
Exploiting Flexibilities in SDNs: 
Opportunities, Challenges, and Security 

Implications

Stefan Schmid

Aalborg University, DK & TU Berlin, DE

Nice to meet you!



Confluence: innovation!

Programmability and 
virtualization: new flexibilities!

Algorithms

”We are at an interesting inflection point!”
Keynote by George Varghese 
at SIGCOMM 2014

A rehash: It’s a great time to be a scientist!



Even techsavvy companies struggle to provide reliable operations

We discovered a misconfiguration on this
pair of switches that caused what's called a
“bridge loop” in the network.

A network change was […] executed 
incorrectly […] more “stuck” volumes and 
added more requests to the re-mirroring 
storm

Service outage was due to a series of internal
network events that corrupted router data tables

Experienced a network connectivity issue […]
interrupted the airline's flight departures,
airport processing and reservations systems

Source: Talk by Nate Foster at DSDN Workshop

Mostly manual and ad-hoc! 

Big Networking Challenges: Dependability



Big Networking Challenges: Security

Source: Slide by Adrian Perrig

The Internet on first sight: 
- Monumental
- Passed the “Test-of-Time”
- Should not and cannot be changed

The Internet on second sight: 
- Antique
- Britle
- Successful attacks more and more 

frequent (e.g., based on IoT)



The Wall Street Bank Anecdote

❏ Outage of a data center of a Wall Street investment bank: lost 
revenue measured in USD 106 / min!

❏ Quickly, assembled emergency team:

Source: «The world’s fastest and most programmable networks»
White Paper Barefoot Networks

Big Networking Challenges: Lack of Good Tools

The compute team: quickly 
came armed with reams of 
logs, showing how and 
when the applications 
failed, and had already 
written experiments to 
reproduce and isolate the 
error, along with candidate 
prototype programs to 
workaround the failure. 

The storage team: 
similarly equipped, 
showing which file 
system logs were 
affected, and already 
progressing with 
workaround 
programs. 

The networking team: All the 
networking team had were two 
tools invented over twenty 
years ago [ping and traceroute] 
to merely test end-to-end 
connectivity. Neither tool could 
reveal problems with the 
switches, the congestion 
experienced by individual 
packets, or provide any means 
to create experiments to 
identify, quarantine and 
resolve the problem. 

Guess who gets
blamed?



❏ Cloud-based applications like batch processing, streaming, and 
scale-out databases generate a significant amount of network 
traffic

❏ Considerable fraction of their runtime is due to network activity

❏ Facebook traces: network transfers account for 33% of the execution time

❏ But: available bandwidth (to tenant) varies significantly over time

❏ So: How to render networking more predictable?

Big Networking Challenges: 
Predictable Performance



Software-defined networking: Introduces many new 
flexibilities by decoupling and consolidating the 
control plane. Enables fast control plane innovations, 
automatic verification, new debugging tools, …

Network virtualization: Allows to ensure 
performance isolation, support networks 
with different stacks to co-exist on same 
infrastructure. Etc.

New opportunities - new challenges!

A killer application
for SDN

A Case for SDN and NV?



Ctrl

Control

Programs

Control

Programs

Setting the Stage:
A Mental Model for SDNs

SDN outsources and 
consolidates control 
over multiple 
devices to (logically) 
centralized software 
controller



Ctrl

Control

Programs

Control

Programs

SDN = More Flexibilities…



SDN = More Flexibilities…

Ctrl

Control

Programs

Control

Programs

Flexibility 1: New flexibilities to devise 
algorithms for traffic engineering, load-
balancing, logically-centralized failover, etc.



SDN = More Flexibilities…

Ctrl

Control

Programs

Control

Programs

C.ACM 
3/2016

Key reasons for Google’s move to SDN: more fine-
grained traffic engineering, and more predictable

and faster failure recovery.

Flexibility 1: New flexibilities to devise 
algorithms for traffic engineering, load-
balancing, logically-centralized failover, etc.



Ctrl

Control

Programs

Control

Programs

Flexibility 2: Decoupling! Control plane can 
evolve independently of data plane: 
innovation at speed of software  
development. 

SDN = More Flexibilities…



Ctrl

Control

Programs

Control

Programs

Flexibility 3: Can choose level of locality: one
controller for the whole network, one
controller per switch, anything between.

