M2tn3).

Proof. First, note that in the DP each cell DP(v, ·, ·, ·) only depends on the solutions of its
two children. Note that these are exactly the edges which are present in the dependency
graph and also in T . Therefore, the dependency graph and T are identical. Furthermore,
when the input for a child solution is a β-approximation, the output of the DP will also
be an β-approximation because we perform all computations exactly. Thus, the DP is also
okay-behaved.

Second, let us consider the running time. Recall that for fixed x, g and cut, we set
DP(v, g, cut, x) = mincase∈{A,B,C,D} DPcase(v, g, cut, x) and this quantity can be computed
in time O(1) by a simple table lookup. Thus, we only have to consider the time it takes to
compute DPcase(v, g, cut, x) for each case ∈ {A,B,C,D} and for fixed x, g and cut.

For Case A, observe the min-operations can be computed by iterating over all M t choices
of gl and setting gr = g − e(w(v)) − gl as long as gr is a non-negative vector. Then the
expressions inside the min-term can be computed by table lookup in constant time. Thus,
the time is O(M t). For Case B, in case cut = true note that we can iterate over all choices
of xl, xr and iterate over gl as described above. This takes time O(M tn2). In the case
cut = false we can again iterate over the gl as above and we can iterate over all xl ∈ [n+ 1]
and set xr = x− w(v)− xl as long as xr ≥ 0; thus, the case can be solved in time O(M tn).
For Cases C and D, we can iterate over all choices of xr and then iterate over the gl as above.
This gives a total running time of O(M tn).

We conclude that for fixed x, g and cut, the time to compute DPcase(v, g, cut, x) for
all case ∈ {A,B,C,D} is O(M tn2). Since there are O(n) choices of x, M t choices for g
and two choices for cut, we conclude that the total running time to compute DP(v, ·, ·, ·) is
O(M2tn3). J

D.2 The Approximate DP
In this section we show how to construct the approximate DP table in an efficient manner.
For this we essentially perform the same computations as above, but instead of computing
the exact solution DP(v, ·, ·, ·) by computing exact solutions to the cases DPcase(v, ·, ·, ·), we
compute an approximate solution ADP(v, ·, ·, ·) which will be the minimum of approximate
solutions ADPcase(v, ·, ·, ·), where case ∈ {A,B,C,D}.

However, there are a few crucial differences. First, for fixed v, g, cut and case ∈
{A,B,C,D}, we interpret ADPcase(v, g, cut, ·) as a piecewise constant function which is
stored in an efficient list representation (as per Section 2). After we computed the solutions
ADPcase(v, g, cut, ·), we compute the function

ADP(v, g, cut, ·) :=
dmin{ADPA(v, g, cut, ·),ADPB(v, g, cut, ·),ADPC(v, g, cut, ·),ADPD(v, g, cut, ·), }e1+δ,

(9)
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i.e., instead of just taking the minimum over the different cases, we also perform a rounding
step to multiples of 1 + δ. This rounding step introduces an approximation error of α = 1 + δ

but reduces the number of pieces within the piecewise constant function DP(v, g, cut, ·) to
p := O(log1+δ(W )) according to Lemma 6 (for this to work we need to guarantee that the
function to be rounded is monotone and therefore we will show that ADPcase(v, g, cut, ·) is
monotone for each case ∈ {A,B,C,D}). The second crucial difference is, of course, that
we perform the above computations with values that already have been rounded, i.e., with
entries from ADP instead of entries from DP. We note that Equation (9) is the only place in
the approximate DP which is not exact; all other computations are done precisely (without
any rounding) and, therefore, the approximate DP only loses a factor 1 + δ.

In order to guarantee a highly efficient implementation we rely on the following invariants
for entries in the approximate DP:
1. For all v, g, and cut, the function ADP(v, g, cut, ·) is monotonically decreasing.
2. For all v, g, and cut, the function ADP(v, g, cut, ·) is piecewise constant with at most

p := O(log1+δ(W )) pieces.
Note that the first property resembles the fact that for the exact DP, DP(v, g, cut, ·) is
monotonically decreasing as per Observation 23. However, here we state this property
as an invariant because there could exist approximations of DP(v, g, cut, ·) which are non-
monotone and, therefore, we need to prove that each of our functions ADP(v, g, cut, ·) is
indeed monotone. Note the second property follows immediately from the monotonicity and
the rounding step in Equation (9) and thus we will not need to prove it in the following.

Similar to the description of the exact DP, we will now go through each of the cases and,
given v, describe how to compute ADP(v, g, cut, ·) in time Õ(1) for all g and cut. The cases
are exactly the same as for the exact DP and thus for the sake of brevity we do not repeat
the correctness argument.

Case 1: v is a leaf. Then, we do the same in the exact case. We set ADP(v, e(w(v)), true, x) =
cap(v, p) for all x ∈ [0,∞) and we set ADP(v, g, true, x) =∞ for all x ∈ [0,∞) and all sig-
natures g 6= e(w(v)). Furthermore, we set ADP(v, 0, false, x) = ∞ for all x ∈ [0, w(v))
and ADP(v, 0, false, x) = 0 for all x ∈ [w(v),∞). For all signatures g 6= 0 and all
x ∈ [0, w(v)), we set ADP(v, g, false, x) = ∞. Note that in all cases, the corresponding
functions ADP(v, g, cut, ·) are monotonically decreasing and have O(1) pieces.

Case 2: v is not a leaf. We distinguish the same four cases as for the exact DP. Again,
we will assume that v has exactly two children vl and vr and we let el = (v, vl), er = (v, vr)
and ep = (p, v), where p is the parent of v.

Case A: cut el and er. First, suppose we cut el and er. Then, as in the exact DP, if we
cut the edge to the parent of v, we wish to set

ADPA(v, g, true, x) =
cap(v, p) + min

gl+gr=g−e(w(v))
{ADP(vl, gl, true,∞) + ADP(vr, gr, true,∞)}.

for all x ∈ [0,∞). Note that in the equation above, the quantities cap(v, p), ADP(vl, gl, true,∞)
and ADP(vr, gr, true,∞) are simply numbers and can be viewed as a piecewise constant
function with a single piece. Thus, ADPA(v, g, true, ·) is a piecewise constant function with
a single piece and, therefore, it is also monotonically decreasing. Hence, the invariants
are satisfied for ADPA(v, g, true, ·). Furthermore, ADPA(v, g, true, ·) can be computed via a
sum and a minimum over monotonically decreasing piecewise functions via Lemma 6. Note
that the minimum takes O(M t) different values because it is computed by iterating over all
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gl ∈ [M − 1]t and setting gr = g − e(w(v))− gl as long as all entries in gr are non-negative.
Since each function ADP(vl, gl, true, ·) has O(p) pieces according to our invariants, we can
compute the value ADP(vl, gl, true,∞) in time O(1); the same holds for ADP(vr, gl, true,∞).
Thus, computing ADPA(v, g, true, ·) takes time O(M t).

Next, suppose we do not cut the edge to the parent of v. Then, as in the exact DP, we
wish to set:

ADPA(v, g, false, x) = min
gl+gr=g

{ADP(vl, gl, true,∞) + ADP(vr, gr, true,∞)}

for all x ∈ [0,∞). Then by the same arguments as above, ADPA(v, g, false, ·) is a piecewise
constant monotonically decreasing function with a single piece. It can be computed in time
O(M t) as described above.

Case B: cut neither el nor er. Now suppose we do not cut any edge to the children.
If we do not cut the edge to the parent of v, we proceed similar to the exact DP. We start

by setting ADPB(v, g, false, x) =∞ for all x ∈ [0, w(v)). Next, for x ∈ [w(v),∞) we wish to
set

ADPB(v, g, false, x) = min
gl+gr=g,xl+xr=x−w(v)

ADP(vl, gl, false, xl) + ADP(vr, gr, false, xr)

= min
gl+gr=g

min
xl+xr=x−w(v)

ADP(vl, gl, false, xl) + ADP(vr, gr, false, xr).

(10)

Note that for fixed gl and gr, the inner min-operation in the second line describes a (min,+)-
convolution due to the constraint xl+xr = x−w(v). Therefore, in the inner min-operation we
compute a convolution ADP(vl, gl, false, ·)⊕ADP(vr, gr, false, ·) and shift the result by w(v) via
the shift operation from Lemma 6 (where for x ∈ [0, w(v)) we set ADPB(v, g, false, x) =∞).
We need time O(p2 log p) for computing the convolution according to Lemma 7. To compute
the outer minimum in Equation (10), we iterate over all gl ∈ [M−1]t and thus perform O(M t)
minimum computations over piecewise constant functions with at most p2 pieces. Hence, we
need time O(M tp2 log(M tp2)) according to Lemma 21. By Lemma 22, ADPB(v, g, false, ·) is
monotonically decreasing since it is the minimum over convolutions of two monotonically
decreasing functions.

If we cut the edge to the parent of v, then for all x ∈ [0,∞) we would like to set

ADPB(v, g, true, x) =
cap(v, p) + min

xl,xr,gl+gr=g−e(xl+xr+w(v))
ADP(vl, gl, false, xl) + ADP(vr, gr, false, xr).

Note that here we need to be careful as the range of gl and gr depends on the choice of xl+xr.
Since there are Ω(n) possible values for xl+xr, we cannot afford to iterate over all values that
xl + xr can take. Instead, we will show that we only need to consider O(log(k/ε)/ε) different
pairs (xl, xr) by exploiting the monotonicity of ADP(vl, gl, false, ·) and ADP(vr, gr, false, ·).

First, observe that we can assume xl ≤ w(Tvl
) and xr ≤ w(Tvr

): increasing the upper
bounds on the weight of the root component further would mean that the root component
contains more weight than all vertices inside the sub-tree, which is impossible. Thus,
xl + xr + w(v) ∈ [1, w(V )].

Second, we partition the interval [1, w(V )] into O(log(k/ε)/ε) intervals. We have intervals
Ij = (ξj−1, ξj ] with ξj = (1+ε)jεdw(V )/ke for all j = 1, . . . , log1+ε(k/ε). In addition, we add
an “interval” I0 := [εdw(V )/ke, εdw(V )/ke] and the interval I−1 := [1, εdw(V )/ke). We set
ξ0 = εdw(V )/ke and we set ξ−1 to the largest integer that is less than εdw(V )/ke. Observe
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that for all j ≥ −1 and x ∈ Ij , we have e(x) = e(ξj), i.e., the value of e(x) does not change
on in the interval Ij . Below, this property will allow us to separate the conditions on xl + xr
and on gl + gr.

Now we can rewrite the above expression as

ADPB(v, g, true, x) =
cap(v, p) + min

j
min

xl+xr+w(v)∈Ij

min
gl+gr=g−e(ξj)

ADP(vl, gl, false, xl) + ADP(vr, gr, false, xr).

Third, note that now the two min-operations only depend on the choice of j and,
importantly, the minimum over gl and gr does not depend on the choice of xl + xr any-
more. Therefore, we can swap the order of the two min-operations. Furthermore, since
ADPB(v, g, false, x) is monotonically decreasing with x, we can restrict the choice of xl and
xr such that xl + xr + w(v) is the largest number in the corresponding interval Ij , i.e.,
xl + xr + w(v) = ξj . Thus,

ADPB(v, g, true, x) = cap(v, p)+
min
j

min
gl+gr=g−e(ξj)

min
xl+xr+w(v)=ξj

ADP(vl, gl, false, xl) + ADP(vr, gr, false, ξj − xl − w(v)).

(11)

Next, we explain how the above expression can be computed efficiently. Let us first argue
how we can efficiently compute the inner min-operation of the above expression. We start by
observing that this min-operation is not a convolution since in the constraint we sum up to
ξi which is a constant (rather than to the variable x). Now recall that ADP(vl, gl, false, ·) and
ADP(vr, gr, false, ·) are piecewise constant functions with O(p) pieces by our invariants. Since
xl, xr ≥ 0 this implies that there are only O(p2) choices for xl and xr such that xl, xr ∈ Ij
and either a new piece starts in ADP(vl, gl, false, xl) or in ADP(vr, gr, false, xr). Thus, we can
iterate over all these pairs (xl, xr) and evaluate ADP(vl, gl, false, xl) + ADP(vr, gr, false, xr),
where xr = ξj−xl−w(v). Thus, we can compute the inner min-operation in time O(p2 log p).

Next, we can compute the outer two min-operations by simply iterating over j and
all choices for gl and setting gr = g − e(ξj) − gl as above in O(M t · log(k/ε)/ε) iterations.
Hence, we obtain a running time of O(M tp2 log p · log(k/ε)/ε). We note that this is the step
which makes the okay-behaved rather than well-behaved (since it violates Property (4b) of
Definition 8).

Finally, we note that as ADPB(v, g, true, x) is independent of x, it is a constant. Thus,
ADPB(v, g, true, x) is a piecewise constant function with a single piece and it is monotonically
decreasing.

Case C: cut el but not er. Now suppose we cut the edge to the left child but not to the
right child.

First assume that we cut the edge to the parent of v. As in the exact DP, for all x ∈ [0,∞)
we want to set

ADPC(v, g, true, x) =
cap(v, p) + min

xr,gl+gr=g−e(xr+w(v))
ADP(vl, gl, true,∞) + ADP(vr, gr, false, xr).

As in the previous case, observe that in the minimum the constraint gl+gr = g−e(xr+w(v))
depends on the choice of xr. Thus, we rewrite the above equation analogously to the previous
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case:

ADPC(v, g, true, x)
= cap(v, p)+ min

j
min

xr+w(v)∈Ij

min
gl+gr=g−e(ξj)

ADP(vl, gl, true,∞) + ADP(vr, gr, false, xr)

= cap(v, p)+ min
j

min
gl+gr=g−e(ξj)

min
xr+w(v)∈Ij

ADP(vl, gl, true,∞) + ADP(vr, gr, false, xr)

= cap(v, p)+ min
j

min
gl+gr=g−e(ξj)

ADP(vl, gl, true,∞) + ADP(vr, gr, false, ξj − w(v)),

where in the last step we used that ADP(vr, gr, false, ·) is monotonically decreasing. The
evaluation of the function values of the two piecewise constant functions with O(p) pieces
can be done in time O(log(p)). Furthermore, by exhaustively enumerating all choices for j
and proceeding for gl and gr as above, we obtain O(M t log(k/ε)/ε) iterations giving a total
running time of O(M t log p log(k/ε)/ε). As before, ADPC(v, g, true, ·) is a constant (since
the computation does not depend on x) and therefore it has only a single piece and it is
monotonically decreasing.

Next, suppose we do not cut the edge to the parent of v. Then we set DPC(v, g, false, 0) =
∞ for all signatures g and all x ∈ [0, w(v)). For all x ∈ [w(v),∞), we set

ADPC(v, g, false, x) = min
gl+gr=g

ADP(vl, gl, true,∞) + ADP(vr, gr, false, x− w(v)).

Note that inside the min-operation, the first term is a constant and the second term is a
piecewise constant function that is shifted by w(v). Furthermore, the minimum is taken
over O(M t) piecewise constant functions (one for each choice of gl by the same argument as
above). We can perform the addition and shift operation via Lemma 6 (time O(p log p) per
application). Then we perform a minimum operation over M t functions where each function
has just p pieces. This can be done in time O(M tp log(M tp)) by Lemma 21. In total we get
a running time of O(M tp log(M tp)).

Case D: cut er but not el. Symmetric to Case C.

We conlucde this subsection with the following lemma which summarizes the properties of
the approximate DP computation The lemma follows immediately from the above discussion.

I Lemma 25. The approximate DP computes a (1 + δ)-approximate DP solution and the
dependency tree and the input tree T are identical. Given a vertex v, a signature g and value
cut ∈ {true, false}, we can compute the corresponding approximate DP entry ADP(v, g, cut, ·)
in time O(M tp2 log(M tp) log(k/ε)/ε)).

Proof. The approximation ratio of the approximate DP is (1 + δ)-approximate because,
as we pointed out earlier, we only use exact computations except in the rounding step in
Equation (9). Thus, we only use (1 + δ)-factor in the computation.

