
K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 1

Survey of Consistent
Software-Defined Network Updates

Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio

Abstract—Computer networks have become a critical infra-
structure. In fact, networks should not only meet strict requi-
rements in terms of correctness, availability, and performance,
but they should also be very flexible and support fast updates,
e.g., due to policy changes, increasing traffic, or failures. This
paper presents a structured survey of mechanism and protocols
to update computer networks in a fast and consistent manner.
In particular, we identify and discuss the different desirable
consistency properties that should be provided throughout a
network update, the algorithmic techniques which are needed
to meet these consistency properties, and the implications on
the speed and costs at which updates can be performed. We
also explain the relationship between consistent network update
problems and classic algorithmic optimization ones. While our
survey is mainly motivated by the advent of Software-Defined
Networks (SDNs) and their primary need for correct and efficient
update techniques, the fundamental underlying problems are not
new, and we provide a historical perspective of the subject as well.

I. INTRODUCTION

Computer networks such as datacenter networks, enterprise
networks, carrier networks etc. have become a critical infrastruc-
ture of the information society. The importance of computer
networks and the resulting strict requirements in terms of
availability, performance, and correctness however stand in
contrast to today’s ossified computer networks: the techniques
and methodologies used to build, manage, and debug computer
networks are largely the same as those used in 1996 [1]. Indeed,
operating traditional computer networks is often a cumbersome
and error-prone task, and even tech-savvy companies such
as GitHub, Amazon, GoDaddy, etc. frequently report issues
with their network, due to misconfigurations, e.g., resulting
in forwarding loops [2], [3], [4], [5]. An anecdote reported
in [1] illustrating the problem, is the one by a Wall Street
investment bank: due to a datacenter outage, the bank was
suddenly losing millions of dollars per minute. Quickly the
compute and storage emergency teams compiled a wealth of
information giving insights into what might have happened.
In contrast, the networking team only had very primitive
connectivity testing tools such as ping and traceroute, to debug
the problem. They could not provide any insights into the actual
problems of the switches or the congestion experienced by
individual packets, nor could the team create any meaningful
experiments to identify, quarantine and resolve the problem [1].

K.-T. Foerster and S. Schmid are with University of Vienna, Vienna, Austria.
E-mail: klaus-tycho.foerster@univie.ac.at and stefan_schmid@univie.ac.at.

S. Vissicchio is with University College London, London, United Kingom.
E-mail: s.vissicchio@cs.ucl.ac.uk.

Manuscript sent February ’18, revised August ’18, accepted October ’18.

Software-defined networking is an interesting new paradigm
which allows to operate and verify networks in a more
principled and formal manner, while also introducing flexi-
bilities and programmability, and hence foster innovations. In
a nutshell, a Software-Defined Network (SDN) outsources and
consolidates the control over the forwarding or routing devices
(located in the so-called data plane) to a logically centralized
controller software (located in the so-called control plane). This
decoupling allows to evolve and innovate the control plane
independently from the hardware constraints of the data plane.
Moreover, OpenFlow, the de facto standard SDN protocol today,
is based on a simple match-action paradigm: the behavior of
an OpenFlow switch is defined by a set of forwarding rules
installed by the controller. Each rule consists of a match and an
action part: all packets matched by a given rule are subject to
the corresponding action. Matches are defined over Layer-2 to
Layer-4 header fields (e.g., MAC and IP addresses, TCP ports,
etc.), and actions typically describe operations such as forward
to a specific port, drop, or update certain header fields. In other
words, in an SDN/OpenFlow network, network devices become
simpler: their behavior is defined by a set of rules installed by
the controller. This enables formal reasoning and verification,
as well as flexible network update, from a logically centralized
perspective [6], [7]. Moreover, as rules can be defined over
multiple OSI layers, the distinction between switches and
routers (and even simple middleboxes [8]) becomes blurry.

However, the decoupling of the control plane from the data
plane also introduces new challenges. In particular, the switches
and controllers as well as their interconnecting network form
a complex asynchronous distributed system. For example, a
remote controller may learn about and react to network events
slower (or not at all) than a hardware device in the data
plane: given a delayed and inconsistent view, a controller (and
accordingly the network) may behave in an undesirable way.
Similarly, new rules or rule updates communicated from the
controller(s) to the switch(es) may take effect in a delayed and
asynchronous manner: not only because these updates have
to be transmitted from the controller to the switches over the
network, but also the reaction time of the switches themselves
may differ (depending on the specific hardware, data structures,
or concurrent load).

Thus, while SDN offers great opportunities to operate a
network in a correct and verifiable manner, there remains a
fundamental challenge of how to deal with the asynchrony
inherent in the communication channel between controller and
switches as well as in the switches themselves. Accordingly, the
question of how to update network behavior and configurations
correctly yet efficiently has been studied intensively over the

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 2

last years. However, the notions of correctness and efficiency
significantly differ across the literature. Indeed, what kind
of correctness is needed and which performance aspects are
most critical often depends on the context: in security-critical
networks, a very strong notion of correctness may be needed,
even if it comes at a high performance cost; in other situations,
however, short transient inconsistencies may be acceptable, as
long as at least some more basic consistency guarantees are
provided (e.g., loop-freedom).

We observe that not only is the number of research results
in the area growing very quickly, but also the number of
models, the different notions of consistency and optimization
objectives, as well as the algorithmic techniques: Thus, it has
become difficult to keep an overview of the field even for active
researchers. Moreover, many of the underlying update problems
are not entirely new or specific to SDN: rather, techniques to
consistently update legacy networks have been studied in the
literature, although they are based on the (more restrictive)
primitives available in traditional protocols (e.g., IGP weights).

We therefore believe that it is time for a comprehensive
survey of the subject.

A. The Network Update Problem

Any dependable network does not only need to maintain
certain invariants, related to correctness, availability, and perfor-
mance, but also needs to be flexible in how it process packets.

1) Flexibility: Flexibility implies that networks have to be
updated, e.g., to support the following use cases.

a) Security policy changes: For example, in enterprise
networks, traffic from a specific subnetwork may have to be
routed via a firewall if specific alarms are raised. Similarly,
in wide-area networks, the countries that must be avoided by
sensitive traffic can change over time.

b) Traffic engineering: To improve performance metrics
(e.g., minimizing the maximal link load), a network operator
may decide to reroute some traffic to different paths. For
example, many Internet Service Providers change their paths
during the day, depending on the expected load or in reaction
to external changes (e.g., a policy modification from a content
provider).

c) Maintenance work: Also maintenance work may
require the update of network routes. For example, in order to
replace a faulty router, or to upgrade an existing router, it can
be necessary to temporarily reroute traffic.

d) Link and node failures: Failures happen quite fre-
quently and unexpectedly in today’s computer networks, and
typically require a fast reaction. Accordingly, fast network
monitoring and update mechanisms are required to react to
such failures, e.g., by determining a failover path.

e) Service relocation: Networks typically run several
services, from in-network packet processing functions (e.g.,
virtualized middleboxes) to applications (like data storage or
application servers). Addition, removal or relocation of any of
those services would require a network update, i.e., to reroute
traffic for the affected service.

2) Maintaining consistency: It is often desirable that the
network maintains certain consistency properties throughout
the update. Those properties may include per-packet path
consistency (a packet should be forwarded along the old or the
new route, but never a mixture of both), waypoint enforcement
(a packet should never bypass a firewall), or at least correct
packet delivery (at no point in time packets should be dropped
or trapped in a loop).

3) Towards SDNs: While the above reasons for network
updates are relevant independently of the adopted paradigm, the
decoupling of control- and data-plane, as well as the flexibility
allowed by the SDN architecture are likely to increase the
frequency of network updates, e.g., for supporting more fine-
grained and frequent optimization of traffic paths [9].

B. Our Contributions
This paper presents a comprehensive survey of the consistent

network update problem in Software-Defined Networks (SDNs).
In the basic scenario assumed by most prior contributions,
an SDN network is controlled by a single controller, which
needs to preserve specific consistency properties at each and
every moment during the update. Preserving such properties
is often argued to be more important that the induced ina-
bility to guarantee perfect network availability or partition
tolerance simultaneously—e.g., to avoid packet losses or
security breaches. This impossibility result follows from the
celebrated CAP theorem [10], which also applies to control
algorithms used in networks [11]. Throughout this paper, we
first consider this basic scenario and then extend the discussion
to network updates with distributed SDN controllers and
different consistency models [12], [13], [14]. The goal of
our survey is to both (1) provide active researchers in the field
with an overview of the state-of-the-art literature, and (2) help
researchers who only recently became interested in the subject
bootstrap and learn about open research questions.

In discussing the literature, we identify and compare the
consistency properties (absence of forwarding loops and
blackholes, policy preservation, congestion avoidance, etc.)
and performance objectives (update duration, maximum link
overload during the update, etc.) considered by the scientific
literature. We provide an overview of the algorithmic techniques
required to solve specific classes of network update problems,
and discuss the inherent tradeoffs between the achievable level
of consistency and the speed at which networks can be updated.
In fact, as we will see, some update techniques are not only less
efficient than others, but with them, it can even be impossible
to consistently update a network.

We also present a historical perspective, surveying the
consistency notions provided in traditional networks and
discussing the corresponding techniques accordingly.

Moreover, we put the algorithmic problems into perspective
and discuss how these problems relate to classic optimization
and graph theory problems, such as multi-commodity flow
problems or maximum acyclic subgraph problems.

C. Paper Organization
The remainder of this paper is organized as follows. §II

presents a historical perspective and reviews notions of con-

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 3

sistency and techniques both in traditional computer networks
as well as in Software-Defined Networks. §III then presents
a classification and taxonomy of the different variants of the
consistent network update problems. §IV, §V, and §VI review
models and techniques for connectivity consistency, policy
consistency, and capacity consistency related problems, respecti-
vely. §VII-A discusses proposals to further relax consistency
guarantees by introducing tighter synchronization. In §VIII, we
identify practical challenges. After highlighting future research
directions in §IX, we conclude our paper in §X.

II. HISTORY OF THE NETWORK UPDATE PROBLEM
FROM THE ORIGINS TO SDN

Any computer network must guarantee some consistency
properties for the configured forwarding rules and paths. For
example, forwarding loops must be avoided, as they can quickly
deplete switch buffers and harm the availability and connectivity
provided by a network.

It is eminently desirable to preserve consistency proper-
ties during network updates—i.e., while changing packet-
processing rules on network devices. In fact, early studies on
consistent network updates date back long before the advent
of software-defined networking. In this section, we provide a
historical perspective on the many research contributions that
can be considered as the main precursors of the state of the
art for SDN updates.

We first discuss update problems and techniques in traditional
networks (§II-A-II-B). In those networks, forwarding rules are
computed by routing protocols that run standardly-defined
distributed algorithms, whose output is influenced by both
physical topology (e.g., active links) and routing configurations
(e.g., logical link costs). Pioneering update works aimed at
avoiding transient inconsistencies due to modified topology
or configurations, mainly focusing on the Interior Gateway
Protocols (IGPs) that are commonly used to control forwarding
within a single network. A first set of contributions tried to
modify IGP protocol definitions, mainly to provide forwarding
consistency guarantees upon link or node failures. Progressively,
the research focus has shifted to a more general problem of
finding sequences of IGP configuration changes that modify
forwarding while guaranteeing forwarding consistency, e.g.,
for service continuity (§II-A). More recent works have also
considered reconfigurations of protocols different or deployed
in addition to IGPs, mostly generalizing previous techniques
while keep focusing on forwarding consistency (§II-B).

Subsequently (§II-C), we discuss update problems in the
context of SDNs. Those networks are based on a clear separa-
tion between controller (implementing the control logic) and
dataplane elements (applying controller’s decision on packets).
This separation indisputably provides new flexibility and opens
new network design patterns, for example, enabling security
requirements to be implemented by careful path computation
(done by the centralized controller). This also pushed network
update techniques to consider additional consistency properties
like policies and performance.

Throughout the section, we rely on the generic example
shown in Fig. 1 for illustration. The figure shows the intended

forwarding changes to be applied for a generic network update.
Observe that possible forwarding loops can occur when we
update nodes one by one, because links (v1, v2) and (v2, v3)
are traversed in opposite directions before and after the update.

s	

v2	

v3	

v1	

d	

(a) Surpassed state

s	

v2	

v3	

v1	

d	

(b) Down state

Fig. 1. A network update example, where forwarding paths have to be changed
from the Surpassed (Fig. 1a) to the Down (Fig. 1b) state. Arrows represent
paths on which traffic (e.g., from s to d) is forwarded, while (gray) undirected
links between nodes represent unused links.

A. IGP Reconfigurations

In traditional (non-SDN) networks, forwarding paths are
computed by distributed routing protocols. Among them, link-
state IGPs are typically used to compute forwarding paths
within a network owned by the same administrative entity.
They are based on computing shortest-paths on a logical
view of the network, that is, a weighted graph which is
shared across routers. Parameters influencing IGP computations,
like link weights, can be set by operators by editing router
configurations.

As an illustration, Fig. 2 shows a possible IGP implementa-
tion for the network states shown in Fig. 1. In particular, Fig. 2
reports the IGP graph (consistent with the physical network
topology) with explicit mention of the configured link weights.
Based on those weights, for each destination (e.g., d in this
example), all routers independently compute the shortest paths,
and forward the corresponding packets to the next-hops on
those paths. Consequently, the IGP configurations in Figs. 2a
and 2b respectively produce the forwarding paths depicted in
Figs. 1a and 1b.

d	 v3	

s	 v1	

v2	

50	 50	

10	

10	

10	

10	

(a) Surpassed state

d	 v3	

s	 v1	

v2	

50	 50	

10	

10	

10	

(b) Down state

Fig. 2. Possible implementation of pre- and post-update forwarding paths for
the update in Fig. 1 in a traditional, IGP-based network. Numbers close to
network links represent the corresponding IGP weights.

When the IGP graph is modified (e.g., because of a link
failure, a link-weight change or a router restart), messages are
propagated by the IGP itself from node to node, so that all nodes
rebuild a consistent view of the network: This process is called
IGP convergence. However, IGPs do not provide any guarantee
on the timing and ordering in which nodes receive messages
about the new IGP graphs. This potentially triggers transient
forwarding disruptions due to temporary state inconsistency

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 4

between a set of routers. For example, assume that we simply
remove link (v3, d) from the IGP graph shown in Fig. 2a. This
will eventually lead us to the configuration presented in Fig. 2b.
Before the final state is reached, the notification that (v3, d)
is removed has to be propagated to all routers. If v3 receives
such notification before v2 (e.g., because closer to the removed
link), then v3 would recompute its next-hop based on the new
information, and starts forwarding packets for d to v2 (see
Fig. 1b). Nevertheless, v2 keeps forwarding packets to v3 as
it considers that (v3, d) is still up. This creates a loop between
v3 and v2: The loop remains until v2 is notified about the
removed link. A similar loop can occur between v2 and v1.

Guaranteeing disruption-free IGP operations has been consi-
dered by research and industry since almost two decades. We
now briefly report on the main proposals in the area, which
share the focus on support for planned operations.

1) Protocol extensions: Early contributions focused on the
modification of IGPs, mainly to avoid forwarding inconsisten-
cies. Among them, protocol extensions have been proposed [15],
[16], [17] to gracefully restart a routing process, that is, to
avoid forwarding disruptions (e.g., blackholes) during the
software upgrade of a router. Other works focused on avoiding
forwarding loops during configuration changes. For example,
François and Bonaventure [18] propose oFIB, an IGP extension
that guarantees the absence of forwarding loops upon manually
managed topological changes, e.g., to propagate information
about a link or a router that has to be shut down for maintenance.
The key intuition behind oFIB is to use explicit synchronization
between routers to constrain the order in which each router
changes its forwarding entries. Namely, each router is forced
not to update its forwarding entry for a given destination until
all its final next-hops switched to their respective final next-
hops for that destination. Consider again Fig. 2, assuming that
oFIB is deployed. To prepare the shutdown of link (v3, d), oFIB
ensures that v1 is the only router changing its forwarding entry
to d at first: this is safe because v1’s final next-hop is directly
the destination d. All the other routers (e.g., v2) do not update
yet until their final next-hops (e.g., v1) use their respective
final paths. In fact, after v1 starts forwarding traffic through
the (v1, d) link, it notifies its neighbors about its updated state.
At that point, v2 and s can update their respective forwarding
entries for d. The whole network is eventually updated by
iterating this process.

oFIB inspired a number of variants, aiming at applying
explicit notification to more generic updates. Fu et al. [19]
generalizes the approach by defining a loop-free ordering of
IGP-entry updates for arbitrary forwarding changes. Shi et
al. [20] also extends the reconfiguration mechanism to avoid
traffic congestion in addition to forwarding incorrectness. A
broader overview of loop avoidance and mitigation techniques
mostly inspired by oFIB is reported in [21].

Modifying protocol specifications may seem the most
straightforward solution to deal with reconfigurations in tradi-
tional networks, but it actually has practical limitations. First,
this approach cannot accommodate custom reconfiguration
objectives. For instance, ordered forwarding changes generally
work only on a per-destination basis [18], which can make the
reconfiguration process slow if many destinations are involved

– while one operational objective could be to exit transient
states as quickly as possible. Second, protocol modifications
are targeted to specific reconfiguration cases (e.g., single-link
failures), since it is intrinsically hard to predict the impact
of any possible configuration change on forwarding paths.
Finally, protocol extensions are not easy to implement in
practice, because of the reluctance of vendors to change their
proprietary router software, as well as the additional complexity
and potential overhead (e.g., load) induced on routers.

Limited practicality of protocol modifications quickly moti-
vated new approaches, based on coordinating operations readily
available in deployed routers, at a per-router level.

2) Coarse-grained operation scheduling: Planned reconfi-
gurations may encompass several coarse-grained operations.
Consider the case where in Fig. 2a, the weight of link (s, v1) has
to be set to 70 in addition to removing the link (v3, d). The link
reweighting might be desirable to improve load balancing across
the network, e.g., adapting to a permanently increased volume
of traffic from s to d. Such a reconfiguration effectively consists
of two macro operations: removing (v3, d) and changing the
weight of (s, v3). Even assuming that each coarse-grained
operation is atomic, the order in which distinct operations
are performed can have an impact on how much the network
traffic is disrupted during the reconfiguration. Assume that link
(s, v3) can sustain no more than 50% of the s−d traffic volume.
Reweighting (s, v1) before removing (v3, d) forces all the s− d
traffic on the path (s, v3, d) which overloads link (s, v3), while
removing (v3, d) first would not cause congestion.