SDN = More Flexibilities…



SDN = More Flexibilities…

Ctrl

Control

Programs

Control

Programs

Flexibility 4: OpenFlow is about generalization!
• Generalize devices (L2-L4: switches, 

routers, middleboxes)
• Generalize routing and traffic engineering 

(not only destination-based)
• Generalize flow-installation: coarse-

grained rules and wildcards okay, 
proactive vs reactive installation

• Provide flexible logical network views to 
the application / tenant



Ctrl

Control

Programs

Control

Programs

SDN = More Flexibilities…



Ctrl

Control

Programs

Control

Programs

… But Also New Challenges!



Ctrl

Control

Programs

Control

Programs
Applications and 

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

… But Also New Challenges!



Ctrl

Control

Programs

Control

Programs
Applications and 

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

… But Also New Challenges!
Let’s start with

the applications!



Ctrl

Control

Programs

Control

Programs
Applications and 

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

… But Also New Challenges!
Let’s start with

the applications!

Claim: SDN introduces great
traffic engineering flexibilities! 

Can flexibly route traffic through
middleboxes to compose more

complex service chains. 



Routing Through Waypoints

s t

❏ Traditionally: routes form simple paths (e.g., shortest paths)

❏ Traffic engineering is a classic and hard topic: not today

❏ Novel aspect: routing through middleboxes may require
more general paths, with loops: a walk



Routing Through Waypoints

s t

❏ Traditionally: routes form simple paths (e.g., shortest paths)

❏ Traffic engineering is a classic and hard topic: not today

❏ Novel aspect: routing through middleboxes may require
more general paths, with loops: a walk

How to compute a 
shortest route 

through a waypoint?



Routing or “Walking” Through Waypoints:
A Deep Combinatorial Problem

s

❏ Computing shortest routes through waypoints
is non-trivial!

wt

Greedy fails: choose shortest path from s to w… 



Routing or “Walking” Through Waypoints:
A Deep Combinatorial Problem

s

wt

Greedy fails: … now need long path from w to t

❏ Computing shortest routes through waypoints
is non-trivial!



Routing or “Walking” Through Waypoints:
A Deep Combinatorial Problem

s

wt

Greedy fails: … now need long path from w to t

Total length: 
2+6=8

❏ Computing shortest routes through waypoints
is non-trivial!



Routing or “Walking” Through Waypoints:
A Deep Combinatorial Problem

s

wt

A better solution: jointly optimize the two segments!

Total length: 
4+2=6

❏ Computing shortest routes through waypoints
is non-trivial!



❏ Related to the 2-disjoint path problem: NP-
hard on directed networks…

❏ … so is routing via a single waypoint!

Routing or “Walking” Through Waypoints:
A Deep Combinatorial Problem

s1

s2

t1

t2

Why?



Routing or “Walking” Through Waypoints:
A Deep Combinatorial Problem

s1

s2

t1

t2

w

Reduction: From joint shortest paths (s1,t1),(s2,t2) 

to shortest walk (s,w,t) problem



Routing or “Walking” Through Waypoints:
A Deep Combinatorial Problem

s1

s2

t1

t2

w

•Reduction: To 
find shortest 
paths (s1,t1), 
(s2,t2), introduce 
waypoint w and 
connect t1 to s2

via w…. 

Reduction: From joint shortest paths (s1,t1),(s2,t2) 

to shortest walk (s,w,t) problem



Routing or “Walking” Through Waypoints:
A Deep Combinatorial Problem

s1

s2

t1

t2

w

•Reduction: To 
find shortest 
paths (s1,t1), 
(s2,t2), introduce 
waypoint w and 
connect t1 to s2

via w…. 

Reduction: From joint shortest paths (s1,t1),(s2,t2) 

to shortest walk (s,w,t) problem

… and ask for 
shortest waypoint 
route (s1,w,t2)



Routing or “Walking” Through Waypoints:
A Deep Combinatorial Problem

s1

s2

t1

t2

w

•Reduction: To 
find shortest 
paths (s1,t1), 
(s2,t2), introduce 
waypoint w and 
connect t1 to s2

via w…. 

Reduction: From joint shortest paths (s1,t1),(s2,t2) 

to shortest walk (s,w,t) problem

… and ask for 
shortest waypoint 
route (s1,w,t2)

Walk (s1,w,t2) walk defines a (s1,t1) 
and a (s2,t2) path pair before/after the 

waypoint! Solves original problem: 
Contradiction!



What about waypoint routes on 
undirected networks?



❏ Reduction from disjoint paths no longer works: disjoint
paths problem not NP-hard on undirected networks
❏ Feasible paths can be computed: still a very deep problem

❏ Shortest paths: recent breakthrough (polytime randomized algorithm)

❏ Indeed, algorithm exists: We can reduce to edge-
disjoint paths to compute a waypoint route!