The claim about the running time follows immediately from the discussion above the
lemma, where we already analyzed the running times for all steps. J

D.3 Computing the Result
In this section we describe how the previously described DPs can be used to extract the
result for the k-balanced partition problem. Recall that we consider the generalized version
of the k-balanced partition problem, where each vertex v has a weight w(v) ∈ {0, 1} (see
Section D.1 for the definition).
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We focus on the value version of the problem in which we only need to output an
approximation of the value of the optimal cut OPT but we do not have to return the actual
partition V1, . . . , Vk that obtains this cut value. We note, however, that by analyzing the DP
solution from top to bottom, we could also construct a concrete partition V1, . . . , Vk in time
Õ(n) that achieves the cut value which is returned by the value version.

Feasible Signatures. Before we describe our algorithm, we first need to introduce the
notion of feasible signatures. More concretely, recall that in Section D.1 we introduced
signatures as a succinct way of storing the sizes of connected components in a solution.
Now, feasible signatures will refer to signatures in which the connected components can be
partitioned such that we obtain a nearly k-balanced partitioning of the vertices. We make
this intuition more formal below.

For every signature g = (g0, . . . , gt−1) ∈ [M − 1]t, we say that its associated machine
scheduling instance11 I(g) is the instance which contains exactly gi jobs of size (1 + ε)i ·
εdw(V )/ke of all i. We say that g is a feasible signature if the jobs in I(g) can be scheduled on
k machines with makespan at most (1 + ε)dw(V )/ke. Later, we will identify the machines of
the scheduling problems with partitions in the k-balanced partitioning solution and the jobs
with connected components. In this way, we will be able to ensure the balance constraints of
the k-balanced partitioning solution.

Algorithm. We now describe our two static algorithms for binary trees. The only
difference between the algorithms is whether to use the exact DP from Section D.1 or the
approximate DP from Section D.2; we will refer to these algorithms as the exact and the
approximation algorithm, respectively. We assume that the input is an error parameter ε > 0
and a rooted, weighted tree T = (V,E, cap) with root r and vertex weights w(v) ∈ {0, 1} for
which we wish to solve the k-balanced partitioning problem.

First, our algorithm augments T by adding a fake root r′. We make r′ the parent of r
and set w(r′) = 0 and cap(r, r′) = 0. Then we compute the DP bottom-up as described in
Section C.2, where we interpret T as its own dependency graph. In the exact algorithm,
we use the DP from Section D.1, and in the approximation algorithm, we use the DP from
Section D.2.

Second, we compute the set of all nearly feasible signatures. To obtain this set, we
enumerate all M t signatures and for each of them, we check whether it is nearly feasible
or not. We do this as follows. For each signature g, we construct the machine scheduling
instance I(g) and run the PTAS by Hochbaum and Shmoys [39] for this problem with
approximation ratio 1 + ε̄ and running time (N/ε̄)O(1/ε̄2), where N denotes the total number
of jobs in I(g) and we will see later that N is a constant if k, ε and ε̄ are constants. We add
a signature g to the set of nearly feasible signatures if the returned makespan for I(g) is at
most (1 + ε̄)(1 + ε)dw(V )/ke. We note that by using the PTAS, the set that we compute
can potentially contain some signatures which are infeasible but they still do not violate the
balance constraint too much.

Third, we consider the entries in the DP table at the (true) root r of the tree for the case
that the edge to its (artificial) parent is not cut (recall that we added an edge of weight 0
from the true root r to the fake root r′ and so cutting it does not incur any cost), i.e., we
consider the DP entries DP(r, ·, true, w(V )) or ADP(r, ·, true, w(V )) depending on whether
we are in the approximate or in the exact case. We iterate over all feasible signature vectors

11Recall that in the makespan minimization problem with identical machines, the input consists of a set of
N jobs of sizes s1, . . . , sN and an integer k. The goal is to find an assignment of the jobs to k machines
such that the makespan is minimized. Here, the makespan refers to maximum load of all k machines.
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g and then take the minimum value that we have seen.
We conclude the algorithms’ guarantees in the following proposition. We note that for

constant k, ε, ε̄ and W , the running time of the exact algorithm is Õ(n4) and the running
time of the approximation algorithm simplifies to Õ(n · h2), where h is the height of the
input tree. Thus, for trees of height Õ(1), the approximation algorithm is very efficient and
runs in time Õ(n).

I Proposition 26. Let ε, ε̄ > 0 and k ∈ N. Let T = (V,E, cap) be a rooted binary tree that
has edge weights cap(e) and vertex weights w(v) ∈ {0, 1}. Then:

The exact algorithm obtains a bicriteria (1, (1+ ε̄)(1+ε))-approximation for the k-balanced
partitioning problem on T in time O(M2tn4).
The approximation algorithm obtains a bicriteria (1+ε, (1+ε̄)(1+ε))-approximation for the
k-balanced partitioning problem on T in time O

(
nh2·M2t log2(W ) log(k/ε) log(M th log(W )/ε)/ε3

)
+

M t(k/(εε̄))O(1/ε̄2), where h denotes the height of T .

Proof. To prove the proposition, we need to argue about the approximation ratios of the
algorithms and we also need to prove that the partitioning does not violate the balance
constraints. We will also need to analyze the running times.

We start by analyzing the balance constraints. We show that in the solution returned by
the algorithm, the connected components V1, . . . , Vk can be partitioned such that w(Vi) ≤
(1 + ε̄)(1 + ε)dw(V )/ke for all i = 1, . . . , k.

Consider the DP entry DP(r, g, true, w(V )) for the (true) root r, where the edge to the
parent is cut and any signature vector g that is in the set of nearly feasible signatures that
we computed. Then this corresponds to the cost of some partition of T = Tr where, after
removing the cut edges, the large connected components S in Tr can be matched to entries
in g such that:

a component S ∈ S is matched to entry gi with |S| ≤ (1 + ε)iεdw(V )/ke and
exactly gi components are matched to gi.

Hence, we can obtain a partitioning V1, . . . , Vk as follows. First, we compute the (1 + ε̄)-
approximate solution of I(g) in which (by assumption on g) the makespan is at most
(1 + ε̄)(1 + ε)dw(V )/ke. This gives us an assignment of jobs to machines. Now we identify
components with jobs and the sets Vi with machines and obtain an assignment of the
large components to the Vi. In particular, each Vi receives large components for which the
(rounded) weights sum to at most (1 + ε̄)(1 + ε)dw(V )/ke. Now we need to assign the small
components in the algorithm’s solution. These can be assigned greedily by always assigning
a small component (of weight less than εdn/ke) to set Vi of (currently) smallest weight.
In the end, all Vi will have weight at most (1 + ε̄)(1 + ε)dw(V )/ke (this follows from the
standard argument that, when considering exact component weights, on average each server
has makespan at most w(V )/k and thus there will always be a server of makespan at most
w(V )/k to which the current small component can be assigned without violating the capacity
constraint). This means if the algorithm returns an objective function value then there is a
partition V1, . . . , Vk with the same objective function value that is nearly feasible, i.e., that
satisfies w(Vi) ≤ (1 + ε̄)(1 + ε)dw(V )/ke for all i = 1, . . . , k.

Next, let us consider the approximation ratios of the algorithms. Consider the optimum
partition OPT = (V ∗1 , . . . , V ∗k ) that minimizes cut(V ∗1 , . . . , V ∗k ) such that w(V ∗i ) ≤ dw(V )/ke
for all i. We first argue that OPT gives rise to a DP entry with a feasible signature
and cost OPT in the exact DP. To see this, take the optimum partition V ∗1 , . . . , V

∗
k and

round up the weight of every large connected component to the next value of the form
(1 + ε)i · εdn/ke. Let g = (g0, . . . , gt−1) ∈ [M − 1]t be the signature where gi denotes the
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number of large components in OPT whose rounded weight is (1 + ε)i · εdn/ke. Note that
since w(V ∗i ) ≤ dw(V )/ke for all i, the total rounded weight of components in V ∗i is at most
(1 + ε) · dw(V )/ke as component weights are increased at most by a (1 + ε)-factor. Hence,
the constructed signature vector g is feasible because the partition V ∗1 , . . . , V

∗
k gives rise

to a feasible solution for I(g). Furthermore, the rounding did not have any effect on the
objective function value and, thus, OPT gives rise to a DP entry with a feasible signature
and cost OPT in the exact DP. This implies that the optimum value for the exact DP
is at most cut(V ∗1 , . . . , V ∗k ). Together with the above claim that the DPs approximately
satisfy the balance constraint, we obtain that the exact algorithm computes a bicriteria
(1, (1 + ε̄)(1 + ε))-approximation.

Now let us turn to the approximation ratio of the approximation algorithm from Sec-
tion D.2. Recall that by Lemma 24 the exact DP is okay-behaved and in Lemma 25 we show
that in each step the approximation algorithm loses a factor of at most 1 + δ at every level
of the tree T . Now, we can apply Lemma 19 to obtain that the approximation in the root is
(1 + δ)h+1, where h is the height of the tree T . Thus, the approximation ratio of the approxi-
mate DP is 1 + ε if we set δ = ln(1 + ε)/(h+ 1) since then (1 + δ)h+1 ≤ exp(δ(h+ 1)) = 1 + ε.
Since the notion of approximation from Lemma 19 holds for all functions of the form
ADP(r, g, true, ·) and all possible values of x, we obtain that the approximation algorithm
computes a bicriteria (1 + ε, (1 + ε̄)(1 + ε))-approximation.

We conclude the proof of the proposition by considering the running times of the algorithms.
Note that w.r.t. running time, both algorithms only differ by how long it takes to fill the DP
cells and the time for computing the solution is the same.

Let us first consider the time for computing the solution as per Section D.3. First, let
us consider the time for solving the PTAS which is (N/ε̄)O(1/ε̄2), where N denotes the total
number of jobs. Note that in our case there are at most N ≤ k(1 + 1/ε) jobs: each job has
size at least εdn/ke and therefore a machine can take at most 1 + 1/ε jobs in an optimum
solution. Hence, if we have more than k(1+1/ε) jobs, a PTAS can directly reject the instance
and declare it infeasible. Thus, the time for running the PTAS a single time is (k/(εε̄))O(1/ε̄2).
Since we have to run the PTAS for each of the M t signatures, the total time for finding the
nearly feasible configurations is M t(k/(εε̄))O(1/ε̄2).

Finally, let us consider the time for filling the DP cells. For the exact DP, Lemma 24
states that filling a cell DP(v, ·, ·, ·) takes time O(M2tn3). Then, by applying Lemma 19,
the total time to compute all DP cells is O(M2tn4). For the approximate DP, it takes
time O(M tp2 log(M tp) log(k/ε)/ε)) to fill a single DP cell ADP(v, g, cut, ·) by Lemma 25.
Since there are M t choices for g and by again applying Lemma 19, we obtain that the total
running time for filling the approximate DP table is O(nM2tp2 log(M tp) log(k/ε)/ε)). Since
in Section D.2 we picked the number of pieces to be p = O(log1+δ(W )) and above we picked
δ = O(ε/h), the running time is upper bounded by O

(
nM2t ·

(
1/ε · h logW

)2 · log(k/ε)/ε ·
log(M th log(W )/ε)

)
= O

(
nh2 ·M2t log2(W ) log(k/ε) log(M th log(W )/ε)/ε3

)
. J

D.4 Extension to General Graphs
Now we generalize the results of Proposition 26 from binary trees to general graphs.

We start with the generalization to general graphs in which we will make use of Räcke
trees (see Section C.1). Since Räcke trees might be non-binary, we now introduce the notion
of binarized Räcke trees which essentially describe a way of turning a non-binary Räcke tree
into a binary tree that is very similar to a Räcke tree. Later, the binarized Räcke trees will
allow us to apply Proposition 26 on them.
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I Definition 27 (Binarized Räcke Tree). Let G = (VG, EG, capG) be a weighted graph. We
say that a weighted, rooted tree T = (VT , ET , capT ) is a binarized Räcke tree for G if the
following properties hold:

T is a rooted binary tree.
VG ⊆ VT .
All edges in T have weights in W∞.
Let T ′ be the tree that is obtained by contracting all edges with weight ∞ in T . Then T ′
is a Räcke tree for G.

We call the tree T ′ from the last bullet point the corresponding (non-binarized) Räcke tree of
T . We say that T has quality q if the corresponding Räcke tree T ′ has quality q.

Next, we observe that each cut in T of finite cost corresponds to a cut in the corresponding
Räcke tree T ′ and vice versa. Therefore, cuts of finite cost in T ′ approximate the cut structure
of the initial graph G. We make this more formal in following observation.

I Observation 28. Let G = (VG, EG, capG) be a weighted graph and let T = (VT , ET , capT )
be a binarized Räcke tree for G with quality q. Then for all disjoint subsets A,B ⊆ VG it
holds that mincutG(A,B) ≤ mincutT (A,B) ≤ q ·mincutG(A,B).

Proof. Let T ′ be the corresponding (non-binarized) Räcke tree of T and consider two disjoint
subsets of vertices A,B ⊆ VG. We show that minT (A,B) = mincutT ′(A,B). Then the
observation follows immediately since T has quality q (by assumption) and, therefore, T ′ is a
Räcke tree for G with quality q which satisfies the property from the observation.

Since T ′ can be obtained from T only by contracting edges, we have mincutT ′(A,B) ≥
mincutT (A,B). Next, let us argue that mincutT (A,B) ≥ mincutT ′(A,B). First, note that
mincutT ′(A,B) ≤ q ·mincut(A,B) < ∞. Since we contract only edges with weight ∞ to
go from T to T ′, T does not contain any cut with finite cost that is not contained in T ′.
Therefore, mincutT (A,B) ≥ mincutT ′(A,B). J

Additionally, we show that we can compute a binarized Räcke tree of good quality in
nearly-linear time.

I Lemma 29. Let G = (VG, EG, capG) be a weighted graph with n vertices and m edges. We
can compute a binarized Räcke tree T = (VT , ET , capT ) with O(n) vertices, height O(log2 n)
and quality O(log4 n) in time Õ(m).

Proof. Let T ′ = (VT ′ , ET ′ , capT ′) be the Räcke tree for G from Theorem 15 that can be
computed in time Õ(m). First, note that T ′ has nT ′ := O(n) vertices and height O(logn).
Second, note that T ′ can have unbounded degree. Therefore, we will show how to compute
a binarized Räcke tree T that has T ′ as its corresponding (non-binarized) Räcke tree. We
do so replacing in T ′ each vertex u by a balanced binary tree τu with deg(u) leaves, where
deg(u) denotes the number of children of u. The internal edges of τu will have weight ∞ and
the edges connecting subtrees τu and τv, u 6= v, in T will correspond to the edges in T ′ and
will have the same (finite) weight as in T ′. We will see that by contracting all edges with
weight ∞ in T , we will obtain T ′. We now elaborate on this process.

We construct T as follows. First, we compute T ′ as per the algorithm from Theorem 15.
Now we construct T as follows. For each vertex u ∈ VT ′ , we add a balanced rooted binary
tree τu with deg(u) leaves. We refer to the root of τu as ru. We identify each leaf of τu with a
child of u and denote the leaf of τu that corresponds to the child v by cu,v. We set the weight
of edges inside τu to ∞. Note that for each vertex u, the tree τu has O(deg(u)) vertices, and,
therefore, T has O(nT ′) = O(n) vertices. Next, for each edge (u, v) ∈ ET ′ (where we assume
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that v is a child of u), we insert the edge (cu,v, rv) in T and set capT (cu,v, ru) = capT ′(u, v).
Finally, if u is the root of T ′ then we set ru to the root of T .

It is left to show that T is a binarized Räcke tree of height O(log2 n) and quality O(log4 n).
Clearly, T is a binary tree since all vertices inside each subtree τu have at most two child
nodes and, additionally, each vertex cu,v has at most one child node (namely rv). Next, T
has height O(log2 n) since T ′ has height O(logn) and the subtrees τu have height O(logn).
Finally, let T ′′ be the tree obtained from T by contracting all edges with weight ∞. We
argue that T ′ = T ′′. Indeed, consider any vertex u ∈ VT ′ and its subtree τu in T . Then after
contracting the edges in τu, we are left with a subtree that only contains ru. Furthermore, all
edges between vertices of different subtrees τu and τv, u 6= v, have finite weight. Therefore,
T ′ = T ′′. This implies that T is binarized Räcke tree for G. Since T ′ has quality O(log4 n),
the quality of T is also O(log4 n). J

We conclude the subsection by proving Theorem 2.