Several works propose to use optimization techniques to
compute the order of macro-operations so as to guarantee
given consistency properties. As a first approach, Keralapura
et al. [22] formalized the problem of finding the optimal
order in which nodes can be added to a network, one by
one, so as to minimize an objective function modeling typical
costs of connectivity and traffic disruptions in Internet Service
Providers. The following contributions encompass additional
operations. In 2009 [23] and 2011 [24], for instance, Raza et
al. propose a theoretical framework to schedule link weight
changes in a way that minimizes a generic disruption function.
This approach enables to formulate our reconfiguration example
as a formal optimization problem, where constraints enforce
that the reweighting of links (s, v1) and (v3, d) (from 10 to
70 and from 10 to ∞, respectively) are both scheduled, and
the objective functions aggregates the cost of every step in the
schedule. The works also describe two algorithms to solve the
formalized problems, one based on dynamic programming and
the other on an ant colony optimization heuristic.

The approaches just described basically spread coarse-
grained operations over time. This is not sufficient to deal
with many update scenarios. Fig. 2 displays one of such
scenarios: since the reconfiguration includes a single coarse-
grained operation (link removal), previous approaches cannot
prevent forwarding loops possibly occurring when that single
operation is performed.

3) Progressive link reweighting: Intermediate link weights
can be set to avoid disruptions during a reconfiguration, even
if it includes a single link weight change. Consider again

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 5

d	 v3	

s	 v1	

v2	

50	 50	

10	

10	

10	

10	

(a) Initial

d	 v3	

s	 v1	

v2	

50	 50	

10	

10	

10	

10⟿31	

(b) Step 1

d	 v3	

s	 v1	

v2	

50	 50	

10	

10	

10	

31⟿51	

(c) Step 2

d	 v3	

s	 v1	

v2	

50	 50	

10	

10	

10	

51⟿∞	

(d) Final

Fig. 3. Intermediate IGP weights that enable a loop-free reconfiguration for the example in Fig. 1.

the example in Fig. 2, and let the final weight for link
(v3, d) conventionally be ∞. In this case, the forwarding loops
potentially triggered by the IGP reconfiguration can be provably
prevented by using two intermediate weights for link (v3, d), as
illustrated in Fig. 3. The first of those intermediate weights (see
Fig. 3b) is used to force v1 and only v1 to change its next-hop,
from v2 to d: Intuitively, this prevents the loop between v2
and v1. The second intermediate weight (see Fig. 3c) similarly
guarantees that the loop between v3 and v2 is avoided, i.e., by
forcing v2 to use its final next-hop before v3.

Of course, computing intermediate weights that guarantee
the absence of disruptions becomes trickier when multiple
destinations are involved.

Such a technique can be straightforwardly applied to real
routers. For example, an operator can progressively change the
weight of (v3, d) to 31 by editing the configuration of v3 and
d, then check that the all IGP routers have converged on the
paths in Fig. 3b, repeat similar operations to reach the state in
Fig. 3c, and finally remove the link safely. Even better, François
et al. [25] have proved that it is always possible to compute
a sequence of intermediate link weights that provably avoids
all transient loops when a single link has to be reweighted.
Obviously, the weight of multiple links can be changed in a
loop-free way, by safely reweighting links one by one.

Additional research contributions focused on minimizing the
number of intermediate weights that ensure loop-free reconfigu-
rations. Surprisingly, the problem is not computationally hard,
despite the fact that all destinations have potentially to be taken
into account when changing link weights. Polynomial-time
algorithms have been proposed to support planned operations
at the per-link [26], [25] (e.g., single-link reweighting) and
at a per-router [27], [28] (e.g., router shutdown/addition)
granularity.

4) Ships-in-the-Night (SITN) techniques: To improve the
update speed in the case of simultaneous link weight changes
and to deal with additional reconfiguration scenarios (from
changing routing parameters like OSPF areas to replacing an
IGP with another), both industrial best practices and research
works often rely on a technique commonly called Ships-in-
the-Night [29]. This technique builds upon the capability of
traditional routers to run multiple routing processes at the
same time. Thanks to this capability, both the initial and final
configurations can be installed (as different routing processes)
on all nodes at the same time. When multiple configurations
are installed on the same node, only one of them is preferred
and used. Fig. 4 shows the setup for a Ships-in-the-Night
reconfiguration for the reconfiguration case in Fig. 2.

d	 v3	

s	 v1	

v2	

50	 50	

10	

10	

10	

10	

50	
50	

50	
10	

10	

Fig. 4. Ships-in-the-Night setup: All routers run two routing processes, one
with the initial configuration (blue, solid lines) and the other with the final
configuration (green, dashed and dotted segments).

In SITN, the reconfiguration process then consists in swap-
ping the preference between the initial and the final configu-
rations on every node, typically one by one. Configuration
preference can be swapped at a per-destination granularity.
This means that (1) for each destination, every node either
forwards packets to its initial next-hops or its final ones; (2)
at any time during the reconfiguration, distinct nodes can use
different configurations; hence, (3) inconsistencies may arise
from the mismatch between the configurations used by distinct
nodes.

Because of those potential inconsistencies, the Ships-in-the-
Night approach opens a new algorithmic problem, that is, to
decide a safe order in which to swap preferences on a per-
router basis. For example, if the configuration preference is
swapped on v3 before doing the same on v2 in Fig. 4, we end
up with a loop between v2 and v3. In contrast, Fig. 5 shows a
SITN-based safe reconfiguration that mimics the progressive
link weight increment depicted in Fig. 3.

Naive algorithms for swapping configuration preferences
cannot guarantee disruption-free reconfigurations. For example,
replacing the initial configuration with the final one on all
nodes at once provides no guarantee on the order in which
new preferences are applied by nodes, hence they potentially
trigger packet losses and service disruptions (in addition to
massive control-plane message exchanges). Such an approach
will also leave the network in an inconsistent, disrupted and
hard-to-troubleshoot state if any reconfiguration command is
lost or significantly delayed. Industrial best practices (e.g., [29],
[30]) only provide rules of thumb which do not apply in the
general case, and do not guarantee lossless reconfiguration
processes.

Hence, the problem of computing a safe per-router reconfigu-
ration order within SITN called for new research contributions.
Prominently, [31], [32] show that no SITN-based update order
guarantees the absence of forwarding loops in some cases, and

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 6

d	 v3	

s	 v1	

v2	

(a) Initial

d	 v3	

s	 v1	

v2	

(b) Step 1

d	 v3	

s	 v1	

v2	

(c) Step 2

d	 v3	

s	 v1	

v2	

(d) Final

Fig. 5. Ships-in-the-Night reconfiguration that mimics the progressive link reweighting shown in Fig. 3. In each figure, the colors of router names indicate
their respective control-plane preferences at the represented reconfiguration step.

it is NP-complete to even assess whether a loop-free order exists.
Those papers also propose two algorithms to compute a loop-
free order. The first algorithm is based on applying traditional
optimization algorithms to solve a Linear Program (LP) that
models the input update problem. Such an LP is derived from
enumerating all possible loops, and encoding all the possibilities
to avoid every loop as LP constraints (that must be alternatively
satisfied). For the example in Fig. 4, this algorithm would
enumerate the two potential loops (between v1 and v2, and
between v2 and v3), and formulate LP constraints forcing the
control-plane preference to be swapped at v1 before v2 (to break
the first loop) and at v2 before v3 (to break the second loop).
The second algorithm is a heuristic based on reconfiguring
routers according to the final paths (e.g., v1 before v2 and s
in our example, because v1 is closer to d), aimed to avoid
the scalability problems of the LP-based approach. Finally,
[31], [32] describe a comprehensive system to carry out loop-
free SITN-based reconfigurations. The system computes the
operational sequence to perform an input reconfiguration, and
directly interacts with the routers to modify their configurations,
and check when every operation in the sequence is completed.
The system was envisioned to work semi-automatically, waiting
for an explicit confirmation from the operator before performing
the next operation in the computed sequence.

B. Generalized Routing Reconfigurations in Traditional
Networks

Research contributions have been devoted to reconfigurations
in more realistic settings, including other protocols in addition
to an IGP.

1) Enterprise networks, with several routing domains: As
a first example, the Ships-in-the-Night framework has been
used to carry out IGP reconfigurations in enterprise networks.
Those networks typically use route redistribution [33], a
mechanism enabling the propagation of information from
one routing domain (e.g., running an IGP) to another (e.g.,
running another IGP). Route redistribution may be responsible
for both routing (inability to converge to a stable state) and
forwarding (e.g., loop) anomalies [33]. SITN-based update
procedures have been proposed in [34] to avoid transient
anomalies while (i) reconfiguring a specific routing domain,
and/or (ii) arbitrarily changing the size and shape of routing
domains.

2) Internet Service Providers (ISPs), with BGP and MPLS:
In ISP networks, the Border Gateway Protocol (BGP) and

often the Multi-Protocol Label Switching (MPLS) protocol are
pervasively used to manage transit traffic, for which both the
source and the destination is external to the network. Vanbever
et al. [35] showed that even techniques guaranteeing safe
IGP reconfigurations can cause transient forwarding loops in
those settings, because of the interaction between IGP and
BGP. They also proved conditions to avoid those BGP-induced
loops during IGP reconfigurations, by leveraging the presence
of MPLS or carefully configuring BGP (according to some
guidelines).

In parallel, a distinct set of techniques aimed at supporting
BGP reconfigurations. François et al. [36] propose a solution
to avoid churn and loss of connectivity due to planned BGP
session shutdown: This solution is based on modifying BGP to
distribute alternate routes and move traffic on them before the
target BGP session is actually removed. Wang et al. [37] present
an approach, based on extending virtual machine migration
techniques, to quickly transfer virtual routers from one physical
device to another. Keller et al. [38] address the more general
problem of fastly migrating parts of the BGP configuration (e.g.,
transferring a BGP session from one router to another), with a
technique that takes care of moving the BGP state to the new
route and reduce the impact of the migration on both BGP peers
and other routers. Vissicchio et al. [39] describe a framework
that enables radical re-organizations of BGP sessions (e.g.,
changing several of them, or transforming a full-mesh into a
route reflector topology) while guaranteeing the absence of
forwarding and routing anomalies: The framework is based
on implementing Ships-in-the-Night in BGP (with a minimal
extension to existing routers), and tagging packets so that
routers can uniformly apply a single BGP configuration to
every packet.

Finally, Internet-level problems, like maintaining global
connectivity upon failures, have also been explored (see,
e.g., [40]).

3) Protocol-independent reconfiguration frameworks: By de-
sign, all the above approaches are dependent on the considered
(set of) protocols and even on their implementation.

Protocol-independent reconfiguration techniques have been
studied as well in the literature. Mainly, [41] generalizes SITN
by proposing a new design for the internal router architecture.
This re-design would allow routers not only to run multiple
configurations simultaneously, and to select the configuration
to apply for every packet on the basis of a specific bit in the
packet header. The work also describes a commit protocol to
support the switch between configurations without creating

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 7

forwarding loops. General mechanisms for consensus routing
have also been explored in [42].

C. Updates of Software-Defined Networks

Recently, software-defined networking has grown in popu-
larity, thanks to its promises to spur abstractions, mitigate
compelling management problems and avoid network ossifi-
cation [43]. SDN is currently used or discussed in a wide
range of contexts [44], e.g., to improve network virtualization
in datacenters, generalize traffic engineering in the wide-area
network, or enable slicing in emerging 5G applications, to just
name a few.

In pure SDN networks, rather than having devices (switches
and routers) run their own distributed control logic, the
controller computes (according to operators’ input) and installs
(on the controlled devices) the rules to be applied to packets
traversing the network: No message exchange or distributed
computation are needed anymore on network devices. This is
very different from the existing decentralized control planes
typically used in traditional networks (as well as in many Ad
Hoc and P2P networks) and allows, e.g., to overcome the
notoriously slow reaction to changes (e.g., link failures) and
rerouting of flows in those networks: one of the key reasons
behind Google’s move to SDN [45].

Fig. 6 depicts an example of an SDN network, configured
to implement the initial state of our update example (see
Fig. 1). Beyond the main architectural components, the figure
also illustrates a classic interaction between them. Indeed,
the dashed lines indicate that the SDN controller instructs
the programmable network devices, typically switches [43]),
on how to process (e.g., forward) the traversing packets. An
example command sent by the controller to switch s is reported
next to the dashed line connecting the two: This command
instructs s to use v1 as next-hop for any packet destined to d.

d	 v3	

s	 v1	

v2	

dst(d)	 à	 fwd(v1)	

SDN	
controller	

Fig. 6. Implementation of the surpassed state in Fig. 1 in an SDN network.

The SDN architecture is expected to make network updates
more frequent and more critical than in traditional networks. On
the one hand, controllers are often intended to support several
different requirements, including performance (like optimal
choice of per-flow paths), security (like firewall and proxy
traversal) and packet-processing (e.g., through the optimized
deployment of virtualized network functions) ones. On the other
hand, devices cannot provide any reaction (e.g., to topological
changes) like in traditional networks. In turn, this comes at
the risk of triggering inconsistencies, e.g., creating traffic
blackholes during an update, that are provably impossible
to trigger by reconfiguring current routing protocols [46]. As a
consequence, the controller has to carry out a network update

for every event (from failures to traffic surges and requirement
modification) that can impact the forwarding rules installed
on the switches; additionally, it should perform such updates
while typically supporting more critical consistency guarantees
(e.g., security-related ones) and performance objectives (e.g.,
for prompt reaction to failures) than in traditional networks.

An extended corpus of SDN update techniques have already
been proposed in the literature, following up on the large
interest raised by SDN in the last few years. This research effort
nicely complements approaches to specify [47], compile [48],
[49], and check the implementation of [50], [6] network
requirements that operators may want to implement in their
(SDN) networks.

The first cornerstone of SDN updates is represented by the
work by Reitblatt et al. in 2011 [51] and 2012 [52]. This
work provides a first analysis of the additional (e.g., security)
requirements to be considered for SDN updates, extending the
scope of consistency properties from forwarding to policy ones.
In particular, it focuses on per-packet consistency property,
imposing that packets have to be forwarded either on their
initial or on their final paths (never a combination of the two),
throughout an update.

The technical proposal is centered around the 2-phase
commit technique, which relies on tagging packets at the
ingress so that either all initial rules or all final ones can
be consistently applied network-wide. Initially, all packets are
tagged with a given “old label” (e.g., no tag) and rules matching
the old label are pre-installed on the switches. In a first step, the
controller then instructs the internal switches to apply the final
forwarding rules to packets carrying a “new label” – even if no
packet carries such label at this step. After the internal switches
have confirmed the successful installation of these new rules,
the controller then changes the tagging policy at the ingress
switches, requiring them to tag packets with the “new label”.
As a result, packets are immediately forwarded along the new
paths. Finally, the internal switches are updated (to remove
the old rules), and an optional cleaning step can be applied
to remove all tags from packets. Fig. 7 shows the operational
sequence produced by the 2-phase commit technique for the
update case in Fig. 3.

Several works have been inspired by the 2-Phase technique
presented in [52]. One first line of research focuses on providing
additional guarantees, e.g., congestion-freedom (from [53]
to [54], [55], [56], [57], [58], [59], [60]). In a second line
of research, several algorithms [32], [61], [62], [63], [64]
to compute a set of ordered rule replacements have been
proposed to deal with specific SDN update cases (e.g., where
only forwarding consistency is needed), avoiding the need for
additional rules and hence enabling more resource-efficient
approaches (e.g., TCAM memory slots are expensive and
precious).

In the following sections, we detail most of those contributi-
ons and the insights on different update problems that globally
emerge from them.

For a tutorial description of a few major works in the area,
mainly [57], [65], we refer to the recent article of Li et al. [66].

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 8

d	 v3	

s	 v1	

v2	

dst(d),	 tag	 à	 fwd(d)	

dst(d),	 tag	 à	 fwd(v1)	

(a) Step 1

d	 v3	

s	 v1	

v2	

dst(d)	 à	 fwd(v1),tag	

dst(d)	
à	 fwd(v

2),tag	

(b) Step 2

d	 v3	

s	 v1	

v2	

dst(d)	 à	 fwd(d)	

dst(d)	 à	 fwd(v1)	

(c) Step 3

Fig. 7. Application of the 2-phase commit technique for carrying out our update example (see Fig. 3). A final (optional) step consists in cleaning the
configuration by removing packet tags, i.e., reverting tagging at v3 and s as enforced by Step 2.

III. TAXONOMY OF UPDATE TECHNIQUES

We now present a general formulation of network update
problem (§III-A), which abstracts from assumptions and
settings considered in the literature. This formulation enables
us to classify research contributions on the basis of the
proposed techniques (e.g., simultaneous usage of multiple
configurations on nodes or not) and algorithms, independently
of their application to traditional and SDN networks (§III-B).

A. Generalized Network Update Problem (GNUP)

In order to compare and contrast research contributions,
we first provide a generalized statement for network update
problems. We use again Fig. 1 for illustration.

1) Basic Problem: Generally speaking, a network update
problem consists in computing a sequence of operations
that changes the packet-processing rules installed on network
devices. Consider any communication network: It is composed
by a given set of inter-connected devices, that are able to
process data packets (e.g., forwarding them to a next-hop)
according to rules installed on them. We refer to the set of
rules installed on all devices at a given time as network state
at that time. Given an initial and final state, a network update
consists in passing from the initial state to the final one by
applying operations (i.e., adding, removing or changing rules)
on different devices. In Fig. 1, the initial state forces packets
from source s to destination d along the path (s, v1, v2, v3, d);
the final state forwards the same packets over (s, v1, d), and
packets from v3 to d on (v3, v2, v1, d). The network update
problem consists in replacing the initial rules with the final
ones, so that the paths for d are updated from (s, v1, v2, v3, d)
to (s, v1, d) and (v3, v2, v1, d).