What about waypoint routes on 
undirected networks?

•How?



❏ Reduction from disjoint paths no longer works: disjoint
paths problem not NP-hard on undirected networks
❏ Feasible paths can be computed: still a very deep problem

❏ Shortest paths: recent breakthrough (polytime randomized algorithm)

❏ Indeed, algorithm exists: We can reduce to edge-
disjoint paths to compute a waypoint route!

What about waypoint routes on 
undirected networks?

s tw s tw
22

Walks Edge-Disjoint Paths

•Replace capacitated 
links with parallel links! 

•Shortest paths (s,w),(w,t) will 
give shortest (s,w,t) path!



❏ Suurballe’s algorithm: finds two shortest paths between
same endpoints:

We Can Do Even Faster Waypoint Routing on 
Undirected Networks: Suurballe’s Algorithm

ts



❏ Suurballe’s algorithm: finds two shortest paths between
same endpoints:

We Can Do Even Faster Waypoint Routing on 
Undirected Networks: Suurballe’s Algorithm

ts

•How to compute a 
shortest (s,w,t) route 
with this algorithm??



❏ Reduction to Suurballe’s algorithm:

t

s

wG

Waypoint Routing on Steroids

•To find shortest (s,w,t) 
route…



❏ Reduction to Suurballe’s algorithm:

t

s

wS+ T+

G

Waypoint Routing on Steroids

•… connect S+ to s and t, 
and w to T+…



❏ Reduction to Suurballe’s algorithm:

t

s

wS+ T+

G

Waypoint Routing on Steroids

•… ask Suurballe for 2 disjoint 
paths from S+ to T+…



❏ Reduction to Suurballe’s algorithm:

t

s

wG

Waypoint Routing on Steroids

•.. and hence also (s,w,t).



❏ Remark 2: Suurballe is for directed graphs, so need
gadget to transform problem in right form:

y

x

u v u v

❏ Remark 3: Suurballe: vertex disjoint
❏ Suurballe & Tarjan: edge disjoint

Remarks: Under the rug…

❏ Remark 1: We have not talked about directions but does
not matter on undirected graph



❏ Remark 2: Suurballe is for directed graphs, so need
gadget to transform problem in right form:

y

x

u v u v

❏ Remark 3: Suurballe: vertex disjoint
❏ Suurballe & Tarjan: edge disjoint

Remarks: Under the rug…

❏ Remark 1: We have not talked about directions but does
not matter on undirected graph

Conclusion: exploiting traffic 
engineering flexibilities is non-trivial!



Further Reading

Charting the Complexity Landscape of Waypoint Routing
Saeed Akhoondian Amiri, Klaus-Tycho Foerster, Riko Jacob, 
and Stefan Schmid. ArXiv Technical Report, May 2017.

https://net.t-labs.tu-berlin.de/~stefan/ordered-waypoint-routing.pdf


Next claim: Can use SDN+NV to
make bandwidth reservations
and get predictable network

performance! 



Predictable Performance: 
About More Than Bandwidth Reservations!



Predictable Performance: 
About More Than Bandwidth Reservations!

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1
vSDN-1

An Experiment: 2 vSDNs with bw guarantee! 



SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1
vSDN-1

To enable multi-tenancy, 
need network hypervisor: 

provides network
abstraction and control

plane translation!

Predictable Performance: 
About More Than Bandwidth Reservations!

An Experiment: 2 vSDNs with bw guarantee! 



SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

Intercepts control
plane messages. 

Predictable Performance: 
About More Than Bandwidth Reservations!

An Experiment: 2 vSDNs with bw guarantee! 



Predictable Performance: 
About More Than Bandwidth Reservations!

SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

Translation 
could include, 

e.g., switch
DPID, port

numbers, …

Translation 
could include, 

e.g., switch
DPID, port

numbers, …

An Experiment: 2 vSDNs with bw guarantee! 



SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

The network hypervisor can be source 
of unpredictable performance!

Predictable Performance: 
About More Than Bandwidth Reservations!

An Experiment: 2 vSDNs with bw guarantee! 



SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

Experiment: web latency depends
on hypervisor CPU load!

Predictable Performance: 
About More Than Bandwidth Reservations!



Performance also depends
on hypervisor type…

(multithreaded or not, which version
of Nagle’s algorithm, etc.)

What you need to know about your
network hypervisor!

… number of tenants…



Performance also depends
on hypervisor type…

(multithreaded or not, which version
of Nagle’s algorithm, etc.)

What you need to know about your
network hypervisor!