Proof of Theorem 2. We can obtain the proof for the claim about general graphs as follows.
Let G = (VG, EG, capG) be a weighted graph with n vertices. We compute a binarized Räcke
tree T = (VT , ET , capT ) with O(n) vertices as per Lemma 29 in time Õ(n). In T , we assign
weight w(v) = 1 to all vertices v ∈ VG∩VT (i.e., to the leaves in T that correspond to vertices
in G) and weight w(v) = 0 to all vertices v ∈ VT \ VG (i.e., to the internal nodes of T that
do not correspond to any vertex in G). Now observe that w(V ) = n and thus a balanced
partitioning V1, . . . , Vk of T with w(Vi) ≤ (1 + ε)dw(V )/ke for all i corresponds to a balanced
partitioning V ′1 , . . . , V ′k of G with |V ′i | ≤ (1+ε)dn/ke for all i, where V ′i = {v ∈ Vi : w(v) = 1}.
Now by combining Observation 28, Proposition 26 and the fact that T has quality O(log4 n),
we obtain the claim.

To obtain the result about general trees T ′ (with unbounded degrees), we proceed similarly.
We construct a binarized tree T exactly as in the proof of Lemma 29. Now, in T we set
w(rv) = 1 for all root vertices of the subtrees τv and we set w(v) = 0 for all other vertices of
the subtrees τv. Similar to before, observe that w(VT ) = n and thus a balanced partitioning
V1, . . . , Vk of T with w(Vi) ≤ (1 + ε)dw(V )/ke for all i corresponds to a balanced partitioning
V ′1 , . . . , V

′
k of T ′ with |V ′i | ≤ (1 + ε)dn/ke for all i, where V ′i = {v ∈ VT ′ : rv ∈ Vi}. Then by

Proposition 26, this implies the proof for trees with unbounded degrees. J

D.5 Extension to the Dynamic Setting
Next, we provide new dynamic algorithms in which edges are inserted and deleted from the
graph. We give new algorithms for trees and for general graphs.

Extension to Dynamic Trees. Let us start with the case when T is a binary tree that
is undergoing edge insertions and deletions. We will use Lemma 20 to make the result from
Proposition 26 dynamic. However, there is a slight technical difficulty: due to edge deletions,
T will become a forest and fall apart into several connected components. This becomes an
issue, when an edge (u, v) is inserted for which both u and v already have parents in their
respective components. In that case, we cannot immediately make u the root of v (or vice
versa). Therefore, we need to find an efficient way of re-rooting the tree containing v, i.e.,
we need to make v the root of its component and we need to ensure that we do not have
to recompute the DP solution for all vertices in the component of v. We now describe our
dynamic algorithm in more detail.

First, suppose that an edge (u, v) is removed from T and assume that (before the edge
deletion) u is closer to the root of T than v. Then T becomes a forest with multiple connected
components. In that case, we make v the root of its component and recompute the DP



46 Dynamic Maintenance of Monotone Dynamic Programs and Applications

solution for v (since v does not have a parent, we only have to recompute the DP cell for v).
Furthermore, for u and all of its ancestors we recompute the DP solution as per Lemma 20.

Next, suppose an edge (u, v) is inserted, where u and v are in different connected
components. Further suppose that after the edge insertion, u is the parent of v. Then we
distinguish two cases whether v is the root of its component or not.

First, suppose that v is the root of its component. Then we simply insert the edge
(u, v) into T and recompute the solution for v and all of its ancestors (including u) as per
Lemma 20.

Second, suppose that neither u nor v is the root of its component. Now, we first have
to re-root the component containing v such that it has v as its root and such that all DP
solution are valid. We do this as follows. Let v = v1, . . . , v` denote the vertices on the path
from v to the root v` of its component (before the edge insertion). Then we first remove all
edges (v`, v`−1), . . . , (v2, v1) from T (in this order) as per the edge deletion routine described
above. Note that after the deletions, none of the vi has a parent and, therefore, each vi
is the root of its own component. Furthermore, by how we picked the order of the edge
deletions, after the i’th deletion we only have to recompute the DP cells for the vertices v`−i
and v`−i−1. Now we insert the edges again but with flipped direction, i.e., we insert the
edges (v`−1, v`), . . . , (v1, v2) (in this order). Thus, v = v1 becomes the root of the component.
To insert the edges, we use the subroutine from the paragraph above, where we exploit that
each vi is the parent of its own component, which implies that the DP solutions can be
updated efficiently: by how we picked the order of the edge insertions, after the i’th edge
insertion we only need to recompute the DP cells for vertices v`−i−1 and v`−i. After the
rebalancing of the component containing v is done, v has become the parent of its component
and, therefore, we can use the routine from above to insert the edge (u, v). This concludes
the edge insertion procedure.

Next, when we want to output the value of the DP solution, we simply use the subroutine
described in Section D.3.

We summarize the guarantees of our dynamic algorithm in the following proposition.
Note that when the parameters ε, ε̄, k and W are constants, the update time becomes Õ(h3)
and the query time is just O(1). Therefore, the algorithm is very efficient for trees that have
polylogarithmic or subpolynomial height in the number of vertices.

I Proposition 30. Let ε, ε̄ > 0 and k ∈ N. Let T = (V,E, cap) be a rooted binary
tree with edge weights cap(e) ∈ W∞ and vertex weights w(v) ∈ {0, 1}, that is under-
going edge insertions and deletions. Let h be an upper bound on the height of the tree
T at all times. Then there exists a fully dynamic algorithm that maintains a bicriteria
(1 + ε, (1 + ε̄)(1 + ε))-approximation for the k-balanced partition problem on T with update
time O

(
h3 ·M2t log2(W ) log(k/ε) log(M th log(W )/ε)/ε3

)
and query time M t(k/(εε̄))O(1/ε̄2).

Proof. The fact that the algorithm maintains a bicriteria (1+ ε, (1+ ε̄)(1+ ε))-approximation
follows immediately from Lemma 20 and the same arguments as in the proof of Proposition 26,
where we argued that the approximate DP satisfies the conditions of Lemma 19.

It is left to analyze the update and query times. For the query times, note that all we do
is run the subroutine from Section D.3. This subroutine runs in time M t(k/(εε̄))O(1/ε̄2) as
we argued in the proof of Proposition 26. This proves the claim about the query time.

For the update times, let us first consider edge deletions (u, v). In this case, we need
to update the DP cell for v and the DP solutions for u and all of its ancestors. By
Lemma 20, Lemma 25 and by our choice of p = O(h logW/ε), this can be done in time
O
(
h3 ·M2t log2(W ) log(k/ε) log(M th log(W )/ε)/ε3

)
.



M. Henzinger, S. Neumann, S. Schmid, H. Räcke 47

Next, consider the case in which (u, v) is inserted and v is the root of its component.
Then we need to recompute the DP solutions for v and all of its ancestors (including u)
which, by Lemma 20, Lemma 25 and by our choice of p = O(h logW/ε), can be done in
the time claimed in the lemma. In the case that we need to re-root the component of v,
note that we have to recompute the solutions for all ancestors of v. Since the height of T is
bounded by h, there are at most h such ancestors. Furthermore, we have picked the order
of edge deletions such that whenever we delete or insert an edge in the re-rooting process
then we only need to recompute two DP cells. Hence, in total we only need to recompute
the solutions for O(h) DP cells in the re-rooting process and thus by Lemma 25, the total
time for this process is O

(
h3 ·M2t log2(W ) log(k/ε) log(M th log(W )/ε)/ε3

)
. J

Extension to Dynamic General Graphs and Non-Binary Trees. Now suppose
that our input is a dynamic (general) graph G that is undergoing edge insertions and
deletions. Essentially we will solve this problem by maintaining a dynamic Räcke tree and
running the algorithm from Proposition 30 on top of it. However, the dynamic Räcke tree
from Theorem 16 is non-binary and, therefore, we start by arguing that we can maintain a
binarized Räcke tree dynamically in the following lemma.

I Lemma 31. Let G = (VG, EG) be a dynamic unweighted graph with n vertices that is
undergoing edge insertions and deletions. We can maintain a binarized Räcke tree T =
(VT , ET , capT ) with O(n2) vertices, height O(log7/6 n) and quality no(1) in amortized update
time no(1). The preprocessing time is O(n2).

Proof. Let T ′ = (VT ′ , ET ′ , capT ′) be the fully dynamic Räcke tree for G from Theorem 16.
First, note that T ′ has nT ′ := O(n) vertices and height O(log1/6 n). Second, note that T ′
can have unbounded degree. Therefore, similar to the proof of Lemma 29, we will show how
to maintain a binarized Räcke tree T that has T ′ as its corresponding (non-binarized) Räcke
tree. We do so by taking T ′ and replacing each vertex u in T ′ by a balanced binary tree
τu with nT ′ leaves; the internal edges of τu will have weight ∞ and the edges connecting
subtrees τu and τv, u 6= v, in T will correspond to the edges in T ′ and will have the same
(finite) weight as in T ′. We will see that by contracting all edges with weight ∞ in T , we
will obtain again T ′. We now elaborate on this process.

During the preprocessing, we first build T ′. Note that this takes time O(n2). Now we
construct T as follows. For each vertex u ∈ VT ′ , we add a balanced rooted binary tree
τu with nT ′ leaves. We refer to the root of τu as ru. We identify each leaf of τu with a
vertex v ∈ VT ′ and denote the leaf of τu that corresponds to v by cu,v. We set the weight of
the edges inside τu to ∞. Note that T has O(n2

T ′) = O(n2) vertices. Next, for each edge
(u, v) ∈ ET ′ (where we assume that v is a child of u), we insert the edge (cu,v, rv) in T and
set capT (cu,v, ru) = capT ′(u, v). Finally, if u is the root of T ′ then we set ru to the root of T .

Next, suppose that G is changed due to an edge insertion or deletion. Then we first
update the tree T ′ via the algorithm from Theorem 16. Now, whenever an edge (u, v) is
inserted (deleted) in T ′, we insert (delete) the edge (cu,v, rv) into (from) T . Each of these
insertions and deletions in T can be done in time O(1). Since it takes amortized time no(1)

to update T ′ (via Theorem 16), the total update time is no(1).
It is left to show that T is a binarized Räcke tree of height O(log7/6 n) and quality no(1).

Clearly, T is a binary tree since all vertices inside each subtree τu have at most two child
nodes and, additionally, each vertex cu,v has at most one child node (namely rv). Next,
T has height O(log7/6 n) since T ′ has height O(log1/6 n) and the subtrees τu have height
O(logn). Finally, let T ′′ be the tree obtained from T by contracting all edges with weight
∞. We argue that T ′ = T ′′. Indeed, consider any vertex u ∈ VT ′ and its subtree τu in T .
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Then after contracting the edges in τu, we are left with a subtree that only contains ru.
Furthermore, all edges between vertices of different subtrees τu and τv, u 6= v, have finite
weight. Therefore, T ′ = T ′′. This implies that T is binarized Räcke tree for G. Since T ′ has
quality no(1), the quality of T is also no(1). J

Given the lemma above, our dynamic algorithm for dynamic general graphs G works as
follows. We maintain the dynamic binarized Räcke tree T as per Lemma 31 on our input
graph G, i.e., whenever an edge is inserted or deleted in G, we update the data structure
from the lemma as well. Note that this causes edge insertions and deletions in T as well. As
before, we set the vertex weights in T such that w(v) = 1 if v corresponds to a vertex in
G and w(v) = 0 if v is an internal node of T that does not correspond to any vertex in G.
Furthermore, we run our dynamic algorithm from Proposition 30 for binary trees on T . In
particular, whenever T gets updated, we also update the DP solution as per Proposition 30.
We also use the same query procedure as in the proposition.

We conclude the subsection by proving Theorem 3.

Proof of Theorem 3. We prove the result for general graphs first. Since the dynamic
binarized Räcke tree T that we maintain has quality no(1), the same argumentation as in the
proof of Theorem 2 implies that we maintain a bicriteria (no(1), (1 + ε̄)(1 + ε))-approximation
for G. Since by Lemma 31 we can maintain T with amortized update time no(1), the
amortized number of edge insertions and deletions into T is no(1) per update operation. Since
T has height O(log7/6 n) and by Proposition 30, the total amortized update time no(1). This
implies the claim about dynamic general graphs.

To obtain our result for non-binary trees, we can proceed similar to above. Consider a
non-binary T ′ that is undergoing edge insertions and deletions. We can maintain the same
data structure as in the proof of Lemma 31 to obtain a binary tree T with O(n2) vertices
with worst-case update time O(1). Now we assign weight w(rv) = 1 to all vertices rv that
are roots of the subtrees τv in T and weight w(v) = 0 to all other vertices of the subtrees τv.
By the same arguments as in the proof of Theorem 2, we obtain the claim. J

E Simultaneous Source Location

In this section, we provide efficient algorithms for the simultaneous source location problem
as studied by Andreev et al. [4]. Recall that in this problem, the input consists of a graph
G = (V,E, cap, d) with a capacity function cap: E → W∞ on the edges and a demand
function d : V → W∞ on the vertices of the graph. The goal is to select a minimum set
S ⊆ V of sources that can simultaneously supply all vertex demands. More concretely, a set
of sources S is feasible if there exists a flow from the vertices in S that supplies demand d(v)
to all vertices v ∈ V and that does not violate the capacity constraints on the edges. Here,
we assume that each source vertex can potentially send an infinite amount of flow that is
only constrained by the edge capacities. The objective is to find a feasible set of sources of
minimum size.

Next, we summarize our main results for the simultaneous source location problem. First,
we introduce our notion of bicriteria approximation. Let S∗ be the optimal solution for
the simultaneous source location problem. Then we say that a solution S is a bicriteria
(α, β)-approximate solution if |S| ≤ α |S∗| and if S is a feasible set of sources after all edge
capacities are increased by a factor β.

The following theorem summarizes our main result for static algorithms.
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I Theorem 4. Let ε > 0. Let G = (V,E, cap, d) be an undirected weighted graph with
n vertices and m edges. Then for the simultaneous source location problem we can compute:

A (1 + ε, O(log4(n)))-approximation in time12 Õ( 1
ε2m).

A (1 + ε, 1)-approximation in time Õ( 1
ε2h

2 · n) if G is a tree of height h.

Next, we turn to our dynamic algorithms which support the following update operations:
SetDemand(v, d): updates the demand of vertex v to d(v) = d,
SetCapacity((u, v), c): updates the capacity of the edge (u, v) to cap(u, v) = c,
Remove(u, v): removes the edge (u, v) from the graph,
Insert((u, v), c): inserts the edge (u, v) into the graph with capacity cap(u, v) = c.
The next theorem summarizes our main results for dynamic algorithms.

I Theorem 5. Let ε > 0. Let G = (V,E, cap, d) be a graph with n vertices and m edges that
is undergoing the update operations given above. Then for the simultaneous source location
problem we can maintain:

A (1 + ε, no(1))-approximation with amortized update time no(1)/ε2 and preprocessing time
O(n2/ε2) if all edge capacities are 1.
A (1+ε, O(log4(n)))-approximation with worst-case update time Õ(1/ε2) and preprocessing
time Õ(m) if we only allow the update operation SetDemand(v, d).
A (1 + ε, O(log2(n) log log(n)))-approximation with worst-case update time Õ(1/ε2) and
preprocessing time poly(n) if we only allow the update operation SetDemand(v, d).
A (1 + ε, 1)-approximate solution with worst-case update time Õ(h3/ε2) and preprocessing
time O(n2/ε2) if G is a tree of height h.

We note that in our static and dynamic algorithms, we can output the corresponding
solutions similarly to what we descriped after Proposition 12 for knapsack.

We start by presenting an exact DP for the special case of binary trees in Section E.1
and then present an approximate DP in Section E.2. After that, we generalize the result
from binary trees to general graphs in Section E.3 and then also to the fully dynamic setting
in Section E.4.

E.1 The Exact DP
We consider the special case of the simultaneous source location problem on binary trees and
provide a DP that solves this problem exactly. We let T = (V,E, cap, d) denote the rooted
binary tree with root r that we obtain as input. Additionally, we assume that for each vertex
v ∈ V we obtain as input whether we are allowed to make v a source or not; note that this
only generalizes the problem (as in the original problem all vertices can be made sources).
Later in Section E.3, this generalization will be helpful when we apply Räcke trees because
then we only want to allow leaves to act as sources.