2) Operations: To perform a network update, a sequence
of operations has to be computed. By operation, we mean
a (direct or indirect) modification of packet-processing rules
installed on one or more devices. As an example, an intuitive
and largely-supported operation on network devices is rule
replacement, which consists in instructing a device (e.g., v3) to
replace an initial rule (e.g., forward the s−d packet flow to v2)
with the corresponding final one (e.g., forward the s−d flow to
d). Operations can be coarse-grained and indirect, as IGP link
reweighting or configuration swapping in legacy networks that
imply multiple rule replacements at distinct devices (see §II).

3) Consistency: The difficulty in solving network update
problems is that some form of consistency must be guaranteedly
preserved during the update, for practical purposes (e.g.,
avoiding service disruptions and packet losses). Preserving
consistency properties, in turn, depends on the order in which
operations appear in the computed sequence and are executed
by network devices. For example, if v3 replaces its initial rule
with its final one before v2 in Fig. 1, then the operational
sequence triggers a forwarding loop between v2 and v3 that
interrupts the connectivity from s to d. In §III-B, we provide an
overview of consistency properties considered in the literature.

The practical need for guaranteeing consistency has two main
consequences (as shown in §II). First, it forces network updates
to be performed incrementally, i.e., appropriately scheduling
operations over time so that the installed intermediate states
are provably disruption-free. Second, it requires a careful
computation of operational sequences, implementing specific
reasoning in the problem-solving algorithms (e.g., to avoid
replacing v3’s rule before v2’s one in the previous example).

4) Performance: Another algorithmic challenge consists
in optimizing network-update performance. As an example,
minimizing the time to complete an update is commonly con-
sidered among those optimization objectives. Indeed, carrying
out an update incrementally requires to install intermediate
configurations, and in many cases it is practically desirable
to minimize the time spent in such intermediate states. We
provide a broader overview of performance goals considered
by previous works in §III-B.

5) Final Operational Sequences: Generally, the solution
for an update problem can be represented as a sequence of
steps or rounds, that both (i) guarantees consistency properties
and (ii) optimizes update performance. Each step is a set of
operations that can be started at the same time. Note that this
does not mean that operations in the same step are assumed to
be executed simultaneously on the respective devices; Rather,
all operations in the same step can be started in parallel because
the target consistency properties are guaranteed independently
of the relative order in which those operations are executed.
Examples of operational sequences, computed by different
techniques, are reported in §II (see Figs. 3 and 5).

B. Classifying Update Techniques According to the Addressed
GNUP Instance

In this section, we provide an overview of the problem
space and classify existing models and techniques. Previous

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 9

Taxonomy of Consistent Network Update Problems

Connectivity Consistency [65] Policy Consistency [51] Capacity Consistency [53]

L
oo

p
Fr

ee
do

m
[6

4]

B
la

ck
ho

le
Fr

ee
do

m
[6

2]

Pe
r-

Pa
ck

et
C

on
si

st
en

cy
[5

2]

W
ay

po
in

t
E

nf
or

ce
m

en
t

[6
7]

C
on

ge
st

io
n-

A
w

ar
e

[5
5]

L
at

en
cy

-A
w

ar
e

[6
8]

Cross-Flow Objectives [57]

Link-Based Objectives [69] Round-Based Objectives [70]

Augmentation [60] Touches [71]

Fig. 8. Types of consistent network update problems, defined independently
of the network setting (rule granularity and supported operations).

contributions have indeed considered several variants of the
generalized network update problem as we formulated in §III-A.
Those variants basically differ in terms of the update problem
on which they focus. Update problems in turn define both (1)
the network setting, including admitted rule granularity and
operations, (2) consistency properties, and (3) performance
goals. An overview of the main update problems considered
previously is depicted in Fig. 8, where we skipped the
orthogonal network setting dimensions, rule granularity and
supported operations, for clarity.

1) Rule Granularity: Network update techniques assume
that the underlying devices support rules that implement one
of the two alternative routing models: destination-based and
per-flow routing.

a) Destination-based Routing: In destination-based rou-
ting, routers forward packets based on the destination only. An
example for destination-based routing is IP routing, where
routers forward packets based on the longest common IP
destination prefix. In particular, destination-based routing
describes confluent paths: once two flows from different sources
destined toward the same destination intersect at a certain
node, the remainder (suffix) of their paths will be the same. In
destination-based routing, routers store at most one forwarding
rule per specific destination.

b) Per-flow Routing: In contrast, according to per-flow
routing, routes are not necessarily confluent: the forwarding
rules at the routers are defined per-flow, i.e., they may depend
not only on the destination but for example also on the source.
In traditional networks, flows and per-flow routing could for
example be implemented using MPLS: packets belonging to
the same equivalence class respectively packets with the same
MPLS tag are forwarded along the same path.

2) Operations: Techniques to carry out network updates can
be classified in broad categories, depending on the operations
that they consider.

a) Rule replacements: A first class of update techniques is
based on computing an order in which initial rules are replaced

by the corresponding final ones on the devices. Depending
on the target setting (e.g., legacy networks or SDNs), such
replacement can be admitted at different granularity, i.e., on
a per-rule and per-device basis (as in OpenFlow networks) or
on a per-group of rules and devices (link reweighting in IGP).

b) Rule additions: A second class of network update
algorithms is based on adding rules to guarantee consistency
during the update. The following two main variants of this
approach have been explored so far.

1) 2-Phase commit: In this case, both the initial and
the final rules are installed on all devices in the central steps
of the updates. Packets are tagged at the border of the network
to enforce that the internal devices either (i) all use the initial
rules, or (ii) all use the final rules. See Fig. 7 for an example.

2) Helper rules: Some techniques introduce addi-
tional rules, which do not belong neither to the old state nor
to the new one, in some intermediate update step. These rules
allow to divert the traffic temporarily to other parts of the
network, and are called helper rules.

c) Mixed: Recently, some update techniques combine
rule replacements and additions, in order to reduce the update
overhead (especially in terms of device-memory consumption)
while keeping the flexibility provided by adding rules.

3) Consistency properties: Update techniques typically
target to preserve one (or more) of the following consistency
properties.

a) Connectivity consistency: The most basic form of
consistency regards the capability of the network to keep
delivering packets to their respective destinations, throughout
the update process. This boils down to guaranteeing two cor-
rectness properties: absence of blackholes (i.e., paths including
routers that cannot forward the packets further) and absence
of forwarding loops (i.e., packets bouncing back and forth on
a limited set of routers, without reaching their destinations).

b) Policy consistency: Paths used to forward packets
may be selected according to specific forwarding policies,
for example, security ones imposing that given traffic flows
must traverse specific waypoints (firewalls, proxies, etc.).
In many cases, those policies have to be preserved during
the update. Generally speaking, policy consistency properties
impose constraints on which paths can be installed during the
update. For example, an already-mentioned policy consistency
property (see §II) is per-packet consistency, requiring that
packets are always forwarded along either the pre-update or
the post-update paths, but never a combination of the two.

c) Capacity consistency: A third class of consistency
properties takes into account the actual availability and limits
of network resources. For instance, many techniques account
for traffic volumes and corresponding constraints raised by the
limited capacity of network links: Those techniques aim at
respecting link-capacity constraints in each update step, e.g.,
to avoid transient congestion during updates.

Note: As mentioned in the introduction, most work on
SDN network updates argues for the need to preserve the
considered consistency properties at each and every moment
during an update. In the following sections, we therefore assume
a strong consistency model. We survey approaches relaxing
this consistency model beginning in §VII.

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 10

4) Performance goals: We can distinguish between three
broad classes of performance goals.

a) Link-based: A first class of consistent network update
protocols aims to make new links available as soon as possible,
i.e., to maximize the number of switch rules which can be
updated simultaneously without violating consistency.

b) Round-based: A second class of consistent network
update protocols aims to minimize the total makespan, by
computing a schedule of rounds or steps, each consisting of
switch rules that are safe to update simultaneously.

c) Cross-Flow Objectives: A third class of consistent
network update protocols targets objectives arising in the
presence of multiple flows.

1) Augmentation: Minimize the extent to which link
capacities are oversubscribed during the update (or make the
update entirely congestion-free).

2) Touches: Minimize the number of interactions
with the switch, i.e., the sent messages.

Note: Link-based and round-based objectives are usually con-
sidered for node-ordering algorithms and for weak-consistency
models. Congestion-based objectives are naturally considered
for capacitated consistency models.

C. Summary and Insights

We formulated a generalized version of consistent network
update problems studied by prior work. This generalization
enables us to create a taxonomy of network update techni-
ques, where previous contributions are classified along four
dimensions: assumed rule granularity, operations allowed on
the switches, consistency properties to be preserved and
optimization goals. We structure this survey according to
the dimension of the consistency properties, because of its
importance in the definition of the addressed update problem:
the following sections reflect this choice.

IV. UPDATE TECHNIQUES TO GUARANTEE
CONNECTIVITY CONSISTENCY

In this section, we focus on update problems where the main
consistency property to be guaranteed concerns the delivery of
packets to their respective destinations. Packet delivery can be
disrupted during an update by forwarding loops or blackholes
transiently present in intermediate states. We separately discuss
previous results on how to guarantee loop-free and blackhole-
free network updates. We start from the problem of avoiding
forwarding loops during updates, because they are historically
the first update problems considered – by works on traditional
networks (see §II). This is also motivated by the fact that
blackholes cannot be created by reconfiguring current routing
protocols, as proved in [46]. We then shift our focus on avoiding
blackholes during arbitrary (e.g., SDN) updates.

A. Guaranteeing Loop-Freedom

Loop-freedom is a most basic consistency property and has
hence been explored intensively already in the network update
literature. So far in this work, we presented the notion of
loop-freedom in the following framework: 1) routing based on

s dv1 v2 v4v3

(a) Initial

s dv1 v2 v4v3

(b) After updating s

Fig. 9. Example to illustrate the differences between strong and relaxed
loop-freedom. The current rules are drawn in solid blue, the new rules are
drawn in dash-dotted green. In the left initial state, the task is to update all
nodes to use the new forwarding rules. The right figure shows the network
state after updating the node s. Note that the current rules for v1, v2, v3 are
no longer on a path from s to t, and are hence drawn dotted. Thus, under
RLF, v1, v2, v3 can be updated next, as possible loops are not connected to
the source. Using SLF, v3 must be updated after v2, which in turn must be
updated after v1. Hence, by updating v4 last, the RLF schedule length is just
three, even when the construction is extended from 4 nodes to up to vx nodes.
On the other hand, SLF requires at least x rounds. Hence, RLF can yield a
speedup linear in the number of nodes.

the destination, and 2) avoiding all transient loops. Current
research extends the loop-freedom model in both dimensions,
introduced next, beginning with the routing model.

1) Definitions: We distinguish between flow-based and
destination-based routing: in the former, we can focus on a
single (and arbitrary) path from s to d: forwarding rules stored
in the switches depend on both s and d, and flows can be
considered independently. In the latter, switches store a single
forwarding rule for a given destination: once the paths of two
different sources destined to the same destination intersect,
they will be forwarded along the same nodes in the rest of
their route: the routes are confluent.

Moreover, one can distinguish between two different definiti-
ons for loop-free network updates: Strong Loop-Freedom (SLF)
and Relaxed Loop-Freedom (RLF) [64]. SLF requires that at any
point in time, the forwarding rules stored at the switches should
be loop-free. RLF only requires that forwarding rules stored
by switches along the path from a source s to a destination
d are loop-free: only a small number of “old packets” may
temporarily be forwarded along loops. RLF can significantly
speed up the consistent migration process, as illustrated in
Fig. 9.

2) Algorithms and Complexity: Two performance objectives
are investigated in the literature, node-based und round-based,
to be discussed in turn. Node-based objectives were studied first
in the literature: the goal is to update as many nodes/links at a
time as possible. Round-based objectives can be seen as more
intuitive, aiming at minimizing the number of (controller-switch
interaction) rounds. Node-based approaches are also used in
round-based contexts, with the following intuition: by updating
as many nodes as possible, the total makespan is hopefully
minimized – coining the notion of greedy approaches. However,
it has been shown that node- and round-based objectives can
conflict and lead to vastly different schedules.

a) Node-based objective (“greedy approach”): Mahajan
and Wattenhofer [65] initiated the study of destination-based
(strong) loop-free network updates. In particular, the authors
show that by scheduling updates based on combinatorial

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 11

dependencies, consistent update schedules can be derived
which do not require any packet tagging, and which allow
some updated links to become available earlier. The authors
also present a first algorithm that quickly updates routes in
a transiently loop-free manner: based on the current state,
the controller greedily attempts to update as many nodes as
possible. E.g., in Fig. 9a, their algorithm picks the nodes s and
v1, as v2-4 have unresolved dependencies. The study of this
model has been refined in [62], [56], where the authors also
establish hardness results, see Table I. A related variant using
so-called proof labeling schemes [72] was proposed in [73].

Ludwig et al. in [74], extended in [64], and [67] initiated
the study of arbitrary route updates: routes which are not
necessarily destination-based. The authors show that the update
problem in this case boils down to an optimization problem on
a very simple directed graph: initially, before the first update
round, the graph simply consists of two connected paths, the
old and the new route. In particular, every network node which
is not part of both routes can be updated trivially, and hence,
there are only three types of nodes in this graph: the source
s has out-degree 2 (and in-degree 0), the destination d has
in-degree 2 (and out-degree 0), and every other node has in-
degree and out-degree 2, as shown in Fig. 9. The authors also
observe that loop-freedom can come in two flavors, strong and
relaxed loop-freedom [64].

Despite the simple underlying graph, however, Amiri et al.
[69] show that the node-based optimization problem is NP-hard,
both in the strong and the relaxed loop-free model (SLF and
RLF). In the example of Fig. 9a the maximization problem is
easy though, clearly no more than two nodes (s and v1) can be
updated initially. As selecting a maximum number of nodes to
be updated in a given round (i.e., the node-based optimization
objective) may also be seen as a heuristic for optimizing the
number of update rounds (i.e., the round-based optimization
objective), the authors refer to the node-based approach as the
“greedy approach”. Amiri et al. [69] also present polynomial-
time optimal algorithms for specific scenarios, and both1 [69],
[56] provide further insights into approximability properties,
see Table I.

b) Round-based objective: Ludwig et al. [64], [74] initiate
the study of consistent network update schedules which
minimize the number of interaction rounds with the controller:
How many communication rounds k are needed to update a
network in a (transiently) loop-free manner? The authors show
that answering this question is difficult in the strong loop-free
case. In particular, they show that while deciding whether a
k-round schedule exists is trivial for k = 2, it is already NP-
complete for k = 3. Moreover, the authors show that there exist
problem instances which require Ω(n) rounds, where n is the
network size, see Fig. 9. Furthermore, the authors show that

1We note that there exists a subtle difference between the approximation
results by Foerster et al. and Ludwig et al.: the former authors usually aim
to minimize the number of links which cannot be updated [56] (a feedback
arc set problem), while Ludwig et al. [69] consider the dual problem variant
and aim to maximize the links which can be updated in the given round (the
maximum acyclic subgraph problem). The approximation guarantees of the
two problems differ: for the former model, the best known approximation
bound is O(log n log log n) [75] while for the latter, constant approximation
results exist [76].

the greedy approach, aiming to “greedily” update a maximum
number of nodes in each round, may result in Ω(n)-round
schedules in instances which actually can be solved in O(1)
rounds; even worse, a single greedy round may inherently delay
the schedule by a factor of Ω(n) more rounds.

However, fast schedules exist for relaxed loop-freedom: the
authors present a deterministic update scheduling algorithm
which completes in O(log n)-round in the worst case.

c) Other objectives: Dudycz et al. [61], detailed in [71],
initiated the study of how to update multiple policies simultane-
ously, in a loop-free manner. In their approach, the authors aim
to minimize the number of so-called touches: the total number
of update messages the switches receive from the controller.
The number of touches can be reduced if controllers bundle
the updates of multiple flows to a given switch into a single
message. However, consistency requirements impose limits on
the extent to which updates can be bundled: e.g., in order to
preserve loop-freedom, the update of a flow f1 needs to take
place at node v1 before v2, while the update of a flow f2
needs to take place at node v1 after v2. The authors establish
connections to the Shortest Common Supersequence (SCS)
and Supersequence Run problems [77], and show NP-hardness
already for two policies, each of which can be updated in two
rounds, by a reduction from Max-2SAT [78].

Notwithstanding, Dudycz et al. [61] also present optimal
polynomial-time algorithms to combine consistent update
schedules computed for individual policies (e.g., using any
existing algorithm, e.g., [64], [65]), into a global schedule
guaranteeing a minimal number of touches. This optimal
merging algorithm is not limited to loop-free updates, but
applies to any consistency property: if the consistency property
holds for individual policies, then it also holds in the joint
schedule minimizing the number of touches.

3) Related Optimization Problems: The link-based optimiza-
tion problem, the problem of maximizing the number of links
(or equivalently nodes) which can be updated simultaneously,
is an instance of the maximum acyclic subgraph problem;
equivalently, the dual problem of minimizing the number of
links which cannot be updated is a minimum feedback arc
set problem. For showing NP-hardness, reductions from the
minimum hitting set problem [69] and the feedback arc set
problem [56] are used.

The problem of reconfiguring routes in a network can be
seen as a special case of combinatorial reconfiguration theory:
an abstract reconfiguration framework to transform a feasible
solution of a problem (e.g., shortest path routing) into another
solution of the same problem, e.g., while ensuring shortest
path routing during the update [79]).

B. Guaranteeing Blackhole-Freedom

Another consistency property is blackhole freedom, i.e., a
switch should always have a matching rule for any incoming
packet, even when rules are updated (e.g., removed and
replaced). This property is easy to guarantee by implementing
some default matching rule which is never updated, which
however could in turn induce forwarding loops. A straightfor-
ward mechanism, if there is currently no blackhole for any

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 12

TABLE I
OVERVIEW OF RESULTS FOR LOOP-FREEDOM.

Model NP-hard Polynomial time Remarks

Rounds,
strong LF

Is there a 3-round loop-free update
schedule? [64]

For 2-destination rules and sublinear
x: Is there a x-round loop-free update

schedule? [56]

Is there a 2-round loop-free update
schedule? [64]

In the worst case, Ω(n) rounds may be required. [64], [62].
O(n)-round schedules always exist [65]. Both applies to flow-based

& destination-based rules.

Rounds,
relaxed LF

No results known. O(log n)-round update schedules
always exist. [64]

It is not known whether o(log n)-round schedules exist (in the worst
case). No approximation algorithms are known.