… number of tenants…

Conclusion: for predictable performance, 
need to account for all resources!



Further Reading

Logically Isolated, Actually Unpredictable? Measuring Hypervisor
Performance in Multi-Tenant SDNs
Arsany Basta, Andreas Blenk, Wolfgang Kellerer, and Stefan Schmid.
ArXiv Technical Report, May 2017.

https://net.t-labs.tu-berlin.de/~stefan/vsdn-hypervisor.pdf


Ctrl

Control

Programs

Control

Programs
Applications and 

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

Let’s talk about
the decoupling

next!



Ctrl

Control

Programs

Control

Programs
Applications and 

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

Claim: Outsourcing and 
consolidating the control

simplifies network management
and operation. 



❏ Fundamental networking task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ h1 sends to h2:

h1

h2
h3

Thanks to Jennifer Rexford for example!

Challenge 1: Controller may miss events



❏ Fundamental networking task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ h1 sends to h2:

flood h1

h2
h3

Thanks to Jennifer Rexford for example!

1

2
3

Challenge 1: Controller may miss events



h1

h2
h3

Thanks to Jennifer Rexford for example!

1

2
3

❏ Fundamental networking task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ h1 sends to h2:

flood, learn (h1,p1)

Challenge 1: Controller may miss events



❏ Fundamental networking task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ h1 sends to h2:

flood, learn (h1,p1)

❏ h3 sends to h1:

forward to p1

h1

h2
h3

Thanks to Jennifer Rexford for example!

1

2
3

Challenge 1: Controller may miss events



❏ Fundamental networking task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ h1 sends to h2:

flood, learn (h1,p1)

❏ h3 sends to h1:

forward to p1, learn (h3,p3)

h1

h2
h3

Thanks to Jennifer Rexford for example!

1

2
3

Challenge 1: Controller may miss events



h1

h2
h3

Thanks to Jennifer Rexford for example!

1

2
3

❏ Fundamental networking task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ h1 sends to h2:

flood, learn (h1,p1)

❏ h3 sends to h1:

forward to p1, learn (h3,p3)

❏ h1 sends to h3: 

forward to p3

Challenge 1: Controller may miss events



h1

h2
h3

Thanks to Jennifer Rexford for example!

1

2
3

❏ Fundamental networking task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ h1 sends to h2:

flood, learn (h1,p1)

❏ h3 sends to h1:

forward to p1, learn (h3,p3)

❏ h1 sends to h3: 

forward to p3

Controller

Now: how to do 
via controller?

Challenge 1: Controller may miss events



Example: SDN MAC Learning 
Done Wrong

❏ Initial rule *: Send 
everything to controller

h1

h2
h3

1

2
3

Controller

OpenFlow

switch



Example: SDN MAC Learning 
Done Wrong

❏ Initial rule *: Send 
everything to controller

h1

h2
h3

1

2
3

Controller

OpenFlow

switch

❏ What happens when h1 sends to h2?



Example: SDN MAC Learning 
Done Wrong

❏ Initial rule *: Send 
everything to controller

h1

h2
h3

1

2
3

Controller

❏ What happens when h1 sends to h2?

❏ Controller learns that h1@p1 and floods

OpenFlow

switch



Example: SDN MAC Learning 
Done Wrong

❏ Initial rule *: Send 
everything to controller

h1

h2
h3

1

2
3

Controller

❏ What happens when h1 sends to h2?

❏ Controller learns that h1@p1 and floods

OpenFlow

switch

h1 sends to h2



Example: SDN MAC Learning 
Done Wrong

❏ Initial rule *: Send 
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h2 sends to h1?

OpenFlow

switch



Example: SDN MAC Learning 
Done Wrong

❏ Initial rule *: Send 
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h2 sends to h1?

❏ Switch knows destination: message forwarded to h1

OpenFlow

switch



Example: SDN MAC Learning 
Done Wrong

❏ Initial rule *: Send 
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h2 sends to h1?

❏ Switch knows destination: message forwarded to h1

❏ BUT: No controller interaction, no new rule for h2

OpenFlow

switch



Example: SDN MAC Learning 
Done Wrong

❏ Initial rule *: Send 
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h2 sends to h1?

❏ Switch knows destination: message forwarded to h1

❏ BUT: No controller interaction, no new rule for h2

❏ What happens when h3 sends to h2?

OpenFlow

switch



Example: SDN MAC Learning 
Done Wrong

❏ Initial rule *: Send 
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h2 sends to h1?

❏ Switch knows destination: message forwarded to h1

❏ BUT: No controller interaction, no new rule for h2

❏ What happens when h3 sends to h2?