E.1.1 DP Definition
We now define our exact DP. We will also discuss its relationship with the DP by Andreev
el al. [4] and why we did not use the DP of Andreev et al. Given a vertex v and a value
x ∈ R, we denote by DP(v, x) the minimum number of sources to place in Tv such that when
v receives flow at most x from its parent then all demands in Tv can be satisfied. We note
that x can take positive and negative values: for x ≥ 0 this corresponds to the setting in

12We write Õ(f(n, ε,W )) to denote running times of the form f(n, ε,W ) · polylog(n, ε, logW ).
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which flow is sent from the parent of v into Tv and for x < 0 this corresponds to the setting
in which flow is sent from Tv towards the parent of v. We further follow the convention that
when the demands in Tv cannot be satisfied when v receives flow x from its parent, then we
set DP(v, x) =∞.

Observe that this DP has rows I = V and columns J = R. We will store the rows
DP(v, ·) using our data structure from Section 2 using monotone piecewise constant functions.
Next, we observe that each DP(v, ·) is monotonically decreasing. Hence, the DP satisfies
Property (1) of Definition 8.

I Observation 32. The function DP(v, ·) : R→ [n+ 1] ∪ {∞} is monotonically decreasing.

Proof. This follows immediately from the definition of DP(v, x): Consider x, x′ ∈ R with
x ≤ x′. Then any solution in which Tv receives flow at most x from the parent of v is also
feasible when Tv receives flow at most x′ from the parent of v. Therefore, DP(v, x) ≥ DP(v, x′),
which finishes the proof. J

Observe that the global solution for the simultaneous source location problem on T can
be obtained by evaluating DP(r, 0), where r is the root of T : First, r has no parent and,
therefore, it must be a source itself or have its demand satisfied by its children; this explains
the choice of x = 0. Furthermore, (by definition) DP(r, 0) is the minimum number of sources
that we need to satisfy all demands in Tr = T and, thus, the flow that we obtain is feasible.
We conclude that DP(r, 0) gives the global optimum solution.

Relationship to the approach by Andreev et al. [4]. Next, let us elaborate on the
relationship of our DP and the function f used by Andreev et al. [4]. In [4], the function f
computed by a dynamic program is defined as follows. Given a vertex v and an integer i ∈ N,
Andreev et al. define a function f(v, i) that denotes the minimum amount of flow that v
needs to receive from its parent if all demands in Tv need to be satisfied and if we can place
i sources in the subtree Tv. Similar to above, f(v, i) can take positive and negative values:
if the demand in Tv can only be satisfied by receiving flow from the parent, then f(v, i) is
positive; if the demand in Tv is already satisfied by the sources in the subtree Tv, then it is
possible that v can send flow to its parent and f(v, i) is negative. It is not hard to see that
the function f(v, i) is monotonically decreasing in i.13

Now consider f(v, ·) : N→ R as a function and consider its “inverse”14 function f−1(v, ·) : R→
N, where f−1 is defined on the whole set of real numbers (including negative numbers). That
is, f−1(v, x) denotes the minimum number of sources that we need to place in Tv such that
the demand that v requires from its parent is at most x. But this was exactly the definition
of DP(v, x). Thus, DP(v, x) = f−1(v, x) for all v and x.

Why Did We Not Use f? In [4] it is shown how the function f can be computed
in polynomial time by a bottom-up dynamic program using just a few case distinctions
and a (min,+)-convolution in each DP cell. Thus, one might wonder why we picked
DP(v, ·) = f−1(v, ·) and not f for our DP? Indeed, it seems quite natural to interpret the
function f as a monotone piecewise constant function and to use it for our dynamic program.

13This follows immediately from the definition of f and the fact that by adding more sources to a
subtree Tv, the amount of flow that Tv needs to receive from the parent of v only decreases.

14We note that, formally, f(v, ·) has no inverse since it is possible that multiple values map to the same
number, i.e., f(v, i) = f(v, i′) for i 6= i′. Thus, formally, we set f−1(v, x) = min{i : f(v, i) ≤ x}, where
we follow the convention min{∅} = ∞. Then we interpret f−1(v, ·) as a piecewise constant function
from R to [n+ 1].
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While for the case of exact computations this is possible, we now sketch why this appears
unhandy for the approximate case later.

Suppose that we used the function f in our approximate computations. To obtain efficient
approximation algorithms, we will have to ensure that f has only few pieces and our main
way to achieve this is by rounding f as per Lemma 6. However, this becomes tricky because
the function values of f are positive and negative. In the following, it will be illustrative to
think of positive function values for f as vertex demands that need to be satisfied and of
negative values for f as available edge capacities. The main issue is that since the function
values of f are positive and negative, it is not clear how we should perform the rounding:
if we rounded positive and negative values up (towards +∞) then this would correspond
to increasing the vertex demands while at the same time decreasing the edge capacities;
however, this could render some feasible solutions (in the exact computation) infeasible (in
the rounded computation). On the other hand, it is conceivable that by always rounding f
down (towards −∞), we would essentially decrease the vertex demands while increasing the
edge capacities. Potentially, this approach could work when we are allowed to violate the
edge capacities by a (1 + ε)-factor. However, even if we did that, we would have another
issue: to only use a small number of pieces for representing f , we would have to use different
rounding mechanisms for those function values in [−1, 1] and those in [−W,W ] \ [−1, 1],
where W is the largest edge capacity. Indeed, if we rounded the values of f to powers of
(1 + δ)j then there are only O(log1+δ(W )) function values in [−W,W ] \ [−1, 1] but there are
infinitely many function values in [−1, 1]. Similarly, if we rounded to multiples of δ then
there are only O(1/δ) function values in [−1, 1] but this would lead to O(W/δ) function
values in [−W,W ] \ [−1, 1]. In both cases, our functions would have too many pieces and,
thus, one would have to pick a rounding function which provides a tradeoff between these two
cases. Furthermore, we would have to find an analysis that shows that this “more involved”
rounding function does not introduce too much error.

Note that in the above discussion, all of the issues come from the fact that f(v, ·) can also
take negative values. On the other hand, our DP (which is f−1(v, ·)) only takes non-negative
function values and, therefore, we avoid all of the above complications because we can use
the standard rounding function d·e1+δ that rounds to powers of 1 + δ. Thus, we bypass all of
the issues above.

Our approach also has the positive side effects that instead of getting factors of polylog(W )
in our running times, we only get factors of polylog(n) because the codomain of our monotone
piecewise constant functions became [n + 1] rather than some potentially large interval
[−W,W ].

E.1.2 Computing the DP
Now we describe the exact computation of our DP. This will reveal the procedures Pi from
Definition 8.

Let v ∈ V be any vertex in T . We describe how to compute DP(v, ·) efficiently assuming
that we have already computed the solutions for the children of v (if they exist). Recall that
for each vertex v we also obtain as input, whether v can be used as a source or not. In our
following case distinctions, whenever we consider the case that v is used as a source, we will
implicitly condition on the fact that it is also possible to use v as source; if v cannot be used
as a source, we simply skip this case.

In the construction for each DP cell DP(v, ·) for a vertex v with parent p, we will
additionally ensure that we do not violate the capacity of the edge (p, v) when x is very small
or very large. More concretely, we will ensure that DP(v, ·) satisfies the additional property
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that DP(v, x) =∞ for x < − cap(p, v) and DP(v, x) = DP(v, cap(p, v)) for all x > cap(p, v).
We will denote this property as the feasible capacity property.

Case 1: v is a leaf. Suppose that v is a leaf. We initialize DP(v, ·) as the function
which takes value ∞ on all of R. In the following, we add at most two pieces to DP(v, ·)
depending on whether v can be used as a source or not.

First, suppose v can be used as a source. Then we can send flow up to cap(p, v) to the
parent p of v. Furthermore, since v is a leaf, there is exactly one source in Tv. Thus, we
update DP(v, ·) and set DP(v, x) = 1 for all x ≥ − cap(p, v). This adds one piece to DP(v, ·).

Second, suppose v is not a source. Then if x ≥ d(v) and cap(p, v) ≥ d(v), v can receive
all of its demand d(v) from its parent and the flow is feasible because we do not exceed the
capacity of the edge (p, v). Therefore, if cap(p, v) ≥ d(v), then we update DP(v, ·) again and
add the piece with DP(v, x) = 0 for all x ≥ d(v). If x ≥ d(v) but d(v) > cap(p, v) then we
do nothing because the parent of v cannot satisfy the demand of v.

Observe that DP(v, ·) is a monotonically decreasing function with at most three pieces.
Furthermore, it clearly satisfies the feasible capacity property and Property (3) of Definition 8.

Case 2: v is not a leaf. Suppose that v is not a leaf and that v has children v1 and
v2, as well as a parent p. Recall that we assume that we have already computed the DP
entries DP(v1, ·) and DP(v2, ·) for both children of v. We now show how to compute two DP
solutions DPA(v, ·) and DPB(v, ·) depending on whether v is a source (in Case A) or not (in
Case B). Then, if v can be used as a source, we set

DP(v, ·) = min{DPA(v, ·), DPB(v, ·)},

where we compute the min-operation via Lemma 6. If v cannot be used as a source, we set
DP(v, ·) = DPB(v, ·).

Case A: Suppose v is used as a source. We initialize DPA(v, ·) as the function which takes
value ∞ on all of R. Now, since v can be used as a source, v can send flow cap(p, v) to its
parent and flow cap(v, v1) and cap(v, v2) to its children. Therefore, for x ≥ − cap(p, v), the
number of sources in DPA(v, x) is 1 (since v is a source) plus the number of sources that we
require in Tv1 when v1 can receive flow cap(v, v1) from its parent v plus the same quantity
for Tv2 . Thus, it suffices to set

DPA(v, x) = 1 + DP(v1, cap(v, v1)) + DP(v2, cap(v, v2))

for all x ≥ − cap(p, v). Note that here we exploited that the functions DP(v1, ·) and DP(v2, ·)
are monotonically decreasing and that both of them satisfy the feasible capacity property.
We conclude that in this case DPA(v, ·) is a monotonically decreasing function with two
pieces.

Case B: Suppose that v is not used as a source. We initialize DPB(v, ·) as the function
which takes value ∞ on all of R. To compute the value of DPB(v, x), we need to obtain
the minimum number of sources such that v receives flow at most x from its parent and
such that all demands in Tv are satisfied. Since v is not a source, its demand d(v) must
be satisfied either by its parent p or by its children (or a combination of them). Therefore,
to obtain that we have to pick the children solutions DP(v1, x1) and DP(v2, x2) such that
d(v) ≤ x− x1 − x2.

Since we did not make v a source, the number of sources in DPB(v, x) is the number of
sources that we need to place in the subtrees Tv1 and Tv2 . Thus, we get

DPB(v, x) = min
x1∈R
{DP(v1, x1) + DP(v2, x− x1 − d(v))},
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where we used that x2 ≤ x− x1 − d(v) and by monotonicity of DP(v2, ·) we minimize the
number of sources in Tv2 if we consider x2 = x−x1−d(v). Here, the flows that we computed
for DPB(v, x) are set feasible because the solutions DP(vi, ·) satisfy the feasible capacity
property and therefore we do not violate the edge constraints to the children.

Since the above equality holds for all values of x, DPB(v, ·) corresponds to a shifted
(min,+)-convolution of two monotonically decreasing functions. More concretely, via Lemma 6
we can first compute the shifted function DP(v2, · − d(v)) and then we can set

DPB(v, ·) = DP(v1, ·)⊕ DP(v2, · − d(v)),

which we compute via Lemma 7.
Finally, as a postprocessing step, we set DP(v, ·) = min{DPA(v, ·), DPB(v, ·)} if v can be

used as a source and DP(v, ·) = DPB(v, ·) otherwise, as we already mentioned above. But we
also need to ensure that DP(v, ·) satisfies the feasible capacity property. Therefore, we set
DP(v, x) = ∞ for x < − cap(p, v) and we set DP(v, ·) = DP(v, cap(p, v)) for x > cap(p, v).
Observe that these changes to DP(v, ·) can be done in time linear in the number of pieces of
DP(v, ·).

Properties of the DP. Observe that in the DP above for each vertex v we only required
the DP solutions for its children v1 and v2. Hence, our dependency graph is given by
our input tree T where all edges are directed towards the root. This implies that every
node in the dependency graph can only reach those nodes on a path to the root and thus
Property (2) of Definition 8 is satisfied with h being the height of T . Additionally, one can
verify that above all operations also satisfy Property (3) of Definition 8. Finally, observe
that in each step we only used a constant number of operations from Lemma 6 and at most
one (min,+)-convolution from Lemma 7.

E.2 The Approximate DP
Now we explain how we solve the above DP more efficiently by computing approximate
solutions ADP(v, ·). This will reveal the procedures P̃i from Definition 8.

In our approximation algorithm, we do everything exactly as above except that we
replace each exact solution DP(v, ·) with the approximate solution ADP(v, ·). Then we add a
postprocessing step in which we round ADP(v, ·), i.e., we set

ADP(v, ·) = dADP(v, ·)e1+δ (12)

for a parameter δ > 0 that we will set later.
Note that all of our operations are exact except the rounding step which loses a factor of

α = 1 + δ. Thus, Property (4a) of Definition 8 is satisfied. Additionally, observe that in each
step we only used a constant number of operations from Lemma 6 and at most one (min,+)-
convolution from Lemma 7. This implies that Property (4b) is satisfied. Furthermore, all
functions we consider are monotone and our rounding step ensures that each row ADP(v, ·)
has at most p = O(log1+δ n) pieces. Hence, Property (4c) is also satisfied.

This implies that the DP is (h, 1 + δ,O(log1+δ(n)))-well-behaved. By applying Theorem 9
with δ = ln(1 + ε)/(h+ 1), we obtain the following proposition which shows that on binary
trees, the approximation algorithm computes a bicriteria (1 + ε, 1)-approximate solution.
We note that for constant ε, the running time essentially becomes Õ(n · h2), where h is the
height of the tree. Thus, for trees of height Õ(1), we obtain a near-linear running time.

I Proposition 33. Let ε > 0. The approximation algorithm computes a bicriteria (1 + ε, 1)-
approximate solution for the simultaneous source location problem on binary trees in time
O(n · (h log(n)/ε)2 log(h log(n)/ε)), where h is the height of the tree.
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E.3 Extension to General Graphs (Proof of Theorem 4)
We prove Theorem 4 by giving reductions to the binary setting.

First, suppose that G is a tree with potentially unbounded degree. Then we turn G

into a binary tree T using the same construction as in the proof of Lemma 29. That is, we
replace each vertex u in G by a balanced binary tree τu with deg(u) leaves cu,v1 , . . . , cu,vdeg(u) ,
where the vi are the children of u in G; the internal edges of τu have capacity ∞ and we
denote the root of each τu by ru. Furthermore, for each edge (u, v) in G, we insert the edge
(cu,v, rv) into T with capacity cap(cu,v, rv) = cap(u, v). By the same arguments as in the
proof of Lemma 29, T has O(n) vertices and height O(h logn), where h is the height of G.
It is straight-forward to see that with this construction, there exists a flow from u to v in
G if and only if there exists a flow from ru to rv in T . Now, in T we have already set the
edge capacities and it remains to set the vertex demands. For each vertex ru in T , we set
d(ru) = d(u), and for all other vertices v in T , we set d(v) = 0. Furthermore, in our instance
of the simultaneous source location problem we set that each vertex ru can be picked as
a source and none of the other vertices in T can be picked as a source. Note that there
exists a one-to-one correspondence between sources in G and sources in T . Together with
our observation for flows above, this means that solving the simultaneous source location
problem on T gives a solution for G.

To obtain the bicriteria (1 + ε, 1)-approximation result for trees, we apply the approxima-
tion algorithm from Proposition 33 on T .