Links,
strong LF

Is it possible to update x nodes in a
loop-free manner? [69], [56]

Polynomial-time optimal algorithms
are known to exist in the following

cases: A maximum SLF update set can
be computed in polynomial-time in

trees with two leaves. [69]

The optimal SLF schedule is 2/3-approximable in polynomial time
in scenarios with exactly three leaves. For scenarios with four leaves,

there exists a polynomial-time 7/12-approximation algorithm. [69]
Approximation algorithms from maximum acyclic subgraph [69] and

minimum feedback arc set [62] apply.
Links,

relaxed LF
Is it possible to update x nodes in a

loop-free manner? [69]
Polynomial-time optimal algorithms
are known to exist in the following

cases: A maximum RLF update set can
be computed in polynomial-time in

trees with two leaves. [69]

No approximation results known. [69]

Note: Results/references in italics are in the destination-based model.

destination, is to install new rules with a higher priority, and
then delete the old rules [62], [65]. Nonetheless, in the presence
of memory limits and guaranteeing loop-freedom, finding the
fastest blackhole-free update schedule is NP-hard [62].

C. Summary and Insights

Loop- and blackhole-freedom are both fundamental con-
sistency properties, as their violation disconnects the logical
routing graph, with loops additionally creating congestion.
Both are easy to maintain, but hard to optimize regarding
makespan or resource consumption. Of the two, loop-freedom
is better understood, as already simple greedy approaches
perform relatively well in simulations [62], where the node-
based objective can also be approximated well [56], [69].
However, regarding the makespan, greedy approaches perform
poorly in the adversarial scenarios [64]. Still, both round- and
node-based objectives are NP-hard to optimize [56], [64], [69].
So far, to obtain a logarithmically competitive algorithm for the
number of rounds, the consistency guarantees have to be slightly
relaxed [64]. We summarize current hardness and algorithmic
results in Table I, denoting results of the destination-based
model in italics, whereas the remaining entries refer to route
updates which are not necessarily destination-based.

D. Open Problems

Loop-free network updates still pose several open problems.
Regarding the node-based objective, Amiri et al. [69] conjecture
that update problems on bounded directed path-width graphs
may still be solvable efficiently: none of the negative results
for bounded degree graphs on graphs of bounded directed
treewidth seem to be extendable to digraphs of bounded directed
pathwidth with bounded degree. More generally, the question
of on which graph families network update problems can be
solved optimally in polynomial time in the node-based objective
remains open. Regarding the round-based objective, it remains
an open question whether strong loop-free updates are NP-hard
for any k ≥ 3 (but smaller than n): so far only k = 3 has
been proved to be NP-hard. More interestingly, it remains an
open question whether the relaxed loop-free update problem
is NP-hard, e.g., are 3-round update schedules NP-hard to

compute also in the relaxed loop-free scenario? Moreover,
it is not known whether Ω(log n) update rounds are really
needed in the worst-case in the relaxed model, or whether the
problem can always be solved in O(1) rounds. Some brute-
force computational results presented in [64] indicate that if it
is constant, the constant must be large. Regarding blackhole-
freedom, the possible speedup while maintaining loop-freedom
is inherently connected to the available memory, but a deeper
algorithmic understanding is still missing [62].

V. UPDATE TECHNIQUES TO GUARANTEE
POLICY CONSISTENCY

Modern requirements go often beyond connectivity. For
example, operators may want to ensure that packets traverse a
given middlebox (e.g., a firewall) for security reasons, or a chain
of middleboxes (e.g., encoder and decoder) for performance
reasons; and/or they might like to enforce that paths comply
with Service Level Agreements (e.g., in terms of delay). In this
section, we discuss studied problems and proposed techniques
aiming at preserving such requirements during network updates.

A. Definitions

Requirements on forwarding paths additional to connectivity
can be modeled by routing policies, that is, links, nodes or
sub-paths that have to be traversed by certain traffic flows at
any moment in time.

Over the years, several contributions have targeted updates
focusing on preserving specific policies. Historically, the
first policy considered during SDN updates is per-packet
consistency (PPC), which ensures that every packet travels
either on its initial or on its final paths, never on intermediate
ones. PPC seems a natural choice to comply with high-level
network requirements. Assume indeed that both the initial
and the final paths accommodate requirements like security,
performance, and SLA compliance. The most straightforward
way to guarantee that those requirements are not violated is
to constrain all paths installed during the update to always be
either initial paths or final ones.

Nonetheless, guaranteeing PPC may be an unnecessarily
strong requirement in practice. Not always it is strictly needed

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 13

s1

v2

v3

v1

d

s2

v5

v4

(a) Extended Surpassed state

s1

v2

v3

v1

d

s2

v5

v4

(b) Novel state

Fig. 10. A WPE-consistent update example where forwarding paths have to
be changed from the Surpassed (Fig. 10a) to the New (Fig. 10b) state, while
preserving traversal of the waypoint v2 (highlighted in the figure) at any time
during the update.

that transient paths must coincide with either the initial or the
final ones. For example, in some cases (e.g., for enterprise
networks), security may be the only major concern, and it
may translate into simply enforcing that some flows traverse
a firewall. Fig. 10 shows an example of this case, where the
flow from s1 to d has to traverse v2. We refer to the property
of forced traversal of a given node (waypoint) as waypoint
enforcement (WPE).

Policies more complex than WPE (but less constraining than
PPC) may also be needed in general. For example, it may
be desirable in large Internet Service Providers that specific
traffic flows follow certain sub-paths (e.g., with low delay
for video streaming and online gaming applications) or are
explitictly denied to pass through other sub-paths (e.g., because
of political or economical constraints). Such arbitrary policies
are also considered in recent SDN update works.

B. Algorithms and Complexity

Table II overviews solving algorithm and complexity of
policy-preserving update problems, further discussed in the
following.

1) 2-Phase commit techniques: As described in §III-B, 2-
phase commit techniques carry out updates by setting an initial
or final tag on packets at ingress devices (e.g., on s1 and s2 in
Fig. 10), and maintaining two forwarding rules at internal nodes
(e.g., v1, v2, v3, v4, and v5 in Fig. 10) so that each packet is
forwarded over either its initial or final paths, according to the
carried tag. This approach guarantees per-packet consistency
by design.

A framework to implement 2-phase commit in traditional
networks has been proposed by Alimi et al. [41] (see also
§II). It requires invasive modification of router internals, to
manage tags and run arbitrary routing processes in separate
process spaces. Such modifications are not needed in SDNs,
where data-plane devices exhibit finer-grained programmability.
Beyond presenting an implementation of 2-phase commit in
OpenFlow, pioneering SDN update works [51], [52] argue
for the criticality of ensuring PPC in the SDN case, and of
providing programmatic support for consistent updates within
SDN controllers.

A downside of 2-phase commit techniques is that they require
internal switches (e.g., v1, v2, v3, and v5 in Fig. 10) to maintain
an additional rule every time their initial and final rules differ.
This overhead requires all switches to have free memory slots
(whose number depends on the update case), generally wastes

memory resources, and might hamper other applications to
properly work during updates (e.g., fast rerouting or security
ones that might need to also install new flow rules in reaction
to sudden traffic changes). To mitigate those problems, an
incremental version of the original technique has been studied
in [80]. This work proposes to divide the input update into sub-
updates that can be carried out one after the other. Consider for
example a variant of Fig. 10 where d is replaced by a set D of
N replicas d1, . . . , dN , and the update consists in changing the
paths for every di ∈ D as shown in the figure. The incremental
2-phase commit technique enables to break down such an
update into a sequence of sub-updates, where each sub-update
modifies the paths of a distinct set of destinations Dj ⊂ D.
This will limit the rules added to every switch at any time, at
the price of a longer update completion time.

Ultimately, switch-memory consumption remains a funda-
mental limitation of of 2-phase commit techniques, since tag-
matching rules must be added to internal switches sooner or
later during an update (or sub-updates). Both the original and
the incremental techniques also exhibit other limitations, like
the need for packet-header space, the tagging overhead, and
complications with middleboxes modifying packet headers and
tags [89], [90].

2) SDN-based update protocols: McGeer [81], [82] presen-
ted two protocols to carry out network updates defined on
top of OpenFlow. The first update protocol [81] is based on
sending packets to the controller during updates, so that the
controller can locally store packets until the final flow rules
are installed on all the switches. As a result, switch resources
(especially, TCAM entries) are saved, at the cost of adding
delay on packet delivery, consuming network bandwidth, and
requiring the controller to temporarily store packets. The second
protocol [82] implements sequences of per-switch rule updates
that guarantee PPC: It updates one switch at the time, ensuring
that PPC is preserved at every step. In addition, Hua et al. [83]
initiate a study on how to support PPC in an adversarial setting.
They present FOUM, an update protocol where the update
sequence is encoded in a packet signed by the controller, sent
to one switch, and passed among switches at runtime. FOUM
is shown to be robust to packet-tampering and packet dropping
attacks. All those works assume dedicated protocols that are
not supported by devices out of the box.

3) Rule replacement ordering: Further works explore which
policies can be supported by only relying on carefully-
computed sequences of rule replacements, so as to (i) introduce
no memory overhead, and (ii) be readily supported by all
(traditional and SDN) devices, without tag-related issues.

Initial contributions mainly focused on WPE consistency.
Prominently, [67] studies how to compute short sequences
of rule replacements, for quick updates ensuring that any
given flow traverse a single waypoint. The authors propose
WayUp, an algorithm that computes WPE-preserving updates
spanning 4 rounds. However, they also show that it is not
possible to guarantee both WPE and loop-freedom in some
cases. Fig. 10 actually shows one case in which any sequence of
rule replacements either causes a loop or a WPE consistency
violation. Those infeasibility results have been extended to

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 14

TABLE II
OVERVIEW OF RESULTS FOR POLICY-PRESERVING UPDATES.

Ref. Approach Guarantees Computation Remarks

[51], [52] 2-phase commit PPC Constant Always applicable (if switches have free memory slots); requires packet tagging
and additional rules on internal switches

[80] incremental 2-phase commit PPC Exponential Always applicable (if switches have at least one free memory slot); spreads
switch-memory overhead over time

[81] packet storing protocol PPC Constant Dedicated protocol, based on storing packets at the controller
[82] per-switch update protocol PPC Polynomial Dedicated protocol, based on the translation of updates into logic circuits
[83] anti-tampering update protocol PPC Polynomial Dedicated protocol, based on updating switches according to paths; Robust to

tampering and dropping attacks.

WayUp [67] ordered rule replacements WPE Polynomial Finishes in 4 rounds; Does not guarantee connectivity (e.g., for loops)
MIP of [67] ordered rule replacements WPE Exponential Optimizes update time; Guarantees absence of loops
MIP of [63] ordered rule replacements WPE chains Exponential Optimizes update time; Guarantees absence of loops

[84], [85, §2] ordered rule replacements arbitrary Exponential Update synthesis based on linear temporal logic and model checking
[86] ordered rule replacements PPC Polynomial Algorithm based on necessary conditions for PPC-preserving switch updates;

Minimizes update rounds
GPIA [87] ordered rule replacements PPC Polynomial Greedy algorithm; Minimizes update rounds; Applicable to hybrid SDNs

(becomes exponential)

GPIA+FED [87] mixed PPC Polynomial Applies restricted 2-phase commit after rule replacement sequence; Aims at
reducing # of update rounds; Applicable to hybrid SDNs (becomes exponential)

[88] mixed arbitrary Exponential Optimizes the interleaving of rule replacements and additions; Aims at reducing
of update rounds

Note: Contributions are grouped by approach and year.

s1

v2

v3

v1

d

s2

v5

v4

tag

match

(a) Step 1

s1

v2

v3

v1

d

s2

v5

v4

match

tag

(b) Step 2

s1

v2

v3

v1

d

s2

v5

v4

match

tag

(c) Step 3

s1

v2

v3

v1

d

s2

v5

v4

match

tag

(d) Step 4

Fig. 11. Sequence generated by the FLIP algorithm proposed in [88]. Note that the loop between v1 and v2 in Step 2 and 3 does not break connectivity, as it
is traversed only once by packets. This is because v1 matches the tag set by v2, hence it forwards packets that have already traversed v2 directly to d.

chains of waypoints in [63]. The latter work shows that
flexibility in ordering and placing virtualized functions specified
by a chain do not make the update problem always solvable.
Those two works also prove that it is NP-hard to even decide
if there exists a sequence of rule replacements preserving both
loop-freedom and WPE (or waypoint chain traversal). Mixed
Integer Program (MIP) formulations to find a safe sequence of
rule replacements (when any exists) are proposed and evaluated
in both cases.

The more general problem of preserving arbitrary policies
defined by operators is tackled in [84]. This paper describes an
approach to (i) model update-consistency properties as Linear
Temporal Logical formulas, and (ii) automatically synthesize
SDN updates that preserve input properties. Such a synthesis
is performed by an algorithm based on counterexample-guided
search and incremental model checking. Experimental results
are provided about the scalability of the algorithm (up to
networks with 1,000 nodes).

More recent works finally consider the problem of guaran-
teeing PPC by ordering rule replacements. Vissicchio et al. [87]
show that this problem can be solved efficiently; they prove
that a polynomial-time greedy algorithm called GPIA finds the
sequence of per-switch rule replacements that does not violate
PPC while updating the maximal number of switches and
allowing the maximal parallelism between per-switch updates.
The algorithm is based on iteratively simulating the update of
every switch which has not been updated yet. For instance,
in Fig. 10, GPIA would initially simulate the replacement of

next-hops on every node. It would then define the first round
of the update under computation by collecting all the switches
(v4 and v5 in this example) whose update does not violate PPC.
Then, it would iterate on the remaining nodes, discovering that
s2 can be updated in the second round without violating PPC.
GPIA terminates when there are no switches that can be safely
updated. Cerný et al. [86] describe a refined version of this
algorithm that avoids the simulation of switch updates thanks
to the identification of necessary conditions for safely updating
the switches.

Opportunities and limitations of rule replacement ordering
for PPC-preserving updates have also been evaluated in [87], by
simulating realistic update scenarios, on real network topologies.
Results show that ordered rule replacements can rarely complete
an update (for example, it could not in Fig. 10, but they can
safely update many switches (typically, even more than the
3 out of 7 that it would update in Fig. 10)). Those results
further motivate rule-replacement algorithms tailored to a more
restricted family of policies (like WPE-preserving ones) as
well as mixed approaches (employing both rule replacements
and duplication, as described below).

4) Mixed approaches: Following up on their experimental
results, Vissicchio et al. [87] argue for sequentially computing
a safe rule replacement ordering, and applying a scope-limited
2-phase commit variant afterwards. In the example of Fig. 10,
this approach would then lead to concatenating the ordered
rule replacements on v4, v5 and s2 with the application of a
2-phase commit technique to the sub-network of non-updated

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 15

switches (i.e., s1, v1, v2 and v3). This combination ensures the
possibility to always perform the update (contrary to pure rule-
replacement approaches) while reducing the update overhead
(in switch memory and data-plane) with respect to the original
2-phase commit technique. The same work also generalizes this
strategy to hybrid SDNs, potentially running any number both
traditional and/or SDN control-planes – a setting in which a
brute force (exponential) algorithm might be needed, depending
on the nature of control-planes involved in the update.

FLIP, a different algorithm implementing a mixed approach,
is described in [88] and detailed in [91]. FLIP jointly optimizes
the interleaving of rule replacements and additions (for mat-
ching packet tags) so as to preserve arbitrary policies, including
PPC. For instance, in Fig. 10, FLIP would compute a sequence
of operations (illustrated in Fig. 11) where only v1 matches
a tag set by v2: That is, FLIP needs only 1 additional rule
when 2-phase commit would add 4, and sequentially combining
replacements and additions would result in 3 additional rules.
This implies that FLIP is strictly more powerful (i.e., solves
a higher number of update cases) than only relying on rule
replacements, exclusively using 2-phase commit, and sequential
combining those two approaches. However, it is unclear how
FLIP can be used in hybrid SDNs, with more than one control-
plane. Also, its time complexity is not polynomial – even if the
experiments suggest that FLIP quickly computes short update
sequences in realistic networks.

C. Related Optimization Problems

Many policy-preserving algorithms face generalized versi-
ons of the optimization problems associated to connectivity-
preserving updates (see §IV): While the most common objective
remains the maximization of parallel operations (to speed-
up the update), policy consistency requires that all possible
intermediate paths comply with certain regular expressions
in addition to being simple (that is, loop-free) paths. Mixed
policy-preserving approaches focus on even more general
problems where (i) different operations can be interleaved
in the output operational sequence (which provides more
degrees of freedom in solving the input problems), and
(ii) multiple optimization objectives are considered at the
same time (typically, maximizing the update parallelism while
also minimizing the consumed switch memory).

D. Summary and Insights

Unsurprisingly, preserving policies requires more sophistica-
ted update techniques, since it is generally harder to extract
policy-induced constraints and model the search space. Two
major families of solutions have been explored so far. On the
one hand, 2-phase commit techniques and update protocols
sidestep the algorithmic challenges, at the cost of relying on
specific primitives (packet tagging and tag matching) that comes
with switch memory consumption. On the other hand, ordering-
based techniques directly deal with problem complexities, at
the cost of algorithmic simplicity and impossibility to always
solve update problems. Initial work has been done on mixed
approaches, relying on algorithms that can interleave different
kinds of operations within the computed operational sequence.

E. Open Problems

Finding the best balance between the two extremes of relying
on protocols on one hand, and on ordering algorithms on the
other hand is an interesting direction. Despite some initial work
has started towards this goal (see §V-B), many research questi-
ons are left open. For example, the computational complexity
of solving update problems while mixing rule additions (for
packet tagging and matching) with replacements is unknown.
Moreover, it is unclear whether the proposed algorithms can be
improved exploiting the structure of specific topologies or the
flexibility of new devices (like those implementing P4 [92])
– for example, to achieve a better trade-off between switch
memory consumption and update speed.

VI. UPDATE TECHNIQUES TO GUARANTEE
CONGESTION-AWARE CONSISTENCY

Computer networks are inherently capacitated, and respecting
resource constraints is hence another important aspect of con-
sistent network updates. Congestion is known to significantly
impact throughput and increase latency, therefore negatively
impacting user experience and even leading to unpredictable
economic loss.

A. Definitions

The capacitated update problem is to migrate from a
multi-commodity flow Fold to another multi-commodity flow
Fnew , where consistency is defined as not violating any link
capacities and not rate-limiting any flow below its demand
in min (Fold,Fnew). In few works, e.g., [54], Fnew is only
implicitly specified by its demands, but not by the actual
flow paths. Some migration algorithms will violate consistency
properties to guarantee completion, as a consistent migration
does not have to exist in all cases. It can then be useful to
investigate, e.g., what type of rate-limiting is performed [105].

Typically, four different variants are studied in the litera-
ture: First, individual flows may either only take one path
(unsplittable) or they may follow classical flow-theory, where
the incoming flow at a switch must equal its outgoing flow
(splittable). Secondly, flows can take any paths via helper
rules in the network during the migration (intermediate paths),
or may only be routed along the old or the new paths (no
intermediate paths).

To exactly pinpoint congestion-freedom, one would need to
take many detailed properties into account, e.g., buffer sizes and
ASIC computation times. As such, the standard consistency
model does not take this fine-grained approach, but rather
aims at avoiding ongoing bandwidth violations and takes a
mathematical flow-theory point of view. Introduced by [53],
consistent flow migration is captured in the following model:
No matter if a flow is using the rules before the update or
after the update, the sum of all flow sizes must respect the link
capacity.

B. Algorithms

Most current algorithms for capacitated updates of network
flows use the seminal work by Reitblatt et al. [52] as an

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 16

TABLE III
COMPACT OVERVIEW OF FLOW MIGRATION ALGORITHMS.

Ref. Approach (Un-)splittable
model

Interm.
paths

Computation # Updates Complete (decides if consistent migration exists)

[52] Install old and new rules,
then switch from old to
new

Both, move each
flow only once

No Polynomial 1 No bandwidth guarantees

[53] Partial moves according
to free slack capacity s

Splittable No Polynomial d1/se − 1 Requires slack on flow links

[57] Greedy traversal of de-
pendency graph

Both, move each
flow only once

No Polynomial Linear No (rate-limit flows to guarantee completion)

[59] MIP of [57] Both, move each
flow only once

No Exponential Linear Yes

[60] Fix number of x inter-
mediate states ahead of
time, optimize via LP

Both No Polynomial Any x ∈ N For a given number of intermediate states x, approximate
minimum transient congestion (if > 0) by log n factorYes Exponential

[60] ... via MIP Both Both Exponential Any x ∈ N For any given x yes, but not in general
[53] Binary search of interme-

diate states via LP
Splittable Yes Polynomial

in # of
updates

Unbounded Cannot decide if consistent migration is possible

[55] Create slack with inter-
mediate states, then use
partial moves of [53]

Splittable Yes Polynomial Unbounded Yes

[56] Split flows along old and
new paths

2-Splittable No Polynomial Unbounded Yes

[54] Use augmenting flows to
find updates

Split., 1 dest.,
paths not fixed

Yes Polynomial Linear Yes

[70] Dynamic programming Unsplittable Both Exponential Exponential Yes
Further practical extensions

[58] Extends approach of SWAN [53] in a data center setting
[93] Extends approach of Dionysus [57] with local dependency resolving
[94] Extends approach of Dionysus [57] with circuit nodes for optical wavelengths
[95] Extends approach of Dionysus [57] by using switch buffers to break deadlocks
[96] Extends approach of Dionysus [57] by allowing multiple target states
[97] Considers reconfiguration for dynamic flow arrivals
[98] Allows (un-)splittable flow migration (move once) with user-spec. deadlines & requirements via MIP (LP heuristic)

[99], [100], [101] Proposes multi-casting on portions of routes for faster updates, also to break deadlocks by using out-of-band capacities

[102], [103], [104] Does not require tagging of flows in the packet header, flows may take a mix of the old and new paths. For a constant number of flows on directed
acyclic graphs (DAGs), a linear-time (fixed parameter tractable) algorithm is provided.

v

s2

d1

s1

d2

(a) Initial

v

s2

d1

s1

d2

(b) Congestion!

v1

s2

d1

s1

d2

(c) Orange first

v1

s2

d1

s1

d2

(d) Final

Fig. 12. In this flow migration example, all links have unit bidirectional capacity, and both orange and green flows have unit size as well. The task is to move
both the green and orange flows from their initial paths in Fig. 12a to their final ones shown in Fig. 12d. Updating both flows together could lead to the green
flow being moved first, inducing congestion, see Fig. 12b. However, this can be avoided by using succinct updates, first moving the orange flow as in Fig. 12c,
then the green flow.

update mechanism. Analogously to per-packet consistency
(cf. §V), one can achieve per-flow consistency by a 2-phase
commit protocol. While this technique avoids many congestion
problems, is not sufficient for bandwidth guarantees: When
updating the flows in Fig. 12, if the green flow moves up
before orange flow is on its new path, congestion occurs.

Mizrahi and Moses [106] prove that flow swapping is
necessary for throughput optimization in the general case, as
thus algorithms are needed that do not violate any capacity
constraints during the network update, beyond simple flow
swapping as well.

An overview of current algorithmic approaches can be found
in Table III. In particular, we briefly describe the technique used,
e.g., partial moves using slack capacity or dependency graphs.
Furthermore, we categorize the algorithm techniques according
to their model assumptions (splittability, helper rules), their

complexity (computation and # updates), and if they can decide
the underlying decision problem under their model assumptions,
see also the later Table IV. Note that small changes in the
model can lead to different complexities. For example, by
not allowing intermediate paths as in, e.g., [57], [59], flow
migration is easier to handle, but is also less powerful. In the
following, we focus on selected works that introduce general
techniques or model ideas.

1) Slack: The seminal work by Hong et al. [53] on SWAN
introduces the current standard model for capacitated updates.
Their algorithmic contribution is two-fold, and also forms
the basis for zUpdate [58]: First, the authors show that if all
flow links have free capacity slack s, consistent migration is
possible using d1/se − 1 updates: E.g., if the free capacity is
10%, 9 updates are required, always moving 10% of the links’
capacity to the new flow paths. If the network contains non-

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 17

critical background traffic, free capacity can be generated for a
migration by rate-limiting this background traffic temporarily,
see Fig. 13: removing some background traffic allows consistent
migration.

s

v2

v3

v1

d

(a) Initial

s

v2

v3

v1

d

(b) Final

Fig. 13. In this network the task is to migrate consistently from the initial to
the final state. If all flows and links have unit size, no consistent migration is
possible: the destination has just incoming links of size two. If the flows just
have a size of 2/3, one can migrate consistently in d1/(1/3)e − 1 = 2 updates
by moving half of the flow size of 1/3 each time in parallel.

2) LP-formulation: Second, Hong et al. [53] present an
LP-formulation for splittable flows which provides a consistent
migration schedule with x updates, if one exists. By performing
a binary search over the number of updates, the number of
necessary updates can be minimized. This approach allows for
intermediate paths, where the flows can be re-routed anywhere
in the network. E.g., consider the example in Fig. 13 with all
flows and links having unit size. If there was an additional
third route to d, the orange flow could temporarily use this
intermediate path: we can then switch the green flow, and
eventually the orange flow could be moved to its desired new
path.

3) Spread flows over the network: Brandt et al. [55] prove
that splittable flow migration is always decidable in polynomial
time, by providing an algorithm that attempts to create slack
capacity on all links. The fundamental idea is to keep splitting
flows along new paths, until slack is obtained such that the
algorithm of Hong et al. [53] is applicable. For example in
Fig. 12a, one can proceed as follows: 1) split the orange flow
equally along the old and new path, and afterwards 2) route a
quarter of the green flow via either s2 or d2. The correctness
of their approach relies on an augmenting flow techniques, we
refer the reader to [55] for the intricate details.

4) Dynamicity & dependency graphs: Jin et al. [57] also
consider the variable update times of switches in the network.
To this end, inspired by [65], they build a dependency graph of
the individual updates, greedily sending out updates once the
respective pre-conditions are satisfied. For example, assume
a flow f1 can be migrated to its new path when least one of
the flows f2, f3 was moved, but f2, f3 take different (unknown)
time-spans to complete the move: the fastest method is to
dynamically wait until either f2, f3 moves, any pre-computed
schedule will have a longer makespan under adversarial
conditions. When this greedy traversal of the dependency
graph results in a deadlock, flows are rate-limited to guarantee
progress. We note that it is not clear how to extend the
dependency graph idea to intermediate paths.

5) Jointly optimize migration & new paths: Brandt et al.
[54] introduce the idea that the new flow paths should not be
part of the problem input, but rather be computed jointly with

the migration schedule. This idea aims at 1) speeding up the
migration process and 2) allowing more problem instances to be
solved. As an illustration, consider the problem in Fig. 13: from
a pure admission perspective, no migration is needed, both flow
demands are already satisfied in the initial state. Interestingly,
for a single destination (but multiple commodities), consistent
migration is always possible in this model, as long as there is
some way to admit all flows without violating capacities. A
framework for general multi-commodity flows is still missing.

Ghandi et al. [96] also observe that flows can have multiple
migration options, as networks are often built with redundancy
in mind. To this end, they first compute multiple choices for
new flow paths, optimizing for close-to-optimal path properties
and few stages in the resulting dependency graph. This allows
them to dynamically speed up the execution of the consistent
network updates, depending on the runtime conditions.

6) Node-ordering instead of 2-phase commit: Amiri et al.
[102], [103], [104] propose to identify flows only by their
source and destination, removing flow version numbers from the
packet header (“tagging”). Their approach reduces complexity
overhead, but does not permit the use of 2-phase commit
techniques. Conceptually, each node has an old and a new
forwarding rule for each flow, where the challenge is how to
order these updates, without inducing congestion or forwarding
loops. For an intuition, recall Fig. 5d, and let the old rules be
marked in solid blue, with the new rules being in dash-dotted
green: over multiple rounds, the routing rules converge to the
new state.

C. Complexity

The complexity of capacitated updates can roughly be
summarized as follows: Problems involving splittable flows
can be decided in polynomial time, while restrictions such
as unsplittable flows or memory limits turn the problem NP-
hard, see Table IV. For unsplittable flows, an exponential time
algorithm exists. In a way, the capacitated update problems
differs from related network update problems in that it is not
always solvable in a consistent way. On the other hand, e.g.,
per-packet/flow consistency can always be maintained by a
2-phase commit, and loop-free updates for a single destination
can always be performed in a linear number of updates.

One standard approach in recent work for flow migration
is linear (splittable flows) or integer programing (unsplittable
flows): With the number of intermediate configurations x as an
input, it is checked if a consistent migration with x intermediate
states exists. Should the answer be yes, then one can use a
binary search over x to find the fastest schedule. This idea
originated in SWAN [53] for splittable flows, and was later
extended to other models, cf. Table III.

However, the LP-approach via binary search (likewise for the
integer one) suffers from the drawback that it is only complete
if the model is restricted: If x is unbounded, then one can
only decide whether a migration with x updates exists, but not
whether there is no migration schedule with y steps, for some
y > x. Additionally, it is not even clear to what complexity
class the general capacitated update problem belongs to, cf. the
decision problem hardness column of Table IV.

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 18

TABLE IV
TABLE SUMMARIZING DECISION PROBLEM RESULTS FOR FLOW MIGRATION.

Flow migration problem Intermediate paths Memory
restrictions

Decision problem hardness

Unsplittable
Yes Yes NP-hard [55],

No EXPTIME [70]

No Yes NP-hard [56],
No EXPTIME [70]

Unit size
Yes Yes NP-hard [55],

No EXPTIME [70]

No Yes Open (also for integer size splitting)No

Splittable
Yes Yes NP-hard [57]

No P [55]

No Yes NP-hard [57]
No Open

Move every flow only once
Yes Yes Not allowed (model)No

No Yes NP-complete [57]
No NP-complete [56]

Node-ordering Mix of old and new Yes NP-hard [102]No
Note: In general, it is unknown if flow migration is in NP if flows can be moved more than once, except for the case of splittable flows without memory restrictions. We note that

if a problem is NP-hard without memory restrictions, it is also NP-hard with memory restrictions, as providing sufficient memory is a special case of memory restrictions.

TABLE V
COMPACT OVERVIEW OF FLOW MIGRATION HARDNESS TECHNIQUES AND RESULTS.

Ref. Reduction
via

(Un-)splittable
model

Interm.
paths

Memory
limits

Decision prob.
in general

Optimization problems/remarks

[57] Partition Splittable No Yes NP-hard NP-complete if every flow may only move once
[57] Partition Splittable No No – NP-hard (fewest rule modifications)
[55] – Splittable Yes No P Fastest schedule can be of unbounded length, LP for new

reachable demands if cannot migrate
[56] – 2-Splittable No No P studies slightly different model
[55] (MAX)

3-SAT
Unsplittable Yes No NP-hard (also

for unit size)
NP-hard to approx. additive error of flow removal for
consistency better than 7/8 + ε

[60] Partition Unsplittable Yes/No No – NP-hard (fastest schedule)
[56] Partition Unsplittable No No NP-hard Stronger consistency model, but proof carries over
[98] Partition &

Subset sum
Unsplittable No No – NP-hard for 3-update schedule

[70] Disjoint
paths

Unsplittable Yes No NP-hard (also
for unit size)

NP-hard for already 2 unit size flows

[102], [103], [104] 3-SAT Node-ordering Mix of old
& new

No NP-hard (also
for unit size)

NP-hard for 6 unit size flows if the pair of old and new path
forms a DAG, on general graphs 2 flows suffice

The only exception arises in case of splittable flows without
memory restrictions, where either an (implicit) schedule or a
certificate that no consistent migration is possible, is found
in polynomial time [55]. The authors use a combinatorial
approach not relying on linear programming. Adding memory
restrictions turns this problem NP-hard as well [57].

If the model is restricted to allow every flow only to be
moved once (from the old path to the new path), then the
capacitated update problem becomes NP-complete [56], [57]:
Essentially, as the number of updates is limited by the number
of flows, the problem is in NP. In this specific case, one can also
approximate the minimum congestion for unsplittable flows in
polynomial time by randomized rounding [60].

Hardly any (in-)approximability results exist today, and
most work relies on reductions from the Partition problem,
cf. Table V. The only result that we are aware of is via a
reduction from MAX 3-SAT, which also applies to unit size
flows [55].

D. Related Optimization Problems

In a practical setting, splitting flows is often realized via
deploying multiple unsplittable paths, which is an NP-hard
optimization problem as well, both for minimizing the number

of paths and for maximizing k-splittable flows, cf. [107], [108].
Another popular option is to split the flows at the routers using
hash functions; other major techniques are flow(let) caches and
round-robin splitting, cf. [109]. Nonetheless, splitting flows
along multiple paths can lead to packet reordering problems,
which need to be handled by further techniques, see, e.g., [110].

Many of the discussed flow migration works rely on linear
programming formulations: Even though their runtime is
polynomial in theory, the timely migration of large networks
with many intermediate states is currently problematic in
practice [53]. If the solution takes too long to compute, the
to-be solved problem might no longer exist, a problem only
made worse when resorting to (NP-hard) integer programming
for unsplittable flows. As such, some tradeoff has to be made
between finding an optimal solution and one that can actually
be deployed.

Orthogonal to the problem of consistent flow migration is
the approach of scheduling flows beforehand, not changing
their path assignments in the network during the update. We
refer to the recent works by Kandula et al. [111] and Perry et
al. [112] for examples. Game-theoretic approaches have also
been considered, e.g., [113]. Lastly, the application of model
checking does not cover bandwidth restrictions yet [84], [114].

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 19

E. Summary and Insights

Congestion-aware consistency is stronger than loop-
freedom [62], however it can be seen as orthogonal to policy
consistency. Notwithstanding, most algorithms tag individual
flows and perform 2-phase commits [52], thereby achieving
some levels of policy consistency. Overall, four algorithmic
techniques are currently studied: 1) If flows must remain on
the paths defined by their old or new state, dependency graph
approaches [57] are popular, which can also capture dynamic
network conditions [96]. 2) If flows may be spread over the
network, then insights from flow augmentation algorithms
can be applied [54], [55]. 3) If non-polynomial runtime is
acceptable, the problem of finding short congestion-aware
schedules can be formulated as a MIP [60]. 4) Modifying
the packet headers via tagging can be omitted in many cases
by carefully tailoring the update schedules [102], [103], [104],
however possibly at the cost of some policy consistency. In
order to break deadlocks, the flows themselves may be rate-
limited [57] respectively oversubscribed [60], or the background
traffic is to be reduced [53]. A summary of all discussed
algorithmic approaches can be found in Table III. Regarding
the complexity classification of flow migration, one can think of
it being analogous to classic multi-commodity flow problems:
discrete constraints are NP-hard, whereas continuous constraints
permit polynomial runtime [55]. However, while the problem
remains in NP if every flow may only be touched once [57], the
complexity is unknown otherwise [70]. All complexity results
are summarized in Tables IV and V.

F. Open Problems

The classification of the complexity of flow migration still
poses many questions, cf. Table V: If every flow can only be
moved once, then the migration (decision) problem is clearly
in NP. However, what is the decision complexity if flows
can be moved arbitrarily often, especially with intermediate
paths? Is the “longest” fastest update schedule for unsplittable
flows: linear, polynomial or exponential? In other words, is
the problem complete in NP, PSPACE, or EXPTIME? Related
questions are also open for flows of unit or integer size in
general.

The problem of migrating splittable flows without memory
limits and without intermediate paths is still not studied either:
It seems as if the methods of [55] and [56] also apply to
this case, but a formal proof is missing. Another open issue
which researchers recently started to consider concerns how
to exploit traffic engineering flexibilities and helper rules to
jointly optimize update scheduling and route selection [115].
It is also yet unclear how to integrate such helper rules into
dependency graphs, beyond manually defining intermediate
states that differ from old and new as in [116], [117].

Lastly, it would be interesting to compare the power and
performance of the node-ordering approach introduced by
Amiri et al. [102], further detailed in [103], [104], to using
the 2-phase commit of Reitblatt et al. [52]. Such a comparison
could use involve the work of Zheng et al. [68], [118], under
relaxed consistency guarantees, see the next section.