Finally, to obtain the (1 + ε, O(log4 n))-approximate solution for a general graph G, we
proceed as follows. We build the binarized Räcke tree T for G as per Lemma 29 and recall that
T has quality q = O(log4 n) and height Õ(1). In T , we set the bits to indicate that all leaves
can be used as sources but none of the other vertices might be used as a source. We apply
the approximation algorithm from Proposition 33 on T to obtain a (1 + ε, 1)-approximate
solution on T in time Õ(n). Now let us point out that the Räcke tree from Theorem 15
(and, therefore, also the binarized Räcke tree from Lemma 29) is also a tree flow sparsifier.
That is, if there exists a feasible flow F in G, then there exists a flow of the same value
between the corresponding leaves in T . Additionally, for any feasible flow F with value v
between leaves in T , there exists a feasible flow with value 1

q v between the corresponding
vertices in G. Therefore, if we are allowed to exceed the edge capacities in G by a factor
of q = O(log4 n), the flow that we compute in T is feasible in G. This gives that we can
compute a (1 + ε, O(log4 n))-approximate solution in time Õ(n).

E.4 Extension to the Dynamic Setting (Proof of Theorem 5)
To prove Theorem 5, we first consider the special case of dynamic binary trees (which is
not mentioned in the theorem). We show that for binary trees we can maintain a bicriteria
(1 + ε, 1)-approximate solution with worst-case update time Õ(h3/ε2), where h is an upper
bound on the height of the tree. Then we show that the results of the theorem can be derived
from this result.

Consider a dynamic binary tree on which we maintain the approximate DP from Sec-
tion E.2. We will exploit that T and the dependency tree of our DP coincide. Hence, an
update in T will trigger the same update in the dependency tree. Observe that the update
operation SetDemand(v, d) triggers a change to ADP(v, ·). Then we can recompute the global
approximate DP table using Theorem 10. Since the DP is well-behaved, the tree has height
at most h and since we set δ = O(h/ε), the theorem implies that we need time Õ(h3/ε2) to
recompute the ADP solution. Similarly, for SetCapacity((u, v), c) we can again update the
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rows ADP(u, ·) and ADP(v, ·) and we update the entire DP table using Theorem 10. By the
same arguments as above, this takes time Õ(h3/ε2). For Remove(u, v), we remove the edge
(u, v) from T and by the same reasoning as before we get update time Õ(h3/ε2). Finally,
consider Insert((u, v), c), where we assume that v becomes the child of u. Then we might
have the issue that before the update, v is not the root of its connected component. To
mitigate this issue, we run the same re-rooting procedure as described in Section D.5. As
described in Section D.5, this will only recompute the solutions of O(h) DP cells and thus
we again have a total update time of Õ(h3/ε2).

Next, we prove the results from Theorem 5. First, consider the case in which all edge
capacities are set to 1 and where we want to obtain a bicriteria (1 + ε, no(1))-approximate
solution with amortized update time no(1)/ε2 and preprocessing time O(n2). Let G be
the dynamic input graph. We maintain the dynamic binarized Räcke tree T for G as per
Lemma 31 and remark that the dynamic Räcke tree from Theorem 16 is also a tree flow
sparsifier. We note that any update to G triggers an update operation on T that requires
amortized update time no(1). On T , we allow the leaves to act as sources but no other vertices.
Furthermore, we set the demands of the leaves in T to the demands of the corresponding
vertices in G; all other vertices have demand 0. Now we use the data structure for binary
trees from the previous paragraph to maintain a dynamic bicriteria (1 + ε, 1)-approximate
solution on T . That is, when a vertex demand changes in G, we update the corresponding
vertex demand in T . When an edge is inserted or deleted in T due to the subroutine from
Lemma 31, then we update the data structure from the previous paragraph that maintains
the DP solution on T . By the same argumentation as in Section E.3, we obtain that since T
has quality no(1), if we can exceed the edge capacities in G by a no(1) factor then any feasible
flow in T is also feasible in G. This implies the result claimed in the theorem.

If G is a tree of height h but (potentially) with unbounded degrees, we can maintain a
bicriteria (1 + ε, 1)-approximate solution with worst-case update time Õ(h3/ε2) and prepro-
cessing time O(n2/ε2) similar to above. That is, we transform G into a binary tree using the
same procedure that we use in the proof of Lemma 31, where we replace each vertex u by a
subtree τu with root ru. Similar to what we argued in Section E.3, we only allow the vertices
ru as roots in T and obtain any flow in T corresponds to a flow in G. Then by applying the
dynamic data structure for binary trees on T , we obtain the result.

Finally, let us consider the case in which we wish to obtain bicriteria approximation
algorithms when we only allow the update operations SetDemand(v, d). In this case, we
observe that the underlying graph is static, since only the vertex demands change. Therefore,
for our input graph G, we can build the Räcke tree from Theorem 15 which is also a tree flow
sparsifier and we consider its binarized version T as per Lemma 31. Note that building this
tree with quality Õ(log4 n) takes time Õ(m). Given such a static Räcke tree, we can use our
dynamic data structure for binary trees from above to support the operations SetDemand(v, d)
on T . Since T has height Õ(1), we obtain the result with the bicriteria (1 + ε, O(log4 n))-
approximation. To obtain the bicriteria (1 + ε, O(log2 n log logn))-approximation we do
exactly the same as above, but instead of using the Räcke tree from Theorem 15, we use the
Räcke tree from Harrelson, Hildrum and Rao [37] which can be used as a tree flow sparsifier.
As it has quality O(log2 n log logn) and can be constructed in time poly(n), we obtain the
result.



56 Dynamic Maintenance of Monotone Dynamic Programs and Applications

F Recourse Bounds

In this section discuss the recourse bounds we derive. To motivate these lower bounds, let us
note that “classic” dynamic algorithms with polylogarithmic update time maintain a single
explicit solution in memory; this is desirable in many practical scenarios. However, some
dynamic algorithms (like our DP algorithms above) only return the value of an approximate
solution in polylogarithmic time, which is sometimes referred to as implicit. To understand
whether for our problems implicit solutions are necessary, we consider algorithms which
maintain multiple explicit solutions, of which only one has to be feasible. We believe that this
is an interesting setting to look at, as it essentially interpolates between the two scenarios
above. If even algorithms with multiple solutions must have high recourse, this suggests that
implicit solutions are somehow inevitable. We show below that for fully dynamic knapsack
and fully dynamic k-balanced partitioning the latter is the case.

Here, we consider dynamic algorithms over inputs that are undergoing insertions and
deletions via an update operation. The algorithms are allowed to maintain multiple explicit
solutions and must ensure that after every time step, there exists a solution with certain
guarantees while minimizing the recourse for updating the solutions. More concretely, we
consider algorithms which explicitly maintain s solutions S(t)

1 , . . . , S
(t)
s for each time step t.

Here, we assume that after each time step a single update operation is performed, after
which an algorithm can make changes to its solutions. We say that an algorithm maintains
an α-approximate solution if for each time step t, there exists an index i = i(t) such that
S

(t)
i is a feasible and α-approximate solution for the problem we study.
Observe that in this setting, the algorithm might have much lower recourse, since for each

time t it may pick a different solution. Thus, it may not have to update any of the solutions
significantly after the update operations. Further note that this notion of ensuring that at
each time step there exists a feasible solution is somewhat reminiscent of list decoding in
coding theory, where the decoder can output a list of messages and only has to ensure that
the correct messages is contained in that list.

Measuring the recourse will be problem-specific, based on how the solutions for the
problems are stored. In general, given two solutions from consecutive time steps, we let
d(S(t)

i , S
(t+1)
i ) denote the (problem-specific) recourse incurred by the i’th solution at time

step t (see below for how to set d(·, ·) for the problems we study). The total recourse of an
algorithm is given by ∑

t

s∑
i=1

d(S(t)
i , S

(t+1)
i ).

Next, we will present the concrete recourse lower bounds that we derive.
Recourse Bounds for Knapsack. In knapsack, the solutions S(t)

i simply correspond
to subsets of items which are contained in the knapsack. To measure the recourse, we set
d(S(t)

i , S
(t+1)
i ) =

∣∣∣S(t)
i 4S

(t+1)
i

∣∣∣, i.e., we consider the cardinality of the symmetric difference
of the i’th solution at time steps t and t+ 1.

Our main result shows that for a fixed accuracy ε, any dynamic (1− ε)-approximation
algorithm must maintain Ω(1/ε) solutions or it must have recourse Ω(nε ), even when only a
single item is inserted.

I Theorem 34. Let ε ∈ (0, 1/2). Assume s < 1
8ε(1+2ε) and n ∈ N is a sufficiently large

multiple of s. Then any dynamic randomized (1− ε)-approximation algorithm for knapsack
with s solutions must have recourse Ω(ns ). This holds even for a single item insertion.
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Recourse Bounds for k-Balanced Partitioning. In k-balanced partitioning, each
solution S(t)

i consists of k clusters V (i,t)
1 , . . . , V

(i,t)
k that partition the set of vertices V . To

measure the recourse, we set d(S(t)
i , S

(t+1)
i ) =

∑k
j=1

∣∣∣V (i,t)
j 4V (i,t+1)

j

∣∣∣, i.e., we consider the

total number of vertices that change their set V (i,·)
j from time t to t+ 1.

Our main result shows that for any C and fixed ε, any algorithm that maintains a
(C, 1 + ε)-approximate solution must use Ω(1/ε) solutions or it must have amortized recourse
Ω(ε2 nk ), even when only O(1/ε) edges are inserted. Here, the amortized recourse refers to
the total recourse divided by the total number of update operations.

I Theorem 35. Let C > 0 be arbitrary and ε ∈ (0, 1/2). Assume k ≥ 4 and s < 1
4ε . Then

any dynamic randomized (C, 1 + ε)-approximation algorithm for k-balanced partitioning with
s solutions must have amortized recourse Ω(ε2 nk ). This holds even for O(1/ε) edge insertions.

F.1 Proof of Theorem 34
We prove Theorem 34. We use Yao’s principle [63], i.e., we consider a deterministic algorithm
and give a distribution over inputs, showing that in expectation the algorithm will have
recourse Ω(ns ).

We consider an instance in which initially we have n items, and each item i has weight
wi = 1 and price pi = 1. We refer to these items as small items. We set the budget of our
knapsack to B = n. Note that in this instance, OPT = n because all small items fit into the
knapsack.

Now we sample an integer j uniformly at random from [2s− 1] = {0, . . . , 2s− 1}, and we
set k = i · n2s + n

4s . We insert a single heavy item with p = n− k + 2εn and w = n− k. Note
that after inserting the heavy item, we have that OPT = n+ 2εn since the optimal solution
consists of the heavy item and k small items.

We let S1, . . . , Ss denote the solutions maintained by the algorithm before the heavy item
was inserted and we let S′1, . . . , S′s denote the solutions after the heavy item was inserted.
We write small(Si) to denote the number of small items in solution Si.

In the following, we will show that any (1 − ε)-approximate solution S′i must contain
the heavy item and “almost” k small items. However, we will also show that with constant
probability all solutions Si had “much less” or “much more” than k small items initially.
This then gives that obtaining any (1− ε)-approximate solution must encur high recourse.

We follow this proof strategy in reverse order. We start by showing that with constant
probability, all Si have “much less” or ”much more” than k small items.

I Lemma 36. With probability at least 1/2, it holds that |k − small(Si)| ≥ n
4s for all i ∈ [s].

Proof. Suppose that we partition the set {1, . . . , n} into 2s consecutive intervals, each of
length n

2s . Note that k is the middle point of one of these intervals. Furthermore, as there
are only s solutions and 2s intervals, at least half of the intervals do not contain a number
from the set {small(Si) : i = 1, . . . , s}; we call these intervals empty. Thus, with probability
at least 1/2, k is the middle point of an empty interval. If the interval containing k is empty,
then k has distance at least n

4s to small(Si) for all i = 1, . . . , s. J

Next, recall that S′1, . . . , S′n are the solutions maintained by the algorithm after the
insertion of the heavy item. We show that any (1− ε)-approximate solution must contain
the heavy item and some small items.

I Lemma 37. Suppose that S′i is a (1− ε)-approximate solution. Then S′i contains the heavy
item and a positive number of small items.
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Proof. First, suppose that a solution S′i only contains small items. Then its total price is at
most n. However, we have that

(1− ε) OPT = (1− ε)(1 + 2ε)n > n,

where we used that ε < 1/2. Hence, S′i is not a (1− ε)-approximate solution.
Second, suppose that S′i only contains the heavy item. Then we have that

(1− ε) OPT = (1− ε)(p+ k)
= p+ k − ε(p+ k)

≥ p+ n

4s − ε(1 + 2ε)n

> p+ 2ε(1 + 2ε)n− ε(1 + 2ε)n
> p,

where we used that k ≥ n
4s , p+k = n+2εn and s < 1

8ε(1+2ε) . Therefore, a solution containing
only the heavy item is not (1− ε)-approximate. J

Next, we show that any (1− ε)-approximate solution must contain “almost” k small items.

I Lemma 38. Suppose S′i is a (1− ε)-approximate solution. Then

k − n

8s ≤ small(S′i) ≤ k.

Proof. The upper bound follows from the fact S′i must contain the heavy item (by Lemma 37)
of weight n− k and then it can only include k small items since the budget constraint is set
to B = n.

To prove the lower bound, note that since S′i is a (1− ε)-approximate solution, we have
that its solution has value

p+ small(S′i) ≥ (1− ε) OPT = (1− ε)(p+ k).

Hence, we get that

small(S′i) ≥ k − ε(p+ k)
= k − ε(1 + 2ε)n

> k − n

8s ,

where we used that s < 1
8ε(1+2ε) . J

To finish the proof of the theorem, we condition on the event from Lemma 36, i.e., we
have that |k − small(Si)| ≥ n

4s for all i ∈ [s].
Now consider any solution S′i after the insertion of the heavy item. If S′i is not (1− ε)-

approximate, we can ignore S′i. If S′i is (1 − ε)-approximate then it satisfies k − n
8s ≤

small(S′i) ≤ k by Lemma 38. Since we are assuming the event from Lemma 36, the algorithm
had to insert/delete at least n

8s small items into/from Si to obtain S′i.
Since the event from Lemma 36 occurs with probability at least 1/2 and the above

argument holds for all (1− ε)-approximate solutions S′i, we have that the expected recourse
is Ω(ns ).
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F.2 Proof of Theorem 35
We prove Theorem 35. Again, we apply Yao’s principle [63], i.e., we consider a deterministic
algorithm and give a distribution over inputs, showing that in expectation the algorithm will
have amortized recourse Ω(ε2 nk ).

We consider a graph with n vertices. Our initial instance consists of k
2ε star graphs, each

of which contains 2εnk vertices. Note that here an optimal solution places the vertices from
exactly 1

2ε star graphs into each partition Vj ; there are no edges between vertices from different
Vj and hence the optimal cut-value is zero. Hence, the solution of any (C, 1 + ε)-approximate
solution must also have cut-value zero.

In the update phase, we sample s edges between the central nodes of the star graphs
uniformly at random and insert them into the graph. Note that after the insertion of the
edges, we connected at most s star graphs and the largest connected component has size at
most s ·2εnk ≤

1
2
n
k , where we used that s ≤ 1

4ε . Hence, the optimal solution still has cut-value
zero and thus any (C, 1 + ε)-approximate solution must have cut-value zero.

Next, let us analyze the recourse of an algorithm which starts with initial solutions
S

(0)
1 , . . . , S

(0)
s . In a first step, we show that solutions which at time 0 splits one of the star

graphs up “too much” must entail high recourse. In a second step, we consider all other
solutions and show that our insertions still trigger high recourse in expectation.

We say that a solution S
(0)
i = {V (i,0)

1 , . . . , V
(i,0)
k } is useful if for all star graphs H, it

holds that there exists an index j such that V (i,0)
j contains at least εnk vertices from H and

at most εnk vertices are placed in
⋃
j′ 6=j V

(i,0)
j′ . Given a star graph H and a solution S(0)

i , we
write j(H, i) to the denote the index j such that V (i,0)

j contains at least at least εnk vertices
from H. If a solution is not useful, we call it useless.

First, consider solutions which are useless. There exist two cases. Case A: Suppose there
exists a star graph H such that for all indices j it holds that

⋃
j′ 6=j V

(i,0)
j′ contains more than

εnk vertices from H. Observe that if the algorithm wants to use this solution after the edge
insertions finished, it must ensure that the cut-value is zero. Thus it must move at least
εnk vertices to one of the V (i,0)

j which requires
∣∣∣⋃j′ 6=j V (i,0)

j′

∣∣∣ ≥ εnk vertex moves. Case B:

Suppose there exists a star graph H such that for all j it holds that V (i,0)
j contains less than

εnk vertices from H. Using that ε ∈ (0, 1
2 ), also in this case the algorithm must move at

least (1− ε)nk ≥ ε
n
k vertices such that eventually all of H is contained in the same set V (i,s)

j

when the updates finished. We conclude that for useless solutions our theorem holds after
amortizing over s ≤ 1

ε insertions.
Second, for the remainder of the proof consider only solutions S(0)

i = {V (i,0)
1 , . . . , V

(i,0)
k }

which are useful. Observe that when we insert an edge between two star graphs H1 and H2,
then if j(H1, i) 6= j(H2, i) the algorithm must move at least εnk vertices to ensure that after
the s insertions finished, all vertices from H1 and H2 are placed in the same set V (i,s)

j for
some j. We call such an insertion expensive for solution i.

Observe that if our edge insertions are such that they contain an expensive insertion for
all solutions, then updating any solution S(0)

i such that S(s)
i is (C, 1 + ε)-approximate will

incur recourse at least εnk . The rest of our proof is devoted to showing that with constant
probability this event occurs. This will prove the theorem.

We start by considering a fixed solution S(0)
i and a single random edge insertion between

randomly picked star graphs H1 and H2. Recall that there are k
2ε star graphs in total.

Furthermore, we have that
∣∣∣V (i,0)
j

∣∣∣ ≤ (1 + ε)nk for all j and thus for each j there can be at

most (1+ε)
ε star graphs H with j = j(H, i). Hence, for the probability that the edge insertion



60 Dynamic Maintenance of Monotone Dynamic Programs and Applications

is expensive we get that

Pr (j(H1, i) 6= j(H2, i)) = 1−Pr (j(H1, i) = j(H2, i))

≥ 1− (1 + ε)/ε
k/(2ε)

= 1− 2(1 + ε)
k

≥ 1
2 ,

where we used that k ≥ 4.
Next, we consider a fixed solution S(0)

i and s edge insertions between star graphs which
were picked independently and uniformly at random. Then with probability at least 1− 2−s,
at least one of these edge insertions is expensive for solution i.

Finally, observe that probability that for all solutions i there exists an expensive edge
insertion is at least(

1− 2−s
)s = exp

(
s ln(1− 2−s)

)
≥ 1 + s ln(1− 2−s)
≥ 1− s2−s

≥ 1
4 ,

where we used that exp(x) ≥ 1 + x for all x ∈ R, the Taylor expansion of ln(x) for x close
to 1 and the fact that s2−s ≤ 3

4 for all s.
We conclude that with constant probability, for all solutions i there exists an expensive

edge insertion. In this case, the algorithm has total recourse at least εnk . Hence, the expected
total recourse of the algorithm is Ω(εnk ). Since we only performed s edge insertions, this
gives an amortized recourse of Ω(ε2 nk ).

G Non-Monotone Functions and `∞-Necklace Alignment

So far we have only considered monotone piecewise constant functions. Now we will generalize
some of our results to piecewise constant functions with multiple non-monotonicities and
provide the details in Section G.1. We also derive new approximation algorithms for the
`∞-necklace problem in Section G.2. In particular, for `∞-necklace we present the first
approximation algorithm with near-linear running time with additive error ε. We also present
the first dynamic approximation algorithm for this problem which achieves additive error ε
and has update time O((1/ε)2 log(1/ε)); the algorithm has preprocessing time O(1) when
starting with empty vectors x and y and requires sublinear space O(1/ε). See Theorem 44
for the details of our results.

G.1 Piecewise Constant Functions With Non-Monotonicities
We now show that we can perform efficient operations on piecewise constant functions
even when these functions contain non-monotonicities. However, the running times of our
subprocedures will typically have some dependency on the number of non-monotonicities of
the function.

Let us formalize our notion of non-monotonicities. We say that a function f : [0, t) →
[0,W ]∪ {−∞,∞} has k monotone segments if there exist values 0 = x0 < x1 < · · · < xk = t
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such that on each interval [xi, xi+1), f is monotone. Here, we require that either f is
monotonically decreasing on all segments or it is monotonically increasing on all segments.
Note that a monotone function has k = 1 monotone segments (by setting x0 = 0 and x1 = t)
and that the points x1, . . . , xk−1 can be viewed as the points in which f is non-monotone.

One crucial operations will again be rounding. However, unlike previously we will mostly
talk about rounding to multiples of δ instead of rounding to powers of 1 + δ. This will be
convenient for our applications to `∞-necklace later. We will also briefly mention how to
extend our results from this subsection to the setting in which we round to powers of 1 + δ.

Next, let δ > 0 and consider a simple rounding function that rounds down to multiples
of δ. More concretely, for y ∈ R we set byc∗δ = max{i · δ : i · δ ≤ y, i ∈ Z} and we follow the
convention that b−∞c∗δ = −∞ and b∞c∗δ =∞. We also extend the rounding operation to
functions f : [0, t) → [0,W ] ∪ {−∞,∞} by defining bfc∗δ : [0, t) → [0,W ] ∪ {−∞,∞} to be
the function with bfc∗δ(x) = bf(x)c∗δ for all x ∈ [0, t). Next, we show that the function bfc∗δ
can be computed efficiently and that it has only few pieces.

I Lemma 39. Let δ > 0 and let f : [0, t) → [0,W ] ∪ {−∞,∞} be a piecewise constant
function with p pieces and k monotone segments. Then we can compute the function bfc∗δ in
time O(p log p) and bfc∗δ has O(k ·W/δ) pieces.

Proof. Let (x1, y1), . . . , (xp, yp) denote the list representation of f . We construct the list
representation (x′1, y′1), . . . , (x′p, y′p) of bfc∗δ . For all i = 1, . . . , p, we set x′i = xi and y′i = byic∗δ .
After that, we merge all consecutive pieces that have the same y′i-values; this can be done
exactly as in the pruning step described in the proof of Lemma 6. Since f takes values in
[0,W ] ∪ {−∞,∞}, there are O(W/δ) choices for multiples of δ in [0,W ]. In particular, on
each monotone segment of f , bfc∗δ has O(W/δ) pieces. Since f has k monotone segments
this implies that bfc∗δ has O(k ·W/δ) pieces in total. Note that all operations from above
can be performed in linear time and the running time bound stems from the fact that we
also need to store the pieces in a binary search tree. J

Next, we show that we can compute the (min,+)-convolution of two piecewise constant
functions in time that is quadratic in the number of their pieces. The lemma generalizes the
result from Lemma 7 because we drop the assumption that one of the functions needs to be
monotone (but this comes at the cost of a more complicated proof). We prove the lemma in
Section G.1.1.

I Lemma 40. Let f1, f2 : [0, t)→ [0,W ] ∪ {−∞,∞} be piecewise constant functions which
have at most p pieces. Then we can compute f = f1⊕ f2 in time O(p2 log p) and f has O(p2)
pieces.

By combining the two lemmas above, we can show that we can efficiently compute
additive approximations of (min,+)-convolutions even in the case of non-monotonicities.
More concretely, we say that f : [0, t)→ [0,W ] ∪ {−∞,∞} is an additive ε-approximation of
g : [0, t)→ [0,W ] ∪ {−∞,∞} if g(x)− ε ≤ f(x) ≤ g(x) for all x ∈ [0, t). Now we obtain the
following theorem.

I Theorem 41. Let f, g : [0, t) → [0,W ] ∪ {−∞,∞} be two functions with k monotone
segments and suppose we have already computed bfc∗δ and bgc∗δ . Then the function (bfc∗δ)⊕
(bgc∗δ) is an additive 2δ-approximation of f ⊕ g, has at most O((k ·W/δ)2) pieces and can be
computed in time O((k ·W/δ)2 log((k ·W/δ)2)).

Proof. The approximation ratio follows from the triangle inequality. The claims about the
number of pieces and the running time follow from combining Lemma 39 and Lemma 40. J
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We note that by stating Lemma 39 for the rounding operation d·e1+δ that rounds to
powers of 1 + δ (see Lemma 6), we can obtain the following version of Theorem 41.

I Theorem 42. Let f, g : [0, t) → [0,W ] ∪ {−∞,∞} be two functions with k monotone
segments and suppose we have already computed dfe1+δ and dge1+δ. Then (dfe1+δ)⊕(dge1+δ)
is a (1+δ)-approximation of f⊕g, has at most O((k · log1+δ(W )2) pieces and can be computed
in time O((k · log1+δ(W ))2 log((k · log1+δ(W ))2)).

This result generalizes our previous method of first rounding a monotone function via
Lemma 6 and then applying the efficient convolution from Lemma 7. More concretely,
observe that monotone functions have one monotone segment and, thus, after rounding
both functions, our algorithm from Lemma 7 computes the (min,+)-convolution in time
O(log2

1+δ(W ) log log1+δ(W )) which is the same running time that we obtain by combining
the two lemmas above. Hence, the algorithm from Theorem 42 matches this result for k = 1
and it generalizes it when we apply it for k > 1.

G.1.1 Proof of Lemma 40
We assume that fi for i = 1, 2 is given as a doubly linked list (xi1, yi1), . . . , (xip, yip) such that
xij < xij+1 for all 1 ≤ j < p. We will output f in the same representation.

To compute f we will make use of the following non-overlapping interval data structure
(NOI). Let [a, b] and [a′, b′] be two subsets of the real line. We call each of them an interval
and say that they overlap if [a, b]∩ [a′, b′] 6= ∅. We say that an interval [a, b] is empty if a ≥ b.
The NOI data structure stores a set S of non-overlapping, non-empty intervals I = [a, b] and
supports the following operations:

ClosestLargerInterval(z), which given a number z returns the interval [a, b] together with
a Boolean value bool. If bool is true, then z ≤ b and there is no interval [a′, b′] in S with
z ≤ b′ < b. Note that it is possible that z belongs to [a, b]. If bool is false, then there
exists no interval [a, b] with z ≤ b and the returned values for a and b are undefined.
InsertInterval(a, b), which inserts the interval [a, b] into S, merging it with any interval
that it overlaps with and updating S accordingly.
There exists an efficient implementation of such a data structure as stated in the next

claim, which we prove at the end of this section.

B Claim 43. There exists an implementation of the non-overlapping interval data structure
such that any sequence of q operations takes time O(q log q).

We compute f as follows. Note that the function values of f1 and of f2 are constant
over each 2-dimensional rectangle whose corners are (x1

s, x
2
t ), (x1

s, x
2
t+1), (x1

s+1, x
2
t ), and

(x1
s+1, x

2
t+1) for any 1 ≤ s ≤ p and 1 ≤ t ≤ p. We call this rectangle Rst and denote by

[x1
s + x2

t , x
1
s+1 + x2

t+1] the range of the rectangle Rst and by y1
s + y2

t the function value of
the rectangle, where we assume that ∞ + y with y ∈ W∞ equals ∞. There are K2 such
rectangles.

Now note that for any value x with x1
s+x2

t ≤ x ≤ x1
s+1 +x2

t+1, i.e., x is in the range of the
rectangle Rst, the function value y1

s + y2
t is one of the sums that occurs in the computation

of f(x) = minx̄{f1(x̄) + f2(x− x̄)}. We will compute f(x) (for all values x “simultaneously”)
by comparing the function values of all rectangles Rst to whose range x belongs. The main
observation that we exploit is the following: As we will consider the rectangles by decreasing
function values, the first rectangle (in this order) to whose range a value x belongs is the
rectangle whose function value equals f(x).
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Thus, when processing a rectangle, we need to determine all ranges, i.e, subintervals of
[0, t], to which no function value has yet been assigned. To do so, we use the NOI data
structure to store the intervals of all values x for which we have already assigned a function
value. Furthermore we use a balanced binary search tree B that stores at its leaves every
interval to which a function value has already been assigned, together with its (constant)
function value. Specifically, we will store these ranges in the leaves of B, ordered by their
smaller boundary value x′. The difference between the two is that the NOI data structures
merges overlapping intervals, no matter what their function value is, while every interval
stored as a leaf of B has the same function value, i.e., has a constant f -value.

To be precise we proceed as follows: We first generate all rectangles Rst by iterating
over the lists of f1 and f2 and sort them by non-decreasing order of their function value.
This takes time O(p2 log p). Then we process the rectangles in this order. To do so, we
first initialize an empty NOI data structure as well as an empty balanced binary search tree
B. Next we describe how to process the rectangles. Let Rst be the next rectangle to be
processed. We execute the following steps for Rst:
1. z = x1

s + x2
t

2. (a, b, bool) = ClosestLargerInterval(z)
3. while bool is true and b < x1

s+1 + x2
t+1 do

a. if z 6∈ [a, b] then insert the interval [z, a] together with the function value of Rst into B.
b. z = b

c. (a, b, bool) = ClosestLargerInterval(z)
4. If bool is true then insert the interval [z, a] together with the function value of Rst into B;

else insert the interval [z, x1
s+1 + x2

t+1] together with the function value of Rst into B.
5. InsertInterval(x1

s + x2
t , x

1
s+1 + x2

t+1).
Once all rectangles have been processed, we traverse the leaves of B in order and connect

them by a doubly linked list to create an (ordered) list representation of the function f . As
we process the rectangles in increasing order of function value this guarantees that for each
value x the smallest function value of any rectangle Rst is returned as f(x).

Note that each insertion into B takes time O(log p) and the number of calls to the NOI
data structure is proportional to the number of rectangles plus the number of intervals
merged in the NOI data structure. As processing a rectangle creates at most one new interval,
and merged intervals are never separated again, the number of interval merges is at most the
number of rectangles. Thus, there are at most p interval merges and at most 2p2 insertions
into B. Hence, the total running time for the above algorithm is O(p2 log p) plus the time for
the NOI data structure, which, by Claim 43, is also O(p2 log p) as q = O(p2).

We still have to prove Claim 43.

Proof of Claim 43. We implement the NOI data structure with a balanced binary search
tree. The leaves store the non-overlapping intervals, ordered by their upper endpoint.

The ClosestLargerInterval(z) operation searches for the interval [a, b] such that b is the
smallest upper endpoint of an interval that is at least z. If no such interval exists, bool is set
to false, otherwise it is set to true and [a, b] is returned as interval. Note that finding [a, b]
takes time O(log q), as q is the maximum number of intervals stored in the balanced binary
tree.

The InsertInterval(a, b) operation first executes a ClosestLargerInterval(a) operation. Let
(a′, b′, bool) be the result. If bool is false, then the interval [a, b] is inserted as new interval
and the procedure terminates. Otherwise the interval [a′, b′] is the interval with smallest
upper endpoint such that a ≤ b′. Note that [a′, b′] might overlap with [a, b] and we test for
this next. If b < a′ then a leaf with range [a, b] is inserted into the balanced search tree and
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InsertInterval(a, b) terminates. Otherwise (b ≥ a′), let L be the leaf of the balanced search
tree that stores [a′, b′]. If b ≤ b′, the two intervals are merged by updating L to store the
interval [min(a, a′), b′] and InsertInterval(a, b) terminates. If, however, b > b′, it is possible
that the new interval [a, b] overlaps with even more intervals in S. Thus, we execute the
following steps:
1. z = b′

2. (a′′, b′′, bool) = ClosestLargerInterval(z)
3. while bool is true do

a. If b < a′′ then the leaf L is updated to store the interval [min(a, a′), b] and InsertInterval
terminates.

b. The leaf storing the interval [a′′, b′′] is removed from the balanced search tree.
c. If b ≤ b′′ then the leaf L is updated to store the interval [min(a, a′), b′′] and InsertIn-

terval terminates.
d. Otherwise, z = b′′ and (a′′, b′′, bool) = ClosestLargerInterval(z).

4. L is updated to store the interval [min(a, a′), b].

Note that this algorithm merges all intervals that overlap with [a, b] into one interval and
updates the balanced search tree accordingly.