VII. FURTHER CONSIDERATIONS IN NETWORK UPDATES

We have so far assumed a “logically-centralized” perspective
on the algorithmic network update problem, and mainly focused
on strong notions of consistency. This is also the focus in
most existing literature on the topic. However, there also
exist interesting first work on solutions trying to relax these
assumptions, by studying relaxed notions of consistency and
aspects of distributed control planes. In the following, we
summarize the most important work.

A. Relaxing Consistency Guarantees

So far we studied network updates assuming that consistency
in the respective model must be maintained, e.g., no forwarding
loops must appear at any time. There are cases where
consistency properties fundamentally cannot be guaranteed
across an SDN network. For example, Panda et al. [11] noted
that consistency (in terms of consistent application of some
policies), availability and partition tolerance cannot be all
guaranteed at the same time in an SDN network. In situations
where the consistency property cannot be maintained at all or
the computation of consistent updates is not tractable, some
works proposed to break consistency in a controlled manner.

A first approach in this direction consists in trying to
minimize the time spent in an inconsistent state, with underlying
protocols being able to correct the induced problems (e.g.,
dropped packets are re-transmitted), as done in Google’s B4
network [9], [119]. This can be understood as a very relaxed
form of consistency, eventual consistency [13], [62], [120].

For less relaxed guarantees, i.e., beyond eventual consistency,
Mizrahi et al. propose to synchronize the clocks in the switches
so that network updates can be performed simultaneously: With
perfect clock synchronization, lossless communications and
switch execution behavior, loop freedom could be maintained.
As the standard Network Time Protocol (NTP) does not have
sufficient synchronization behavior, the Precision Time Protocol
(PTP) was adapted to SDN environments in [121], [122],
achieving microsecond accuracy in experiments. This obviously
comes with additional message overhead for time synchroniza-
tion in the whole network. An introduction and overview of
so-called timed consistent updates is provided in [123]. Zheng
et al. [68], [118] study the use of timed consistent updates in
order to prevent congestion in the context of flow migration,
in combination with latency considerations [124], [125, §6].

Nonetheless, in some situations synchronized updates can
be considered optimal: E.g., consider the case in Fig. 13
where two unsplittable flows need to be swapped [106], with
no alternative paths in the network available for the final
links. Then, synchronizing the new flow paths can minimize
the induced congestion [126]. Synchronized updates cannot
guarantee packet consistency on their own, as packets that
are currently en-route may still encounter changed forwarding
rules at the next switch. Time can also be used similarly to a 2-
phase commit though, by analogously using timestamps in the
packet header as tags during the update [127], with [127] also
showing an efficient implementation using timestamp-based
TCAM ranges. Additional memory, as in the 2-phase commit
approach of Reitblatt et al. [52], will be used for this method,

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 20

but packets only need to be tagged implicitly by including the
timestamp (where often 1 bit suffices [128], [127]). In [129]
some additional methods are discussed on how to guarantee
packet consistency by temporarily storing traffic at the switches.

Despite all those advantages, the proposed clock synchroni-
zation approaches do not prevent unpredictable variations of
command execution time on network switches [57], motivating
the need for prediction-based scheduling methods [130], [131].
Even worse, failures have an intrinsic, unavoidable cost in this
approach. If a switch fails to update at all, the network can stay
in an inconsistent state until the controller is notified and takes
appropriate actions (e.g., computing another update). The same
risk of inconsistencies holds if controller-to-switch messages
are delayed or lost. In contrast, techniques based on sequential
approaches can verify the application of sent update commands
one by one, possibly moving forward (to the next update) or
back (if a command is not received or not yet applied) with
no risk of incurring safety violations.

B. Updates in Distributed Control Planes

Emerging large-scale SDNs will need to rely on scalable
architectures and distributed control planes. Besides scalability,
control planes need to be physically distributed to ensure
availability and fault-tolerance, to improve load-balancing, and
to reduce overheads. Distributed control planes can be organized
differently, e.g., be either partitioned vertically (e.g., [132],
[133]) or horizontally (e.g., [134], [135], [136]), where switches
are typically sharded among controllers (e.g., accounting for
geographic location or latency), or where different controllers
are in charge of different flow spaces. The design of a
distributed control plane is a distributed systems problem and
different designs come at different tradeoffs [137].

Which specific architecture is used also has implications on
the network update problem. In general, to ensure consistency
in network updates, additional coordination among different
controllers may be required which comes with overhead: to
guarantee consistency of network operation, actions performed
on the data plane by different controllers may need to be
synchronized. One option to this end are distributed data
stores [138], so that applications would ideally remain unaware
of any inconsistency [44]. Especially for wide-area networks,
such additional synchronization can add substantial latency,
where the notion of “continuous consistency” can be of use
for parametrization in the application design of geo-replicated
services [139]. On the other hand, strongly consistent network
updates are unlikely possible if the control plane itself is
only weakly consistent. STN [140] relies on a replicated state
machine to update networks, which provides strong consis-
tency guarantees, namely linearizability: thus, the distributed
controller can emulate any existing network update algorithm
designed for a single controller. However, it requires consensus.
In contrast, Ravana [141]’s consistency is based on a weaker
notion of “observational indistinguishability”, and Onos [133]
and Net-Paxos [142] rely on partial event ordering.

Panda et al. [11] argue that linearisability is often unneces-
sary for ensuring correct application of most network policies
as the investigated policies often have simple correctness

conditions. Motivated by this observation, Sakic et al. [12]
aim to overcome the blocking process in strongly consistent
distributed control planes, and propose an adaptive, eventually
consistent model. Levin et al. show in [143] that distributed
network functions such as load-balancers can work around
eventual consistency and still deliver performance sufficient
for production deployments. Guo et al. [144] further expand
the work of Levin et al. by reducing synchronization overhead.

Thanh et al. [145] present ez-Segway, a decentralized
mechanism to consistently and quickly update the network state
while preventing forwarding anomalies (loops and blackholes)
and avoiding link congestion. In their design, the centralized
SDN controller only pre-computes information needed by
the switches during the update execution. This information
is distributed to the switches, which use partial knowledge
and direct message passing to efficiently realize the update.
This separation of concerns has the benefit of improving
update performance as the communication and computation
bottlenecks at the controller are removed.

Related to the question of how to perform updates in
distributed control planes is the issue of how to perform such
updates in-band: how to preserve connectivity between control
and data plane if the updates performed by a remote controller
also affects its own paths? Guaranteeing that each switch is
managed, at any time, by at least one controller is challenging
if control is in-band, and only recently, a first solution has been
presented by Canini et al. [146], based on self-stabilization
principles.

C. Summary and Insights

Even though SDN comes with the promise of centralized
control, the network itself remains a distributed system—a fact
which is responsible for many of the difficulties encountered in
the previous sections. If one assumes perfect availability and/or
partition tolerance, in clear contradiction to [11], then providing
consistency becomes much easier: updates can be assumed to
be executed at perfectly synchronized points in time, without
any faults. Technical steps in this direction have already been
performed by improving time synchronization protocols [121]
and implementing timestamp-based TCAMs [127], allowing
for new algorithmic directions [68], [123], [118]. Another
hurdle is that at scale, the control is just logically centralized.
The underlying distributed control plane can be implemented
in various ways, each with its own set of benefits and
tradeoffs [137]; an additional challenge is introduced if control
is in-band [146].

VIII. FROM THEORY TO PRACTICE

As a complement to the previously-described theoretical and
algorithmic results, we now provide an overview on practical
challenges to ensure consistent network updates. We also
describe how previous works tackled those challenges in order
to build automated systems that can automatically carry out
consistent updates. A brief overview indicating the current
status is presented in Table VI.

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 21

TABLE VI
TABLE INDICATING THE CURRENT STATUS OF PRACTICAL CHALLENGES TO ENSURE CONSISTENT UPDATES.

Challenge Approach / Measurement Status

(VIII-A) Ensuring basic
communication

A: command line interface of devices Available in (traditional) networks [147], [31]
A: SDN controller programs and monitors Deployed via, e.g., OpenFlow [43] and Network Information Bases [148]

(VIII-B) Applying op-
erational sequences

M: coordinator messages lost respectively not applied by all devices Measured on commodity hardware [57], [149]
A: status-checking commands and protocols Evaluated in testbed [147]
A: lower-level packet cloning mechanisms Evaluated in simulations [31], data set at

https://inl.info.ucl.ac.be/softwares
A: active probing packets Evaluated in (small) testbed [150]

A: acknowledgement-based protocols Evaluated in small testbed [149]

(VIII-C) Working around
device limitations

M: flow table size and setup rate limits statistics gathering Measured on a common OpenFlow implementation on a switch [134]
M: high rule installation latency Measured on various types of (SDN) switches [151], [152], [153], [57]
A: adapt schedules dynamically Evaluated in testbed [57]
A: eliminate redundant updates Evaluated in Mininet [154], algorithms [61], SDN testbed [71]

(VIII-D) Multiple control-
plane conflicts

A: pro-actively specifying computation of final rules Implementation of [49] available at http://www.frenetic-lang.org
A: implementing coordination and locking primitives on switches Implementation of [155] available at https://github.com/lironsc/of-sync-lib

A: reactively detecting and possibly resolving conflicts Algorithms [140]
A: meta-algorithms General theory [46]

(VIII-E) Updating the
control-plane

A: hypervisor maintains history Evaluated in Mininet [156]
A: explicit state transfer Evaluated in Mininet [157]

(VIII-F) Events occur-
ring during updates

M: impact of link failures (IGP) Evaluated in simulations [32], data set at
https://inl.info.ucl.ac.be/softwares

A: enforcing per-packet consistency against packet-tampering
adversary

Evaluation in small testbed [83]

A. Ensuring Basic Communication with Network Devices

Automated update systems classically rely on a logically-
centralized coordinator, which must interact with network
devices to instruct them to apply operations (in a given order).
Such a device-coordinator interaction requires a communication
channel. Update coordinators in traditional networks typically
exploit the command line interface of devices, as noted in,
e.g., [147], [31]. For SDNs, the interaction is simplified by their
very architecture, since the coordinator is typically embodied by
the SDN controller which must be already able to program (e.g.,
through OpenFlow [43] or similar protocols) and monitor (e.g.,
thanks to a Network Information Base [148]) the controlled
devices.

B. Applying Operational Sequences, Step by Step

Both devices and the device-coordinator communication are
not necessarily reliable. For example, messages sent by the
coordinator may be lost or not be applied by all devices upon
reception [57], [149]. Those possibilities are typically taken
into account in the computation of the update sequence (see
§III). However, an effective update system must also ensure that
operations are actually applied as in the computed sequences,
e.g., that all operations in one update step are actually executed
on the switches before sending operations in the next step. To
this end, a variety of strategies are applied in the literature, from
dedicated monitoring approaches (based on available network
primitives like status-checking commands and protocols [147],
lower-level packet cloning mechanisms [31], or active probing
packets [150]) to acknowledgement-based protocols implemen-
ted by SDN devices [149].

C. Working Around Device Limitations

Applying carefully-computed operational sequences ensures
update consistency but not necessarily performance (e.g.,
speed), as the latter also depends on device efficiency in
executing operations. This aspect has been analyzed by several

works, especially focused on SDN updates which are more
likely to be applied in real-time (e.g., even to react to a failure).
It has been pointed out that current SDN device limitations
impact update performance in two ways. First, SDN switches
are not yet fast to change their packet-processing rules, as
highlighted by several measurement studies. For example, in
the Devoflow [134] paper, the authors showed that the rate of
statistics gathering is limited by the size of the flow table and
is negatively impacted by the flow setup rate. In 2015, He et al.
[151] experimentally demonstrated the high rule installation
latency of four different types of production SDN switches.
This confirmed the results of independent studies [152], [153]
providing a more in-depth look into switch performance across
various vendors. Second, rule installation time can highly vary
over time, independently on any switch, because it is a function
of runtime factors like already-installed rules and data-plane
load. The measurement campaign on real OpenFlow switches
performed in Dionysus [57] indeed shows that rule installation
delay can vary from seconds to minutes. Update systems are
therefore engineered to mitigate the impact of those limitations
– despite not avoiding per-rule update bottlenecks. Prominently,
Dionysus [57] significantly reduces multi-switch update latency
by carefully scheduling operations according to dynamic switch
conditions. In addition, CoVisor [154] and [61] minimize the
number of rule updates sent to switches through eliminating
redundant updates.

D. Avoiding Conflicts between Multiple Control-Planes

For availability, performance, and robustness, network
control-planes are often physically-distributed, even when
logically centralized (as in the case of SDNs with replicated
controllers). For updates of traditional networks, the control-
plane distribution is straightforwardly taken into account, since
it is encompassed in the update problem definition (see §II).
In contrast, additional care must be applied to SDN networks
with multiple controllers: if several controllers try to update

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 22

network devices at the same time, one controller may override
rules installed by another, impacting the correctness of the
update (both during and after the update itself). This requires
to solve potential conflicts between controllers, e.g., by pro-
actively specifying how the final rules have to be computed
(e.g., [49]), by implementing coordination and locking primi-
tives on switches (e.g., [155]), or by reactively detecting and
possibly resolving conflicts (e.g., [140]). A generalization of
the above setting consists in considering multiple control-planes
that may be either all distributed, all centralized, or hybrid
(some distributed and some centralized). Potential conflicts and
general meta-algorithms to ensure consistent updates in those
cases are described in [46].

E. Updating the Control-Plane

In traditional networks, data-plane changes can only be
enforced by changing the configuration of control-plane proto-
cols (e.g., IGPs). In contrast, the most studied case for SDN
updates considers an unmodified controller that has to change
the packet-processing rules on network switches. Nevertheless,
a few works also considered the problem of entirely replacing
the SDN controller itself, e.g., upgrading it to a new version or
replacing an old controller with a newer one. In particular,
HotSwap [156] describes an architecture that enables the
replacement of an SDN controller, by relying on a hypervisor
that maintains a history of network events. As an alternative,
explicit state transfer is used to design and implement the
Morpheus controller platform in [157].

F. Dealing with Events Occurring during an Update

Operational sequences computed by update algorithms
forcedly assume stable network conditions. In practice, however,
unpredictable events, like failures, can modify the network
behavior concurrently and independently from the operations
performed to update the network. While concurrent events can
be very unlikely (especially for fast updates), by definition they
cannot be prevented. A few contributions assessed the impact of
such unpredictable events on the update safety. For instance, the
impact of link failures on SITN-based IGP reconfigurations is
experimentally evaluated in [32]. A more systematic approach is
taken by the recent FOUM work [83], that aims at guaranteeing
per-packet consistency in the presence of an adversary able to
perform packet-tampering and packet-dropping attacks.

IX. FUTURE RESEARCH DIRECTIONS

We have identified and already discussed (in §IV-D,V-E
and VI-F) several open research questions to preserve each of
the consistency properties considered by prior work. We now
describe more general areas which we believe deserve more
attention by the research community in the future.

A. Charting the Complexity Landscape

Researchers have only started to understand the computa-
tional complexities underlying the network update problem.
In particular, many NP-hardness results have been derived

for general problem formulations for all three of our con-
sistency models: connectivity consistency, policy consistency,
and capacity consistency. So far, only for a small number
of specific models polynomial-time optimal algorithms are
known. Even less is known about approximation algorithms.
Hence, more research efforts would be needed to chart a
clearer picture of the complexity landscape for network update
problems. We expect that some of these insights will also have
interesting implications on classic optimization problems, such
as combinatorial reconfiguration [103] problems.

B. Tailoring Update Mechanisms to Specific Networks

Datacenter topologies are usually highly connected and regu-
lar while wide-area networks are more sparse and organically
grown: properties which may be exploitable towards more
efficient and faster network update algorithms. Today, hardly
anything is known about mechanisms for such more specific
graph classes. A conceptually similar challenge arises in the
context of reconfigurable links, e.g., “how to gracefully transi-
tion between two topologies” [158] or dynamic (e.g., wireless
or cellular) networks. Additionally, the latter environments
are appropriate for network coding [159], [160], where to the
best of our knowledge current work is oblivious to ensuring
consistency for codes during updates, respectively how to
facilitate network coding itself for, e.g., faster updates. Tailoring
existing algorithm and designing new algorithms for network
topologies arising in practice hence constitutes a theoretically
and practically very interesting area for future research.

C. Refining our Models for Specific Technologies

While today’s network models capture well the fundamental
constraints and tradeoffs in consistent network update problems,
these models are relatively simple. Today, SDN is used and
discussed in various contexts and for different reasons, from
network virtualization in datacenters to network slicing in
emerging 5G applications [161], [162], [163], but also in
the context of smart grids [164], [165], wireless (sensor)
networks [166], [167], [168], and (hybrid) enterprise and ISP
networks [48], [169], [170]. These use cases come with
different specific requirements on the consistency (e.g., whether
per-packet consistency is strictly needed) and performance (e.g.,
tolerable number of rounds), and also differ in terms of the
available knobs which can be used for the network update (e.g.,
helper rules may undesirable in the context of network slicing).
Accordingly, our models need to be refined and tailored towards
specific use cases.

D. New Update Problems raised by Stateful Applications

Network update schemes also depend on the application,
e.g., traffic engineering applications can come with very
different requirements than load-balancing [171]. Especially
the development of more advanced and complex applications
(e.g., [172], [173], [85, §3]) on top of SDN networks may
create the need to support new consistency properties, and
to potentially preserve these new properties during network
updates. This is particularly true for stateful applications,

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 23

whose state is built or modified by multiple flows. As an
illustration, consider a stateful security appliance (e.g., a
firewall) that checks if traffic is illegitimate on the basis
of the exchange of information between flow sources and
destinations over multiple interaction rounds – e.g., checking
that TCP connections are never started by machines external
to an enterprise network. In this case, network updates must
consistently move all the flows needed for the security appliance
to work correctly. For example, consistent updates should
ensure that flows from any source s to any destination d cross
the same security appliance traversed by flows from d to s;
otherwise, the appliance can incorrectly interrupt connections
during the update (and potentially block the corresponding
traffic for some time). An interesting avenue for future research
is represented by studying if and how constraints related to
stateful applications change the complexity of update problems,
as well as by developing algorithms and strategies to efficiently
deal with such additional constraints.