Let t be the number of iterations executed by InsertInterval(x, y). The running time is
O((t+ 1) log q) as each iteration executes one call to ClosestLargerInterval, one deletion of a
leaf in the balanced binary tree, and at most one modification of a label at a leaf. Every such
iteration decreases the number of leaves in the balanced binary tree by 1. Furthermore, each
call to InsertInterval that does not execute any iterations of the above while-loop increases
the number of leaves by at most 1 and there is no other operation that modifies the number
of leaves. As there are at most q calls to InsertInterval, the while-loop can be executed
at most q times over all calls to InsertInterval, each taking time O(log q). Thus, the total
runnning time for q calls to InsertInterval is O(q log q). J

G.2 `∞-Necklace Alignment

Using our techniques from above, we present a novel approximation algorithm for the
`∞-necklace alignment problem [14, 58]. In this problem, the input consists of two neck-
laces represented as two sorted vectors of n real numbers, x = 〈x0, x1, . . . , xn−1〉 and
y = 〈y0, y1, . . . , yn−1〉, where the xi, yi ∈ [0, 1) represent points on the unit-circumference
circle. We will sometimes refer to the elements xi and yj as beads.

We define the distance between two beads xi and yj by the minimum of the clockwise and
counterclockwise distances along the circumference of the unit-perimeter circular necklaces,
i.e., we set

d◦(xi, yj) = min{|xi − yj | , 1− |xi − yj |}.

In the `∞-necklace alignment problem, we need to find an offset c ∈ [0, 1) and a shift
s ∈ [n+ 1] that minimize

n−1max
i=0

(d◦((xi + c) mod 1, y(i+s) mod n)).

In the above definition, the offset c encodes how much we rotate the first necklace clockwise
relative to the second necklace. Additionally, the shift s defines a perfect matching between
the beads such that bead i of the first necklace is matched with bead (i+ s) mod n of the
second necklace.
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Bremner et al. [14] showed that the `∞-necklace alignment problem can be solved exactly
in time Õ(n2). We complement this by showing that we can compute a solution with additive
error ε in time Õ(n+ ε−2).

We also consider the dynamic version of the problem in which beads are inserted and
deleted. More concretely, we assume that initially x and y are empty and we offer the
following update operations:

Insert(i, α, β) which inserts α ∈ [0, 1) into x at the i’th position and it further inserts
β ∈ [0, 1) into y at the i’th position. We require that after the insertion, x and y are still
ordered.
Delete(i) which deletes xi from x and yi from y.

Note that both of these operations change the number of entries in x and y but they ensure
that x and y always have the same length. We show that we can maintain a solution with
additive error ε using update time O(1/ε2 log(1/ε)). The preprocessing time is O(1) and the
space usage is only O(1/ε) which is sublinear in the size of the vectors x and y.

I Theorem 44. Let ε > 0. There exists a static algorithm for the `∞-necklace alignment
problem that computes a solution with additive error ε in time O(n+ (1/ε)2 log(1/ε)). Fur-
thermore, there exists a fully dynamic algorithm for the `∞-necklace alignment problem that
maintains a solution with additive error ε with update time O(1/ε2 log(1/ε)) and preprocessing
time O(1); the space usage of the algorithm is O(1/ε).

To obtain the result for the dynamic algorithm, we show that for vectors A,B ∈ Rn
that are undergoing element insertions and deletions, we can dynamically maintain an
approximation of the (min,+)-convolution A ⊕ B. We expect that this result will have
further applications. The proof of the theorem follows from Propositions 45 and 48 below.

G.2.1 The Static Algorithm
Now we consider our static algorithm and prove the following proposition.

I Proposition 45. There exists a static algorithm for the `∞-necklace alignment problem
that computes a solution with additive error ε in time O(n+ (1/ε)2 log(1/ε)).

We devote the rest of this subsection to the proof of the proposition.
The Algorithm. Our algorithm is rather simple and (up to the part in which we perform

the rounding) it is the same as the one used by Bremner et al. [14]. Consider the input ε
(as error parameter), x = 〈x0, x1, . . . , xn−1〉 and y = 〈y0, y1, . . . , yn−1〉. Now we set δ = ε/2
and perform a single pass over x and y and apply the rounding function b·c∗δ to each of the
entries. While doing so, we compute the list representations of x and y (where we interpret
x and y as functions from [0, n) to [0, 1)) which have at most O(1/δ) pieces (by applying
Lemma 39 with W = 1). Then we compute the vectors

x′ = 〈x0, x1, . . . , xn−1,∞, . . . ,∞︸ ︷︷ ︸
n times

〉,

x′′ = 〈x0, x1, . . . , xn−1,−∞, . . . ,−∞︸ ︷︷ ︸
n times

〉,

y′ = 〈yn−1, yn−2, . . . , y0, yn−1, yn−2, . . . , y0〉,

but we do not store them explicitly. Instead, we only store their list representations. We note
that x′ is a monotonically increasing vector, x′′ has two monotonically increasing segments
and y′ has two monotonically decreasing segments.
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Next, we set a to the (min,−)-convolution of x′ and y′ and we set b to the (max,−)-
convolution of x′′ and y′ (we show below in Lemma 46 that we can compute these functions
efficiently).

Finally, we set v = 1
2 (b− a) and return min{vs : s ∈ [n]} as the solution for our problem.

We note that v can be efficiently computed via the list representations of a and b and we can
also quickly find the minimum over the vs by iterating over the list representation of v.

Analysis. Now we turn to the analysis of the algorithm above. We adapt the proof of
Theorem 6 in Bremner et al. [14] for approximate solutions and argue how to implement it
using piecewise constant functions.

We start by showing that we can compute (min,−)-convolution and (max,−)-convolution
as efficiently as the classic (min,+)-convolution.

I Lemma 46. Let f and g be two piecewise constant functions with p pieces and suppose
that g has k monotonically decreasing segments. Suppose that we can compute the (min,+)-
convolution of f ′ and g′ in time t(p, k) if f ′ and g′ have k monotonically decreasing segments.
Then in time O(t(p, k) + p log p) we can compute:

The (max,−)-convolution of f and g if f has k monotonically increasing segments.
The (min,−)-convolution of f and g if f has k monotonically increasing segments.

Proof. First, suppose that we wish to compute the (max,−)-convolution of two functions
f and g. We show that we can compute the (max,−)-convolution of f and g via the
(min,+)-convolution of −f and g. Indeed, for all x it holds that:

max
x̄∈[0,x]

{f(x̄)− g(x− x̄)} = max
x̄∈[0,x]

{−(−f(x̄) + g(x− x̄))}

= − min
x̄∈[0,x]

{−f(x̄) + g(x− x̄)}

= −(((−f)⊕ g)(x)).

To see that the running time is correct, note that we can compute the list representation
of −f in time O(p) and it takes takes O(p log p) to update the binary search tree in which
we store the pieces of −f . Furthermore, −f has k monotonically decreasing segments since
f has k monotonically increasing segments. Thus, we can apply the efficient algorithm for
(min,+)-convolution in time t(p, k) on −f and g.

We can prove the result for (min,−)-convolution similarly by computing a (min,+)-
convolution of g and −f . More concretely, for all x it holds that

min
x̄∈[0,x]

{f(x̄)− g(x− x̄)} = min
x̄∈[0,x]

{−f(x̄) + g(x− x̄)} = ((−f)⊕ g)(x),

where in the first step we used the symmetry of (min,−)-convolution. The running time
analysis is exactly as above. J

In the proof of Proposition 45 we need the following lemma. We will use the lemma to
find the optimal offset c for a given shift s.

I Lemma 47 (Fact 5 in [14]). Let z = 〈z0, z1, . . . , zn−1〉. Then

min
c∈R

n−1max
i=0
|zi + c| = 1

2

(
n−1max
i=0

zi −
n−1
min
i=0

zi

)
and the minimizer for this quantity is given by c = − 1

2 (minn−1
i=0 zi + maxn−1

i=0 zi).

Next, we can prove Theorem 44.
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Proof of Theorem 44. We prove the theorem in three steps. In Step 1, we will prove that
we compute the correct result in the exact case (i.e., when we perform no rounding). This
first part is essentially the same proof as in in Bremner et al. [14] but with more details. In
Step 2, we argue about approximation guarantee of our algorithm. In Step 3, we prove its
running time.

Step 1: The Exact Case. First, we use Theorem 2 of Bremner et al. [14] which states
that if

ỹ = 〈y0, y1, . . . , yn−1, y0, y1, . . . , yn−1〉

then

min
c,s

n−1max
i=0

d◦((xi + c) mod 1, y(i+s) mod n) = min
c,s

n−1max
i=0

d−(xi + c, ỹi+s),

where d−(a, b) = |a− b| for all a, b ∈ R. Thus, instead of directly optimizing the origi-
nal objective function minc,s maxn−1

i=0 d
◦((xi + c) mod 1, y(i+s) mod n), we will consider the

more convenient objective function minc,s maxn−1
i=0 d

−(xi + c, ỹi+s) which involves no modulo
operations.

Indeed, consider the new objective function and for all s ∈ [n] we define the vector
z(s) ∈ Rn such that z(s)i = xi − y(i+s) mod n. Now we obtain that for the new objective
function it holds that:

min
c,s

n−1max
i=0

d−(xi + c, ỹi+s) = min
c,s

n−1max
i=0

∣∣xi + c− y(i+s) mod n)
∣∣

= min
s

min
c

max
i
|z(s)i + c|

= min
s

1
2

(
max
i
{z(s)i} −min

i
{z(s)i}

)
,

where in the first step we used the definition of d−(·, ·) and that ỹk = yk mod n for all k ∈ [2n],
in the second step we substituted the definition of z(s)i and in the third step we applied
Lemma 47.

The above implies that we need to compute the quantities maxi{z(s)i} and mini{z(s)i} effi-
ciently. Even more, consider the vector v ∈ Rn with entries vs = 1

2 (maxi{z(s)i} −mini{z(s)i})
and observe that the calculation above shows that the optimal objective function value is the
same as the smallest entry in v. Therefore, in the following we show that we can compute v
efficiently using the vectors a and b that we computed in our algorithm.

Recall the definitions of the two vectors x′ and y′:

x′ = 〈x0, x1, . . . , xn−1,∞, . . . ,∞︸ ︷︷ ︸
n times

〉,

y′ = 〈yn−1, yn−2, . . . , y0, yn−1, yn−2, . . . , y0〉.

Now we let a ∈ R2n be the vector resulting from the (min,−)-convolution of x′ and y′, i.e.,
ak = mini{x′i−yk−i} for all k ∈ [2n]. Now we observe that for each entry an+s′ with s′ ∈ [n],
it holds that

an+s′ =
n+s′
min
i=0
{x′i − y′n+s′−i} =

n−1
min
i=0
{xi − y(i−s′−1) mod n},

where in the second step we used that x′i =∞ for i ≥ n and that y′n+s′−i = y((n−1)−(n+s′−i)) mod n =
y(i−s′−1) mod n since in y′ we concatenated the entries of y twice but in reverse order. Now
observe that if s′ = n− 1− s then

a2n−s−1 = an+s′ =
n−1
min
i=0
{xi − y(i−s′−1) mod n} =

n−1
min
i=0
{xi − y(i+s) mod n} =

n−1
min
i=0
{z(s)i}.
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Next, we define the vector x′′ such that:

x′′ = 〈x0, x1, . . . , xn−1,−∞, . . . ,−∞︸ ︷︷ ︸
n times

〉.

We let b denote the vector resulting from the (max,−)-convolution of x′′ and y′, i.e.,
bk = maxi{x′′i − y′k−i} for all k ∈ [2n]. Now a similar argument as above shows that
b2n−s−1 = maxn−1

i=0 {z(s)i} for all s ∈ [n]. More concretely, for each entry bn+s′ with s′ ∈ [n]
it holds that

bn+s′ = n+s′max
i=0
{x′i − y′n+s′−i} = n−1max

i=0
{xi − y(i−s′−1) mod n},

where we used that x′′i = −∞ for i ≥ n and the same argument relating the entries of y′ and
y as above. Thus, if s′ = n− 1− s then

b2n−s−1 = bn+s′ = n−1max
i=0
{xi − y(i−s′−1) mod n} = n−1max

i=0
{xi − y(i+s) mod n} = n−1max

i=0
{z(s)i}.

Combining the results above we get that vs = 1
2 (b2n−s−1−a2n−s−1) for all s ∈ [n]. There-

fore, we get that the optimal objective function value is given by mins vs = mins 1
2 (b2n−s−1−

a2n−s−1). In other words, to compute the optimal objective function value it suffices to
compute the difference 1

2 (b−a) and then to return the smallest entry in v with index between
n and 2n− 1.

Step 2: Approximation Guarantees. We argue that the algorithm returns an additive
ε-approximation. First, observe that in the algorithm all computations are performed exactly
except for the rounding at the beginning. In the rounding process, we decrease each entry by
at most δ = ε/2. Therefore, the triangle inequality implies that when we match bead xi to
bead yi+s, the error that was introduced by the approximation is at most 2δ = ε. Since in
the objective function we are only interested in the maximum error over all matched beads,
this implies that we obtain an additive ε-approximation.

Step 3: Running Time Analysis. It is left to analyze the running time of our algorithm.
Iterating over the input vectors x and y, rounding the entries and computing the list
representation of x and y can be done in time O(n). Recall that x and y have O(1/δ)
pieces. Therefore, we can also compute the vectors x′, x′′ and y in time O(1/δ log 1/δ).
Then Lemmas 46 and 40 imply that we can compute the (min,−)-convolution and the
(min,+)-convolutions in time O(1/δ2 log(1/δ)) and the resulting vectors have O(1/δ2) pieces.
Finally, the vector v can be computed in time O(1/δ2 log(1/δ)) and the minimum that we
return can be found by simply iterating over the pieces of v. Since previously we have set
δ = ε/2, this finishes the proof. J

G.2.2 The Dynamic Algorithm
We now give our extension to the dynamic setting of the `∞-necklace alignment problem in
which there are insertions and deletions from x and y.

I Proposition 48. Let ε > 0. There exists a fully dynamic algorithm for the `∞-necklace align-
ment problem that maintains a solution with additive error ε with update time O(1/ε2 log(1/ε))
and preprocessing time O(1); the space usage of the algorithm is O(1/ε).

Proof. In the preprocessing, we initialize x and y as empty vectors and store them as
piecewise constant functions (as per Section 2) and we do not store them explicitly as vectors.
Furthermore, we set δ = ε/2. These operations can be done in time O(1).
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Next, consider an operation Insert(i, α, β) which asks to insert α into x at the i’th
position and to insert β into y at the i’th position. Since we are in the approximate setting,
instead of inserting the exact values of α and β, we insert bαc∗δ into the i’th position of x
and bβc∗δ into the i’th position of y. We perform these insertions by manipulating the list
representations of x and y. We only describe how to perform the manipulations for x, as for
y they are essentially the same.

Denote the list representation of x as (X0, Y0), . . . , (Xp, Yp) where p is the number of
pieces of x. Now we iterate over all pieces of x and check whether there exists a piece with
value Yj = bαc∗δ . If no such piece exists, we insert (i, bαc∗δ) into the list representation at the
appropriate position. Then we find the smallest integer j such that Yj > bαc∗δ and for all
k ≥ j, we increment Xk by 1. Intuitively, we are moving all pieces that are larger than bαc∗δ
one unit to the right in order to make space for the element that was just inserted.

Once we have updated x and y as described above, we simply run the static algorithm
without the step in which we initialize x and y. Note that, since we assume that after each
insertion x and y are still ordered and since we only insert rounded entries into x and y,
we get that x and y never have have more than O(1/δ) pieces by Lemma 39. Now, since
above we have set δ = ε/2, the proof of Proposition 45 implies that we obtain a solution with
additive error ε in time O(1/ε2 log(1/ε)). Furthermore, note that since we do not store x and
y explicitly (we only store their rounded version represented by their list representations),
the space usage is O(1/ε).

Finally, we note that the operation Delete(i) can be implemented similar to above by
first manipulating the list representations of x and y to remove the i’th entries from x and y
and then running the static algorithm. J

We remark that by storing two dynamic vectors x and y that are undergoing element
insertions and deletions as described in the proof of Proposition 48, we can also efficiently
maintain an approximation of their (min,+)-convolution x⊕ y via Lemma 40.

H Omitted Proofs

H.1 Proof of Lemma 6
Denote the list representations of g and h as (xg1, y

g
1), . . . , (xgpg

, ygpg
) and (xh1 , yh1 ), . . . , (xhph

, yhph
),

respectively. Recall that both list representation are stored in doubly linked lists and that
the pieces of g and h are stored in a binary search tree such that for all x ∈ [0, t] we can
evaluate g(x) and f(x) in time O(log pg) and O(log ph), respectively.

We show how to construct each of the functions fmin, fshift, fadd and fround by showing
how to construct their list representations.

First, let us consider fmin. We construct the list representation (xmin
1 , ymin

1 ), . . . of fmin.
The intuition of our approach is that each piece of fmin must start and end at one of the
start or end points of the pieces of g and h. Thus, we will evaluate the function min{g, h} at
all points xgi and xhj and set fmin accordingly; then if fmin contains multiple pieces with the
same ymin

i -value, we will remove these duplicate pieces. More concretely, we consider the set
X = {xg1, . . . , xgpg

, xh1 , . . . , x
h
ph
} and order it from small to large. Now we set xmin

i to the i’th
smallest element in X for all i = 1, . . . , pg+ph. Observe that on the interval [xmin

i−1, x
min
i ), fmin

must take the value min{g(xmin
i−1), h(xmin

i−1)}. Therefore, we set ymin
i = min{g(xmin

i−1), h(xmin
i−1)}.

This gives an initial list representation of fmin. Then we “prune” the list representation of
fmin, i.e., we iterate over all pairs (xmin

i , ymin
i ) in increasing order of i and if ymin

i−1 = ymin
i

then we remove the pair (xmin
i−1, y

min
i−1) from the list representation of fmin. Observe that at
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the end of this process, all values of ymin
i are pairwise disjoint (since the functions g and h

are monotone).
To see that fmin(x) = min{g(x), h(x)} for all x ∈ [0, t], we observe that for all x ∈ X

(where X is as in the paragraph above) we have set fmin(x) correctly by construction.
Furthermore, on all contiguous intervals in [0, t] \X, g and h are constant and thus fmin is
constant. Therefore, for all x ∈ [0, t] \X, fmin(x) is also set correctly.

Next, we observe that fmin has at most pg+ph pieces becauseX consisted of at most pg+ph
elements and after that we only removed pieces from fmin. Furthermore, ordering the elements
in X can be done in time O((pg + ph) log(pg + ph)) and evaluating min{g(xmin

i ), h(xmin
i )}

can be done in time O(log(pg) + log(ph)). After that we only performed a single pass
over the list representations of fmin in time O(|X|) = O(pg + ph). Therefore, it took time
O((pg + ph) log(pg + ph)) to create the list representation of fmin. Finally, note that to store
the elements xmin

i in the binary search tree, we need additional time O((pg +ph) log(pg +ph)).
Now we observe that fadd can be computed similarly to fmin: the function fadd only

changes its functions values at the points in X (where X is as above). Therefore, we let xadd
i

be the i’th smallest element in X and set yadd
i = g(xadd

i−1) + h(xadd
i−1), followed by the same

pruning step as above. The rest of the proof goes through as above.
Next, consider fshift. We construct the list representation (xshift

1 , yshift
1 ), . . . , (xshift

pg
, xshift
pg

)
of fshift. For all i = 1, . . . , pg, we set xshift

i = xgi + c and yshift
i = ygi . The correctness is

straightforward and from the construction it is evident that there are only pg pieces and that
everything can be done in time O(pg log(pg)) (since we still need to construct the binary tree
for the pieces of fshift).

Finally, us consider fround. As before, we construct the list representation of fround,
(xround

1 , yround
1 ), . . . , (xround

pg
, xround
pg

). For all i = 1, . . . , pg, we set xround
i = xgi and yround

i =
dygi e1+δ. After that, we perform the same pruning step as in the construction of fmin. Since
g takes values in W∞ = {0} ∪ [1,W ] ∪ {+∞} and g is monotone, fround can take at most
2 + dlog1+δ(W )e different values. Again, the running time bound stems from the fact that
we have to construct the binary search tree for the pieces of fround.

H.2 Proof of Lemma 7
Let (xs1, ys1), . . . , (xsps

, ysps
) be the list representation of fs for s = 1, 2, where ps ≤ p is the

number of pieces of fs. We create pairs (y1
i , y

2
j ) for all (i, j) ∈ {1, . . . , p1} × {1, . . . , p2},

and order them such that y1
i + y2

j becomes monotonically increasing. We iterate over all
pairs in this order, and in each iteration we set the function value f(x) for some x-values
to y := y1

i + y2
j , where (y1

i , y
2
j ) is the pair considered during the iteration. Here, we start

with large x-values (at which f takes the smallest values) and keep on decreasing x (and
the function values increase); in other words, we construct f on its domain [0, t] from right
to left. More concretely, let xmax denote the highest x-value for which we did not yet set a
function value (or −∞ if all function values have been set). Let x′ = x1

i−1 + x2
j−1. We set

the function values for all x ∈ [x′, xmax) to y and then set xmax = x′. For each such new
piece of f , we store that we combined the indices i and j of the pieces that we used from f1
and from f2. Then we proceed with next iteration until all function values have been set.

The following two statements show that this procedure is correct.

1. Each x is assigned a function value that is at most the correct value f(x). To see this
let x ∈ [0, t] and recall that

f(x) = min
x̄∈[0,x]

f1(x̄) + f2(x− x̄) .
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Let x̄∗ denote the value of x̄ that attains the minimum in the above expression, and
let i∗ and j∗ denote the indices of the pieces that x̄∗ and x− x̄∗ fall into, w.r.t. the list
representations of f1 and f2, respectively. This means x̄∗ ∈ [x1

i∗−1, x
1
i∗) and x − x̄∗ ∈

[x2
j∗−1, x

2
j∗). Hence, x ≥ x′ = x1

i∗−1 +x2
j∗−1. Therefore, either in the iteration for the pair

(y1
i∗ , y

2
j∗) or before, the procedure assigns a function value to x. Because the procedure

assigns function-values in monotonically increasing fashion we are guaranteed that the
function value that is assigned is at most the correct value.

2. The function value y that is assigned is at least the correct value f(x). Suppose that
during some iteration we assign the function value y = y1

i + y2
j to x ∈ [x′, . . . , xmax),

where x′ = x1
i−1 + x2

j−1. We have

f(x) = min
x̄∈[0,x]

f1(x̄) + f2(x− x̄) (definition)

≤ f1(x1
i−1) + f2(x− x1

i−1) (consider x̄ = x1
i−1)

≤ f1(x1
i−1) + f2(x′ − x1

i−1) (x′ ≤ x, f2 monotonically decreasing)
= f1(x1

i−1) + f2(x2
j−1)

= y1
i + y2

j (y1
i = f1(x1

i−1) and y2
j = f(x2

j−1))
= y .

Hence, the assigned value is at least f(x).

Observe that we can implement the above procedure in time O(p2 log p): We first sort the
at most p2 pairs in time O(p2 log p). Then every iteration can be executed in constant time
because setting the function values for x ∈ [x′, xmax) to y can be performed by adding the
pair (xmax, y) to the list-representation of f and updating xmax to x′ takes time O(1).

Finally, suppose we already computed f and, given x ∈ [0, t], we shall return a value
x̄∗ ∈ [0, t] such that f(x) = f1(x̄∗) + f2(x− x̄∗). First, let (x1, y1), . . . , (xp, yp) denote the list
representation of f . Then we can determine the piece ` of f such that x ∈ [x`, x`+1) in time
O(log p) since we store the pairs (xi, yi) of f in a binary search tree. Recall that for each
piece of f , we stored the indices i and j of the pieces from f1 and f2 that we combined. Now
observe that we have x̄∗ ∈ [x1

i−1, x
1
i ) and x − x̄∗ ∈ [x2

j−1, x
2
j), where i and j are such that

these pieces from f1 and f2 form the corresponding piece of f . Thus, to find x̄∗ we can first
try to set x̄∗ = x1

i−1. If x− x̄∗ = x−x1
i−1 ∈ [x2

j−1, x
2
j ) then we are done. Otherwise, we must

have that x− x1
i−1 ≥ x2

j . Thus, we have to increase the value of x̄∗ from x1
i−1 until it is large

enough such that x− x̄∗ ∈ [x2
j−1, x

2
j ). This can be achieved by setting ∆ = (x− x1

x−1)− x2
j

and x̄∗ = x1
i−1 + ∆ + 1

2 min{x1
i − (x1

i−1 + ∆), x2
j − x2

j−1}. Note that this value of x̄∗ can be
computed in time O(1). Thus, the total time to return x̄∗ is O(log p).

H.3 Proof of Theorem 9
Recall that the dependency graph is a DAG. We call a vertex without any incoming edges a
leaf. The level of a vertex u is the length of the longest path from a leaf to u. Note that
since each node can only reach h other nodes, every vertex has level at most h.

We compute the DP bottom-up, starting at the leaves of the DAG and then recursively
computing the solutions for rows i for which the solutions of In(i) have already been computed.
We store the approximate solutions ADP(i, ·) using monotone piecewise constant functions.

We prove the theorem by induction over the level of i in the dependency graph. We show
the stronger statement that for every DP row i of level `, ADP(i, ·) is an α`+1-approximation
of DP(i, ·).
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We start with leaf vertices (i.e., vertices of level 0). For a leaf i, we use Properties 4(b)
and 4(c) to obtain that P̃i returns ADP(i, ·) which is a monotonone piecewiese constant
function with at most p pieces and which is an α-approximation of DP(i, ·).

Next, consider a row i of level `. We use P̃i to compute ADP(i, ·) = P̃i({ADP(i′, ·) : i′ ∈
In(i)}. By induction hypothesis, all solutions ADP(i′, ·), i′ ∈ In(i), are stored as monotone
piecewise constant functions and each of them has at most p pieces. Since we apply the
operations from Lemma 6 only O(1) times, the number of pieces only grows by a factor
O(1). Since we only apply the (min,+)-convolution from Lemma 7 at most a single time,
the number of pieces after the convolution is bounded by O(p2). Thus, we will never operate
on functions with more than O(p2) pieces. The bounds from Lemmas 6 and 7 imply that
all operations to compute P̃i can be performed in time at most O(p2 log(p)). Furthermore,
by induction hypothesis and since each i′ is at level `′ ≤ `− 1, we know that ADP(i′, ·) is
an α`-approximation of DP(i′, ·). Using Properties (3) and 4(a), we get that ADP(i, ·) is an
α`+1-approximation of DP(i, ·).

The theorem’s approximation guarantee follows from Property (2) which implies that
` ≤ h for all DP rows i in the dependency graph. Furthermore, above we argued that each
solution ADP(i, ·) can be computed in time O(p2 log(p)) which gives a total running time of
O(|I| · p2 log(p)).

H.4 Proof of Theorem 10
Consider a row i for which DP(i, ·) changes. Note that we only have to compute DP solutions
for rows i′ which are reachable from i in the dependency graph. Since we assume that the
dependency graph is a DAG and Reach(i) ≤ h for all rows i, there can be at most h such
rows. In the proof of Theorem 9 we argued that each solution ADP(i, ·) can be computed in
time O(p2 log(p)). This gives the proof of the theorem.

H.5 Property of the Räcke Tree
Let G = (VG, EG) be an undirected graph and let T = (VT , ET ) be a Räcke tree for G. We
prove that mincutT (A,B) ≥ mincutG(A,B) by showing that for any set of vertices ST ⊆ VT ,
it holds that capT (ST ) ≥ capG(S) where S ⊆ VG is the set of leaf vertices in VT .

Let ST ⊆ VT and consider the cut (ST , S̄T ) in T . We use S to denote the restriction of
ST to the leaf vertices and observe that (S, S̄) forms a cut in G as well. Then:

capT (ST ) =
∑

(xt,yt)∈ST×S̄T

capT (xt, yt) (definition of capT (ST ))

=
∑

(xt,yt)∈ST×S̄T

capG(Vxt ∩ Vyt) (definition of tree edge capacity)

=
∑

(xt,yt)∈ST×S̄T

∑
(x,y)∈Vxt×V̄xt

capG(x, y) (w.l.o.g. assume Vxt ⊆ Vyt)

=
∑

{x,y}∈EG

capG(x, y)
∑

(xt,yt)∈ST×S̄T

1{x ∈ Vxt ∧ y ∈ V̄xt} (change order of summation)

≥
∑

(x,y)∈S×S̄

capG(x, y) = capG(S) .

Here the inequality follows because a pair (x, y) ∈ S × S̄ whose capacity is counted on the
right hand side corresponds to a graph edge {x, y} ∈ EG (between x ∈ S and y ∈ S̄). This
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graph edge contributes to the capacity on every edge of the x-y path in T . One of these
edges must be cut by ST , i.e., 1{x ∈ Vxt

∧y ∈ V̄xt
} = 1 for this tree edge. Hence, its capacity

is also counted on the left hand side.

H.6 Proof of Lemma 18
The lower bound is immediate since P̃i is an α-approximation of Pi. For the upper bound
we use induction over `. For ` = 0 observe that

ADP(i, ·) = P̃i({ADP(i′) : i′ ∈ In(i)}) (definition)
≤ αPi({ADP(i′) : i′ ∈ In(i)}) (P̃i is α-approximate)
= αPi(∅) (vi is a leaf)
= αDP(i) (the DP is okay-behaved)

For ` > 0 we have

ADP(i, ·) = P̃i({ADP(i′) : i′ ∈ In(i)}) (definition)
≤ αPi({ADP(i′) : i′ ∈ In(i)}) (P̃i is α-approximate)
= αPi({α`DP(i′, ·) : i′ ∈ In(i)}) (induction hypothesis)
= α`+1DP(i, ·) (the DP is okay-behaved)

Here the induction hypothesis exploits the fact that all i′ ∈ In(i), have level strictly less than
` in the dependency graph.

H.7 Proof of Lemma 19
The claim about the approximation guarantee follows immediately from Lemma 18 and
the fact that the root has level at most h (since the longest leaf-root path in the depen-
dency tree has length h). To obtain running time O(|VT | · t), we compute the solutions
ADP(v1), . . . ,ADP(vn) in this order, i.e., based on the topological ordering of the dependency
DAG. Then by assumption on the ordering of the rows i and since all P̃i can be computed in
time t, the lemma follows.

H.8 Proof of Lemma 20
Suppose the inserted or deleted edge is incident upon a vertex i. Since the DPs we consider
are well-behaved, we only need to recompute DP solutions for those vertices j such that
there exists a directed path from i to j, j ≥ i, in the dependency graph. By construction of
the dependency graph, there can be at most h such vertices (since the longest leaf-root path
in the dependency graph has length h). Therefore, we can recompute all of these solutions in
time O(h · t). After we finished the recomputation, the guarantees on the approximation
ratio are implied by Lemma 19.

H.9 Proof of Lemma 21
We only prove the case if all functions fi are monotonically decreasing. The case for
monotonically increasing functions is analogous. Let P denote the set of all pieces in
functions fi. Consider a piece p ∈ P that starts at t1 ends at t2 and has value α. We
construction a piece-wise constant function fp : [0, t]→W∞ with two pieces that has value
∞ on [0, t1), and value α on [t1, t] (this means we extend the piece from t2 to t).
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Because the functions are monotonically decreasing we can rewrite fmin as a minimum of
the piece-functions fp, i.e.,

fmin(x) = min
p∈P

fp(x) .

We now sort all pieces in P by there start-point. By processing the pieces in sorting order we
can build the result function step-by-step. Let fr−1 denote the piece-wise constant function
encoding the minimum over the first r− 1 pieces. In order to compute fr we have to compare
the last piece of fr−1 to the r-th piece pr in P. If the value of pr is higher than fr−1(∞)
(the value of the last piece in fr−1) we ignore the piece pr. Otherwise, we end the current
last piece of fr−1 at the start time tr of piece pr and add the piece pr with its start time,
its value, and an end time of t. The running time is dominated by sorting the pieces and
inserting them into a binary search tree when adding them to the result function.

H.10 Proof of Lemma 22
We can assume w.l.o.g. that f2 is monotonically decreasing (this follows from the symmetry
of (min,+)-convolution). Now the lemma is implied by the following computation, where in
the third step we use the monotonicity of f2, i.e., we use that f2(x′) ≤ f2(x) for all x′ ≥ x:

f(x′) = min
x̄∈[0,x′]

f1(x̄) + f2(x′ − x̄)

≤ min
x̄∈[0,x]

f1(x̄) + f2(x′ − x̄)

≤ min
x̄∈[0,x]

f1(x̄) + f2(x− x̄)

= f(x).
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