E. Update Frequency

Another research direction is with respect to the frequency
of network updates. Regarding inter-datacenter networks,
SWAN [53] proposes to update the network every few minutes;
a choice heavily influenced by the computation time needed.
As such response times are not acceptable for, e.g., applications
requiring interactive traffic, part of the network resources
cannot be optimized on the fly. Similarly, in a smart/micro
grid environment, security concerns demand policy consistency,
but at the same time, update speed is critical for power grid
applications after network failures. Hence, Jin et al. [174]
employ the fast 2-phase commit protocol [52], which enforces
policy consistency, but not, e.g., capacity consistency. Security
policy concerns also prevail in enterprise networks, where
dynamic updates are required to facilitate users’ changing
devices as part of BYOD (Bring Your Own Device) or
workplace timetables [175]. It would be interesting to see how
computation (and deploy) times can be significantly improved
for more complex consistency properties. One option could
be to employ machine learning, as already used to obtain
routing configurations [176]. On the other hand, if the updates
are not time-critical but just augment the system’s behavior,
e.g., by improving throughput, the tradeoff between update
frequency and performance would be of further research interest.
Fundamental groundwork on this perspective has already
been presented by Destounis et al. [97], but, as the authors
point out, “the network updates problem is orthogonal and
complementary” [97] to this problem angle. Another dimension
to explore is how to reduce update frequency by improving
in-band mechanisms [134].

F. Dealing with Distributed Control Planes

We believe that researchers have only started to understand
the design and implication of SDN control planes which are
distributed not only vertically but also horizontally [137],
[177], [178]. The research work developed so far mainly
focuses on how to ensure that concurrent update operations
performed by different distributed controllers reach a consistent

state. Depending on the specific setting, many more problems
have to be solved. For example, if each distributed controller
controls a different subset of devices, it may only change
subpaths traversed by some traffic: How to perform updates
that are consistent network-wide, in this case? Introducing
synchronization between controllers might be a building block
towards the final solution, i.e., for the distributed controllers
to agree on which operation to perform when. Which kind of
synchronization is needed in this case? Are there lightweight
forms of synchronization that preserve some consistency
properties with low impact on control overhead and update
speed?

G. Supporting In-Band Updates
Challenges of guaranteeing consistency throughout network

updates are further exacerbated if the controllers have in-band
control over the data plane devices, since they are also affected
by the effects of update operations. As an example of additional
constraints to be taken into account, the distributed controllers
may lose connectivity to some switches that still need to
be updated, in the case of in-band connectivity between the
controller and the devices. How does this constraint affect the
type and amount of update scenarios that can be carried out
by different strategies (e.g., ordering-based algorithms)? Are
there practical workarounds to ensure that controllers always
have connectivity with the controlled switches, irrespectively
of the update ordering and uncontrollable events like possible
packet losses?

X. CONCLUSION

The purpose of this survey was to provide researchers active
in or interested in the field of network update problems (and
in particular Software-Defined Networks) with an overview
of the state-of-the-art. To this end, besides summarizing and
tabularizing current results, we also presented a classification
of consistent network updates in form of a taxonomy. As such,
the multitude of different models, techniques, impossibility
results, and practical challenges are put into context and also
allow direct comparisons. Furthermore, we identified and listed
many at present open technical and algorithmic problems, but
also pointed out currently overlooked gaps in the framework
of consistent network updates. Additionally, we presented a
historical perspective, showcasing the possibilities in traditional
networks, which can be of interest to operators investigating
the migration to Software-Defined Networking. Subsequently,
we discussed the fundamental new challenges introduced in
Software-Defined Networks, also relating them to classic graph-
theoretic optimization problems. These new challenges open
a wide landscape of possibilities for future research, ranging
from the integration of new technologies, adapting to particular
network types, or the rise of complex (stateful) applications
on top of current deployments, to list just a few.

ACKNOWLEDGEMENTS

For inputs and feedback, we would like to thank Marco
Canini, Nate Foster, Dejan Kostić, Ratul Mahajan, Roger
Wattenhofer, and Jiaqi Zheng, as well as the anonymous
reviewers of this article.

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 24

REFERENCES

[1] Barefoot Networks, “The world’s fastest and most programmable
networks (white paper),” https://barefootnetworks.com/white-paper/
the-worlds-fastest-most-programmable-networks/, 2016.

[2] M. Imbriaco, “Network problems last friday,” GitHub: https://github.
com/blog/1346networkproblemslastfriday, December 2012.

[3] J. Jackson, “Godaddy blames outage on corrupted router tables,”
PCWorld: http://www.pcworld.com/article/262142/godaddy_blames_
outage_on_corrupted_router_tables.html, September 2012.

[4] R. Mohan, “Storms in the cloud: Lessons from the ama-
zon cloud outage,” Security Week: http://www.securityweek.com/
storms-cloud-lessons-amazon-cloud-outage, June 2011.

[5] United, “United Airlines Restoring Normal Flight Operations Following
Friday Computer Outage,” http://newsroom.united.com/news-releases?
item=124170, June 2011.

[6] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proc. USENIX NSDI, 2012.

[7] A. Khurshid, W. Zhou, M. Caesar, and B. Godfrey, “Veriflow: verifying
network-wide invariants in real time,” Computer Communication Review,
vol. 42, no. 4, pp. 467–472, 2012.

[8] N. Feamster, J. Rexford, and E. W. Zegura, “The road to SDN: an intel-
lectual history of programmable networks,” Computer Communication
Review, vol. 44, no. 2, pp. 87–98, 2014.

[9] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined wan,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp.
3–14, Aug. 2013.

[10] S. Gilbert and N. A. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” SIGACT News,
vol. 33, no. 2, pp. 51–59, 2002.

[11] A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker, “CAP for
Networks,” in Proc. ACM HotSDN, 2013.

[12] E. Sakic, F. Sardis, J. W. Guck, and W. Kellerer, “Towards adaptive
state consistency in distributed sdn control plane,” in Proc. IEEE ICC,
2017.

[13] E. Brewer, “Cap twelve years later: How the "rules" have changed,”
Computer, vol. 45, no. 2, pp. 23–29, Feb 2012.

[14] A. S. Tanenbaum and M. van Steen, Distributed systems - principles
and paradigms, 2nd Edition. Pearson Education, 2007.

[15] J. Moy, P. Pillay-Esnault, and A. Lindem, “Graceful OSPF Restart,”
RFC 3623, 2003.

[16] A. Shaikh, R. Dube, and A. Varma, “Avoiding instability during graceful
shutdown of multiple OSPF routers,” IEEE/ACM Trans. Netw., vol. 14,
no. 3, pp. 532–542, 2006.

[17] M. Shand and L. Ginsberg, “Restart Signaling for IS-IS,” RFC 5306,
2008.

[18] P. François and O. Bonaventure, “Avoiding transient loops during the
convergence of link-state routing protocols,” IEEE/ACM Trans. Netw.,
vol. 15, no. 6, pp. 1280–1292, 2007.

[19] J. Fu, P. Sjödin, and G. Karlsson, “Loop-free updates of forwarding
tables,” IEEE Trans. Network and Service Management, vol. 5, no. 1,
pp. 22–35, 2008.

[20] L. Shi, J. Fu, and X. Fu, “Loop-free forwarding table updates with
minimal link overflow,” in Proc. IEEE ICC, 2009.

[21] M. Shand and S. Bryant, “A Framework for Loop-Free Convergence,”
IETF, RFC 5715, January 2010.

[22] R. Keralapura, C.-N. Chuah, and Y. Fan, “Optimal strategy for graceful
network upgrade,” in Proc. ACM INM, 2006.

[23] S. Raza, Y. Zhu, and C. Chuah, “Graceful network operations,” in Proc.
IEEE INFOCOM, 2009.

[24] ——, “Graceful network state migrations,” IEEE/ACM Trans. Netw.,
vol. 19, no. 4, pp. 1097–1110, 2011.

[25] P. François, M. Shand, and O. Bonaventure, “Disruption free topology
reconfiguration in OSPF networks,” in Proc. IEEE INFOCOM, 2007.

[26] F. Clad, P. Mérindol, J. Pansiot, P. François, and O. Bonaventure,
“Graceful convergence in link-state IP networks: A lightweight algorithm
ensuring minimal operational impact,” IEEE/ACM Trans. Netw., vol. 22,
no. 1, pp. 300–312, 2014.

[27] F. Clad, P. Mérindol, S. Vissicchio, J. Pansiot, and P. François, “Graceful
router updates in link-state protocols,” in Proc. IEEE ICNP, 2013.

[28] F. Clad, S. Vissicchio, P. Mérindol, P. François, and J. Pansiot, “Compu-
ting minimal update sequences for graceful router-wide reconfigurations,”
IEEE/ACM Trans. Netw., vol. 23, no. 5, pp. 1373–1386, 2015.

[29] G. Herrero and J. van der Ven, Network Mergers and Migrations: Junos
Design and Implementation. Wiley, 2010.

[30] I. Pepelnjak, “Changing the Routing Protocol in
Your Network,” ipSpace: http://blog.ipspace.net/2007/10/
change-routing-protocol-in-your-network.html, October 2007.

[31] L. Vanbever, S. Vissicchio, C. Pelsser, P. François, and O. Bonaventure,
“Seamless network-wide IGP migrations,” in Proc. ACM SIGCOMM,
2011.

[32] ——, “Lossless migrations of link-state igps,” IEEE/ACM Trans. Netw.,
vol. 20, no. 6, pp. 1842–1855, 2012.

[33] F. Le, G. G. Xie, D. Pei, J. Wang, and H. Zhang, “Shedding light
on the glue logic of the internet routing architecture,” in Proc. ACM
SIGCOMM, 2008.

[34] S. Vissicchio, L. Vanbever, L. Cittadini, G. G. Xie, and O. Bonaventure,
“Safe routing reconfigurations with route redistribution,” in Proc. IEEE
INFOCOM, 2014.

[35] L. Vanbever, S. Vissicchio, L. Cittadini, and O. Bonaventure, “When the
cure is worse than the disease: The impact of graceful IGP operations
on BGP,” in Proc. IEEE INFOCOM, 2013.

[36] P. François, O. Bonaventure, B. Decraene, and P. Coste, “Avoiding
disruptions during maintenance operations on BGP sessions,” IEEE
Trans. Network and Service Management, vol. 4, no. 3, pp. 1–11, 2007.

[37] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford,
“Virtual routers on the move: Live router migration as a network-
management primitive,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 4, pp. 231–242, Aug. 2008.

[38] E. Keller, J. Rexford, and J. E. van der Merwe, “Seamless BGP migration
with router grafting,” in Proc. USENIX NSDI, 2010.

[39] S. Vissicchio, L. Vanbever, C. Pelsser, L. Cittadini, P. François, and
O. Bonaventure, “Improving network agility with seamless BGP
reconfigurations,” IEEE/ACM Trans. Netw., vol. 21, no. 3, pp. 990–
1002, 2013.

[40] N. Kushman, S. Kandula, D. Katabi, and B. M. Maggs, “R-BGP: staying
connected in a connected world,” in Proc. USENIX NSDI, 2007.

[41] R. Alimi, Y. Wang, and Y. R. Yang, “Shadow configuration as a network
management primitive,” in Proc. ACM SIGCOMM, 2008.

[42] J. P. John, E. Katz-Bassett, A. Krishnamurthy, T. E. Anderson, and
A. Venkataramani, “Consensus routing: The internet as a distributed
system,” in Proc. USENIX NSDI, 2008.

[43] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[44] D. Kreutz, F. M. V. Ramos, P. J. E. Veríssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A
comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp.
14–76, 2015.

[45] A. Vahdat, D. Clark, and J. Rexford, “A purpose-built global network:
Google’s move to sdn,” Queue, vol. 13, no. 8, pp. 100:100–100:125,
Oct. 2015.

[46] S. Vissicchio, L. Cittadini, O. Bonaventure, G. G. Xie, and L. Vanbever,
“On the co-existence of distributed and centralized routing control-
planes,” in Proc. IEEE INFOCOM, 2015.

[47] N. Foster, A. Guha, M. Reitblatt, A. Story, M. J. Freedman, N. P.
Katta, C. Monsanto, J. Reich, J. Rexford, C. Schlesinger, D. Walker,
and R. Harrison, “Languages for software-defined networks,” IEEE
Communications Magazine, vol. 51, no. 2, pp. 128–134, 2013.

[48] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: taking control of the enterprise,” in Proc. ACM
SIGCOMM, 2007.

[49] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Compo-
sing software defined networks,” in Proc. USENIX NSDI, 2013.

[50] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in Proc. USENIX NSDI, 2013.

[51] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent updates
for software-defined networks: change you can believe in!” in Proc.
ACM HotNets, 2011.

[52] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proc. ACM SIGCOMM, 2012.

[53] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 15–26,
Aug. 2013.

[54] S. Brandt, K.-T. Foerster, and R. Wattenhofer, “Augmenting flows for
the consistent migration of multi-commodity single-destination flows in
sdns,” Pervasive and Mobile Computing, vol. 36, pp. 134–150, 2017.

[55] ——, “On consistent migration of flows in sdns,” in Proc. IEEE
INFOCOM, 2016.

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 25

[56] K.-T. Foerster and R. Wattenhofer, “The power of two in consistent
network updates: Hard loop freedom, easy flow migration,” in Proc.
ICCCN, 2016.

[57] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic scheduling of network
updates,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 539–
550, Aug. 2014.

[58] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz,
“zupdate: Updating data center networks with zero loss,” SIGCOMM
Comput. Commun. Rev., vol. 43, no. 4, pp. 411–422, Aug. 2013.

[59] L. Luo, H. Yu, S. Luo, and M. Zhang, “Fast lossless traffic migration
for SDN updates,” in Proc. IEEE ICC, 2015.

[60] J. Zheng, H. Xu, G. Chen, and H. Dai, “Minimizing transient congestion
during network update in data centers,” in Proc. IEEE ICNP, 2015.

[61] S. Dudycz, A. Ludwig, and S. Schmid, “Can’t touch this: Consistent
network updates for multiple policies,” in Proc. IEEE/IFIP DSN, 2016.

[62] K.-T. Foerster, R. Mahajan, and R. Wattenhofer, “Consistent updates
in software defined networks: On dependencies, loop freedom, and
blackholes,” in Proc. IFIP Networking, 2016.

[63] A. Ludwig, S. Dudycz, M. Rost, and S. Schmid, “Transiently secure
network updates,” in Proc. ACM SIGMETRICS, 2016.

[64] K.-T. Foerster, A. Ludwig, J. Marcinkowski, and S. Schmid, “Loop-free
route updates for software-defined networks,” IEEE/ACM Trans. Netw.,
vol. 26, no. 1, pp. 328–341, 2018.

[65] R. Mahajan and R. Wattenhofer, “On consistent updates in software
defined networks,” in Proc. ACM HotNets, 2013.

[66] D. Li, S. Wang, K. Zhu, and S. Xia, “A survey of network update in
SDN,” Frontiers of Computer Science, vol. 11, no. 1, pp. 4–12, 2017.

[67] A. Ludwig, M. Rost, D. Foucard, and S. Schmid, “Good network
updates for bad packets: Waypoint enforcement beyond destination-
based routing policies,” in Proc. ACM HotNets, 2014.

[68] J. Zheng, B. Li, C. Tian, K.-T. Foerster, S. Schmid, G. Chen, and
J. Wux, “Scheduling congestion-free updates of multiple flows with
chronicle in timed sdns,” in Proc. IEEE ICDCS, 2018.

[69] S. A. Amiri, A. Ludwig, J. Marcinkowski, and S. Schmid, “Transiently
consistent SDN updates: Being greedy is hard,” in Proc. SIROCCO,
2016.

[70] K.-T. Foerster, “On the consistent migration of unsplittable flows: Upper
and lower complexity bounds,” in Proc. IEEE NCA, 2017.

[71] A. Basta, A. Blenk, S. Dudycz, A. Ludwig, and S. Schmid, “Efficient
loop-free rerouting of multiple SDN flows,” IEEE/ACM Trans. Netw.,
vol. 26, no. 2, pp. 948–961, 2018.

[72] A. Korman, S. Kutten, and D. Peleg, “Proof labeling schemes,”
Distributed Computing, vol. 22, no. 4, pp. 215–233, 2010.

[73] K.-T. Foerster, T. Luedi, J. Seidel, and R. Wattenhofer, “Local
checkability, no strings attached: (a)cyclicity, reachability, loop free
updates in sdns,” Theor. Comput. Sci., vol. 709, pp. 48–63, 2018.

[74] A. Ludwig, J. Marcinkowski, and S. Schmid, “Scheduling loop-free
network updates: It’s good to relax!” in Proc. ACM PODC, 2015.

[75] G. Even, J. Naor, B. Schieber, and M. Sudan, “Approximating minimum
feedback sets and multicuts in directed graphs,” Algorithmica, vol. 20,
no. 2, pp. 151–174, 1998.

[76] R. Hassin and S. Rubinstein, “Approximations for the maximum acyclic
subgraph problem,” Information Processing Letters, vol. 51, no. 3, pp.
133 – 140, 1994.

[77] M. Middendorf, “Supersequences, runs, and cd grammar systems,”
Developments in Theoretical Computer Science, vol. 6, pp. 101–114,
1994.

[78] M. Lewin, D. Livnat, and U. Zwick, “Improved rounding techniques
for the MAX 2-sat and MAX DI-CUT problems,” in Proc. IPCO, 2002.

[79] M. Kaminski, P. Medvedev, and M. Milanic, “Shortest paths between
shortest paths,” Theor. Comput. Sci., vol. 412, no. 39, pp. 5205–5210,
2011.

[80] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”
in Proc. ACM HotSDN, 2013.

[81] R. McGeer, “A safe, efficient update protocol for openflow networks,”
in Proc. ACM HotSDN, 2012.

[82] ——, “A correct, zero-overhead protocol for network updates,” in Proc.
ACM HotSDN, 2013.

[83] J. Hua, X. Ge, and S. Zhong, “FOUM: A flow-ordered consistent update
mechanism for software-defined networking in adversarial settings,” in
Proc. IEEE INFOCOM, 2016.

[84] J. McClurg, H. Hojjat, P. Cerný, and N. Foster, “Efficient synthesis of
network updates,” in Proc. ACM SIGPLAN PLDI, 2015.

[85] J. McClurg, “Program synthesis for software-defined networking,” PhD.
thesis, University of Colorado Boulder, USA, Jan. 2018.

[86] P. Cerný, N. Foster, N. Jagnik, and J. McClurg, “Optimal consistent
network updates in polynomial time,” in Proc. DISC, 2016.

[87] S. Vissicchio, L. Vanbever, L. Cittadini, G. G. Xie, and O. Bonaventure,
“Safe update of hybrid sdn networks,” IEEE/ACM Transactions on
Networking, vol. 25, no. 3, pp. 1649–1662, June 2017.

[88] S. Vissicchio and L. Cittadini, “FLIP the (flow) table: Fast lightweight
policy-preserving SDN updates,” in Proc. IEEE INFOCOM, 2016.

[89] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “Flowtags:
enforcing network-wide policies in the presence of dynamic middlebox
actions,” in Proc. ACM HotSDN, 2013.

[90] Z. A. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-
fying middlebox policy enforcement using SDN,” in Proc. ACM
SIGCOMM, 2013.

[91] S. Vissicchio and L. Cittadini, “Safe, efficient, and robust SDN updates
by combining rule replacements and additions,” IEEE/ACM Trans. Netw.,
vol. 25, no. 5, pp. 3102–3115, 2017.

[92] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: programming protocol-independent packet processors,” Computer
Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[93] W. Wang, W. He, J. Su, and Y. Chen, “Cupid: Congestion-free consistent
data plane update in software defined networks,” in Proc. IEEE
INFOCOM, 2016.

[94] X. Jin, Y. Li, D. Wei, S. Li, J. Gao, L. Xu, G. Li, W. Xu, and J. Rexford,
“Optimizing bulk transfers with software-defined optical WAN,” in Proc.
ACM SIGCOMM, 2016.

[95] Y. Chen and J. Wu, “Max progressive network update,” in Proc. IEEE
ICC, 2017.

[96] R. Gandhi, O. Rottenstreich, and X. Jin, “Catalyst: Unlocking the power
of choice to speed up network updates,” in Proc. ACM CoNEXT, 2017.

[97] A. Destounis, S. Paris, L. Maggi, G. S. Paschos, and J. Leguay,
“Minimum cost sdn routing with reconfiguration frequency constraints,”
IEEE/ACM Transactions on Networking, pp. 1–14, 2018, to appear.

[98] S. Luo, H. Yu, L. Luo, and L. Li, “Arrange your network updates as
you wish,” in Proc. IFIP Networking, 2016.

[99] S. Delaët, S. Dolev, D. Khankin, S. Tzur-David, and T. Godinger,
“Seamless SDN route updates,” in Proc. IEEE NCA, 2015.

[100] Y. Dinitz, S. Dolev, and D. Khankin, “Dependence graph and master
switch for seamless dependent routes replacement in SDN (extended
abstract),” in Proc. IEEE NCA, 2017.

[101] S. Delaët, S. Dolev, D. Khankin, and S. Tzur-David, “Make&activate-
before-break for seamless sdn route updates,” Computer Networks, vol.
147, pp. 81 – 97, 2018.

[102] S. A. Amiri, S. Dudycz, S. Schmid, and S. Wiederrecht, “Congestion-
free rerouting of flows on dags,” CoRR, vol. abs/1611.09296, 2016.

[103] ——, “Congestion-free rerouting of flows on dags,” in Proc. ICALP,
2018.

[104] S. A. Amiri, S. Dudycz, M. Parham, S. Schmid, and S. Wiederrecht,
“Short schedules for fast flow rerouting,” CoRR, vol. abs/1805.06315,
2018.

[105] J. Zheng, Q. Ma, C. Tian, B. Li, H. Dai, H. Xu, G. Chen, and Q. Ni,
“Hermes: Utility-aware network update in software-defined wans,” in
Proc. IEEE ICNP, 2018.

[106] T. Mizrahi and Y. Moses, “On the necessity of time-based updates in
SDN,” in Proc. USENIX ONS, 2014.

[107] G. Baier, E. Köhler, and M. Skutella, “The k-splittable flow problem,”
Algorithmica, vol. 42, no. 3-4, pp. 231–248, 2005.

[108] T. Hartman, A. Hassidim, H. Kaplan, D. Raz, and M. Segalov, “How
to split a flow?” in Proc. IEEE INFOCOM, 2012.

[109] J. He and J. Rexford, “Toward internet-wide multipath routing,” IEEE
Network, vol. 22, no. 2, pp. 16–21, 2008.

[110] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load
balancing without packet reordering,” SIGCOMM Comput. Commun.
Rev., vol. 37, no. 2, pp. 51–62, 2007.

[111] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula, “Calendaring
for wide area networks,” SIGCOMM Comput. Commun. Rev., vol. 44,
no. 4, pp. 515–526, Aug. 2014.

[112] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized "zero-queue" datacenter network,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 4, pp. 307–318, Aug. 2014.

[113] M. Hoefer, V. S. Mirrokni, H. Röglin, and S. Teng, “Competitive routing
over time,” Theor. Comput. Sci., vol. 412, no. 39, pp. 5420–5432, 2011.

[114] W. Zhou, D. K. Jin, J. Croft, M. Caesar, and P. B. Godfrey, “Enforcing
customizable consistency properties in software-defined networks,” in
Proc. USENIX NSDI, 2015.

[115] H. Xu, Z. Yu, X. Li, C. Qian, L. Huang, and T. Jung, “Real-time update
with joint optimization of route selection and update scheduling for
sdns,” in Proc. IEEE ICNP, 2016.

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 26

[116] R. Singh, M. Ghobadi, K.-T. Foerster, M. Filer, and P. Gill, “Run, walk,
crawl: Towards dynamic link capacities,” in Proc. ACM HotNets, 2017.

[117] ——, “RADWAN: rate adaptive wide area network,” in Proc. ACM
SIGCOMM, 2018.

[118] J. Zheng, G. Chen, S. Schmid, H. Dai, J. Wu, and Q. Ni, “Scheduling
congestion- and loop-free network update in timed sdns,” IEEE Journal
on Selected Areas in Communications, vol. 35, no. 11, pp. 2542–2552,
2017.

[119] C. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi, K. N. B., C. Bhagat,
S. Jain, J. Kaimal, S. Liang, K. Mendelev, S. Padgett, F. Rabe, S. Ray,
M. Tewari, M. Tierney, M. Zahn, J. Zolla, J. Ong, and A. Vahdat,
“B4 and after: managing hierarchy, partitioning, and asymmetry for
availability and scale in google’s software-defined WAN,” in Proc ACM
SIGCOMM, 2018.

[120] P. Bailis and A. Ghodsi, “Eventual consistency today: limitations,
extensions, and beyond,” Commun. ACM, vol. 56, no. 5, pp. 55–63,
2013.

[121] T. Mizrahi and Y. Moses, “Reverseptp: A clock synchronization scheme
for software-defined networks,” Int. Journal of Network Management,
vol. 26, no. 5, pp. 355–372, 2016.

[122] ——, “Using reverseptp to distribute time in software defined networks,”
in Proc. ISPCS, 2014.

[123] T. Mizrahi, E. Saat, and Y. Moses, “Timed consistent network updates
in software-defined networks,” IEEE/ACM Trans. Netw., vol. 24, no. 6,
pp. 3412–3425, 2016.

[124] K.-T. Foerster, “On the consistent migration of splittable flows: Latency-
awareness and complexities,” in Proc. IEEE NCA, 2018.

[125] ——, “Don’t disturb my flows: Algorithms for consistent network
updates in software defined networks,” PhD. thesis, ETH Zurich,
Switzerland, September 2016.

[126] T. Mizrahi and Y. Moses, “Software defined networks: It’s about time,”
in Proc. IEEE INFOCOM, 2016.

[127] T. Mizrahi, O. Rottenstreich, and Y. Moses, “Timeflip: Using
timestamp-based TCAM ranges to accurately schedule network updates,”
IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 849–863, 2017.

[128] T. Mizrahi and Y. Moses, “The case for data plane timestamping in
SDN,” in Proc. IEEE INFOCOM SWFAN, 2016.

[129] ——, “Time-based updates in software defined networks,” in Proc.
ACM HotSDN, 2013.

[130] ——, “OneClock to rule them all: Using time in networked applications,”
in Proc.IEEE/IFIP NOMS, 2016.

[131] ——, “Time Capability in NETCONF,” in RFC 7758, 2016.
[132] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. R. Kompella,

“Elasticon; an elastic distributed sdn controller,” in Proc. ACM/IEEE
ANCS, 2014.

[133] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proc. ACM HotSDN), 2014.

[134] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: scaling flow management for high-performance
networks,” in Proc. ACM SIGCOMM, 2011.

[135] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient
and scalable offloading of control applications,” in Proc. ACM HotSDN,
2012.

[136] K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed multi-domain
sdn controllers,” in Proc. IEEE NOMS, 2014.

[137] S. Schmid and J. Suomela, “Exploiting locality in distributed SDN
control,” in Proc. ACM HotSDN. ACM, 2013.

[138] F. A. Botelho, F. M. V. Ramos, D. Kreutz, and A. N. Bessani, “On
the feasibility of a consistent and fault-tolerant data store for sdns,” in
Proc IEEE EWSDN, 2013.

[139] H. Yu and A. Vahdat, “Design and evaluation of a conit-based continuous
consistency model for replicated services,” ACM Trans. Comput. Syst.,
vol. 20, no. 3, pp. 239–282, 2002.

[140] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “A distributed and
robust SDN control plane for transactional network updates,” in Proc.
IEEE INFOCOM, 2015.

[141] N. P. Katta, H. Zhang, M. J. Freedman, and J. Rexford, “Ravana:
controller fault-tolerance in software-defined networking,” in Proc. ACM
SOSR, 2015.

[142] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé, “Netpaxos:
Consensus at network speed,” in Proc. ACM SOSR, 2015.

[143] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
“Logically centralized?: state distribution trade-offs in software defined
networks,” in Proc. ACM HotSDN, 2012.

[144] Z. Guo, M. Su, Y. Xu, Z. Duan, L. Wang, S. Hui, and H. J. Chao,
“Improving the performance of load balancing in software-defined

networks through load variance-based synchronization,” Computer
Networks, vol. 68, pp. 95–109, 2014.

[145] T. D. Nguyen, M. Chiesa, and M. Canini, “Towards decentralized fast
consistent updates,” in 2016 ACM ANRW, 2016.

[146] M. Canini, I. Salem, L. Schiff, E. M. Schiller, and S. Schmid,
“Renaissance: A self-stabilizing distributed sdn control plane,” in Proc.
IEEE ICDCS, 2018.

[147] X. Chen, Z. M. Mao, and J. E. van der Merwe, “PACMAN: a platform
for automated and controlled network operations and configuration
management,” in Proc. ACM CoNEXT, 2009.

[148] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
A distributed control platform for large-scale production networks,” in
Proc. USENIX OSDI, 2010.

[149] M. Kuzniar, P. Peresíni, and D. Kostic, “Providing reliable FIB update
acknowledgments in SDN,” in Proc. ACM CoNEXT, 2014.

[150] P. Peresíni, M. Kuzniar, and D. Kostic, “Rule-level data plane monitoring
with monocle,” in Proc. ACM SIGCOMM, 2015.

[151] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella,
L. E. Li, and M. Thottan, “Measuring control plane latency in sdn-
enabled switches,” in Proc. ACM SOSR, 2015.

[152] D. Y. Huang, K. Yocum, and A. C. Snoeren, “High-fidelity switch
models for software-defined network emulation,” in Proc. ACM HotSDN,
2013.

[153] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
“OFLOPS: an open framework for openflow switch evaluation,” in
Proc. PAM, 2012.

[154] X. Jin, J. Gossels, J. Rexford, and D. Walker, “Covisor: A compositional
hypervisor for software-defined networks,” in Proc. USENIX NSDI,
2015.

[155] L. Schiff, S. Schmid, and P. Kuznetsov, “In-band synchronization for
distributed SDN control planes,” Computer Communication Review,
vol. 46, no. 1, pp. 37–43, 2016.

[156] L. Vanbever, J. Reich, T. Benson, N. Foster, and J. Rexford, “Hotswap:
correct and efficient controller upgrades for software-defined networks,”
in Proc. ACM HotSDN, 2013.

[157] K. Saur, J. M. Collard, N. Foster, A. Guha, L. Vanbever, and M. W.
Hicks, “Safe and flexible controller upgrades for sdns,” in Proc. SOSR.
ACM, 2016.

[158] K.-T. Foerster, M. Ghobadi, and S. Schmid, “Characterizing the
algorithmic complexity of reconfigurable data center architectures,”
in Proc. ACM/IEEE ANCS, 2018.

[159] D. Szabó, F. Németh, B. Sonkoly, A. Gulyás, and F. H. P. Fitzek,
“Towards the 5g revolution: A software defined network architecture
exploiting network coding as a service,” Computer Communication
Review, vol. 45, no. 5, pp. 105–106, 2015.

[160] D. Szabo, A. Gulyas, F. H. P. Fitzek, and D. E. Lucani, “Towards the
tactile internet: Decreasing communication latency with network coding
and software defined networking,” in Proc. European Wireless, 2015.

[161] X. Zhou, R. Li, T. Chen, and H. Zhang, “Network slicing as a service:
enabling enterprises’ own software-defined cellular networks,” IEEE
Communications Magazine, vol. 54, no. 7, pp. 146–153, 2016.

[162] I. da Silva, G. Mildh, A. Kaloxylos, P. Spapis, E. Buracchini, A. Trogolo,
G. Zimmermann, and N. Bayer, “Impact of network slicing on 5g radio
access networks,” in Proc. IEEE EuCNC, 2016.

[163] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Muñoz,
J. Lorca, and J. Folgueira, “Network slicing for 5g with SDN/NFV: con-
cepts, architectures, and challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 80–87, 2017.

[164] N. Dorsch, F. Kurtz, H. Georg, C. Hägerling, and C. Wietfeld, “Software-
defined networking for smart grid communications: Applications,
challenges and advantages,” in Proc. IEEE SmartGridComm, 2014.

[165] J. Zhang, B. Seet, T. T. Lie, and C. H. Foh, “Opportunities for software-
defined networking in smart grid,” in Proc. IEEE ICICS, 2013.

[166] T. Luo, H. Tan, and T. Q. S. Quek, “Sensor openflow: Enabling
software-defined wireless sensor networks,” IEEE Communications
Letters, vol. 16, no. 11, pp. 1896–1899, 2012.

[167] B. T. de Oliveira, C. B. Margi, and L. B. Gabriel, “Tinysdn: Enabling
multiple controllers for software-defined wireless sensor networks,” in
Proc. IEEE LATINCOM, 2014.

[168] C. J. Bernardos, A. de la Oliva, P. Serrano, A. Banchs, L. M. Contreras,
H. Jin, and J. C. Zúñiga, “An architecture for software defined wireless
networking,” IEEE Wireless Commun., vol. 21, no. 3, pp. 52–61, 2014.

[169] D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann,
“Panopticon: Reaping the benefits of incremental sdn deployment in
enterprise networks,” in Proc. USENIX ATC, 2014.

K.-T. FOERSTER, S. SCHMID, AND S. VISSICCHIO 27

[170] D. K. Hong, Y. Ma, S. Banerjee, and Z. M. Mao, “Incremental
deployment of SDN in hybrid enterprise and ISP networks,” in Proc.
ACM SOSR, 2016.

[171] M. Aslan and A. Matrawy, “On the impact of network state collection
on the performance of sdn applications,” IEEE Communications Letters,
vol. 20, no. 1, pp. 5–8, Jan 2016.

[172] S. Ghorbani and B. Godfrey, “Towards correct network virtualization,”
in Proc. ACM HotSDN, 2014.

[173] J. McClurg, H. Hojjat, N. Foster, and P. Cerný, “Event-driven network
programming,” in Proc. ACM SIGPLAN PLDI, 2016.

[174] D. Jin, Z. Li, C. Hannon, C. Chen, J. Wang, M. Shahidehpour, and C. W.
Lee, “Toward a cyber resilient and secure microgrid using software-
defined networking,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2494–
2504, 2017.

[175] Allied Telesis, “Understanding enterprise sdn (white paper),”
https://www.alliedtelesis.com/sites/default/files/wp_understanding_
enterprise_sdn_reva.pdf, 2015.

[176] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar, “Learning to
route,” in Proc. ACM HotNets, 2017.

[177] K. Phemius, M. Bouet, and J. Leguay, “DISCO: distributed SDN
controllers in a multi-domain environment,” in Proc. IEEE NOMS,
2014.

[178] T. D. Nguyen, M. Chiesa, and M. Canini, “Decentralized consistent
updates in SDN,” in Proc. SOSR. ACM, 2017.

Klaus-Tycho Foerster is a Postdoctoral Researcher
at the Faculty of Computer Science at the Univer-
sity of Vienna, Austria since 2018. He received
his Diplomas in Mathematics (2007) & Computer
Science (2011) from Braunschweig University of
Technology, Germany, and his PhD degree (2016)
from ETH Zurich, Switzerland, advised by Roger
Wattenhofer. He spent autumn 2016 as a Visiting
Researcher at Microsoft Research Redmond with
Ratul Mahajan, joining Aalborg University, Denmark
as a Postdoctoral Researcher with Stefan Schmid in

2017. His research interests revolve around algorithms and complexity in the
areas of networking and distributed computing.

Stefan Schmid is Professor at the Faculty of Compu-
ter Science at the University of Vienna, Austria. He re-
ceived his MSc (2004) and PhD degrees (2008) from
ETH Zurich, Switzerland. In 2009, Stefan Schmid
was a postdoc at TU Munich and the University of
Paderborn, between 2009 and 2015, a senior research
scientist at the Telekom Innovations Laboratories (T-
Labs) in Berlin, Germany, and from the end of 2015
till early 2018, an Associate Professor at Aalborg
University, Denmark. His research interests revolve
around fundamental and algorithmic problems arising

in networked and distributed systems.

Stefano Vissicchio is a Lecturer at University Col-
lege London. He obtained his Master degree from the
Roma Tre University in 2008, and his Ph.D. degree in
computer science from the same university in April
2012. Before joining University College London, he
has been postdoctoral researcher at the Université
catholique of Louvain. His research interests span
network management, routing theory, algorithms and
protocols, measurements, and network architectures.
Stefano has received several awards including the
ACM SIGCOMM 2015 best paper award, the ICNP

2013 best paper award, and two IETF/IRTF Applied Networking Research
Prizes.