❏ Flooded! Controller did not put the rule to h2.

OpenFlow

switch



Example: SDN MAC Learning 
Done Wrong

❏ Initial rule *: Send 
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h2 sends to h1?

❏ Switch knows destination: message forwarded to h1

❏ BUT: No controller interaction, no new rule for h2

❏ What happens when h3 sends to h2?

❏ Flooded! Controller did not put the rule to h2!

Controller however does learn about h3. 
BUT NOW: Future communications from
h2 to h3 missed by controller too: no
opportunity to learn about h2, so future
requests to h2 flooded as well?!?

OpenFlow

switch



Ctrl

Control

Programs

Control

Programs
Applications and 

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

Let’s talk about
the decoupling

next!



Ctrl

Control

Programs

Control

Programs
Applications and 

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

Claim: Outsourcing and 
consolidating the control

simplifies network management
and operation. 



Ctrl

Control

Programs

Control

Programs
Applications and 

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

Challenge 2: 
Consistent network

updates!

He et al., ACM SOSR 2015: 

without network latency

Asynchronous! 



untrusted

hosts
trusted

hosts

Controller Platform

Challenge 2: Route Updates
What can possibly go wrong?

Invariant: Traffic from untrusted hosts to trusted hosts via firewall! 



untrusted

hosts
trusted

hosts

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall! 

In virtual networks: 
Not necessarily deployed at edge!

Challenge 2: Route Updates
What can possibly go wrong?



Problem 1: Bypassed Waypoint

insecure

Internet
secure

zone

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall! 



Problem 2: Transient Loop

insecure

Internet
secure

zone

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall! 



Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally

❏ Flip tag at ingress
ports

old route

tag red

Reitblatt et al. Abstractions for Network 
Update, ACM SIGCOMM 2012.



Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally

❏ Flip tag at ingress
ports

old route

tag red

Where to tag? 
Header space? 
Overhead! 

Time till new link 
becomes available!

Reitblatt et al. Abstractions for Network 
Update, ACM SIGCOMM 2012.

Cost of extra rules!



Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally

❏ Flip tag at ingress
ports

old route

tag red

Cost of extra rules!

Where to tag? 
Header space? 
Overhead! 

Time till new link 
becomes available!

Reitblatt et al. Abstractions for Network 
Update, ACM SIGCOMM 2012.

Possible solution without tagging, and at least 
preserve weaker consistency properties?



Idea: Schedule Subsets of Nodes!

Idea: Schedule safe update subsets in multiple rounds!

Packet may take a mix of old and new path, as long as, 
e.g., Loop-Freedom (LF) and Waypoint Enforcement
(WPE) are fulfilled

Controller Platform

Controller Platform

Round 1

Round 2

…



Idea: Schedule Subsets of Nodes!

Idea: Schedule safe update subsets in multiple rounds!

Packet may take a mix of old and new path, as long as, 
e.g., Loop-Freedom (LF) and Waypoint Enforcement
(WPE) are fulfilled

Controller Platform

Controller Platform

Round 1

Round 2

…

How to be sure?



Going Back to Our Examples: LF Update

insecure

Internet

secure

zone



Going Back to Our Examples: LF Update

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:



Going Back to Our Examples: LF Update

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Forward edges
(wrt old policy)! 
Always safe.

Backward
edge: risky!



Going Back to Our Examples: LF Update

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:
LF ok! But: WPE violated in Round 1!

Forward edges
(wrt old policy)! 
Always safe.

Backward
edge: risky!



Going Back to Our Examples: WPE Update

insecure

Internet

secure

zone



Going Back to Our Examples: WPE Update

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Don’t cross the
waypoint: safe!



Going Back to Our Examples: WPE Update

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:
… ok but may violate LF in Round 1! 

Don’t cross the
waypoint: safe!



Going Back to Our Examples: Both WPE+LF?

insecure

Internet

secure

zone



Going Back to Our Examples: WPE+LF!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

insecure

Internet

secure

zoneR3:



Going Back to Our Examples: WPE+LF!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

insecure

Internet

secure

zoneR3:
Is there always a WPE+LF schedule?



What about this one?



LF and WPE may conflict! 

❏ Cannot update any forward edge in R1: WP

❏ Cannot update any backward edge in R1: LF

No schedule exists!

Resort to tagging…



What about this one?



NP-Hard!

1

1

Bad news: Even decidability hard: cannot quickly test feasibility and if
infeasible resort to say, tagging solution!

Open question: very artificial? Under which circumstances poly-time?

To update or not to update in the first round?

That is the question… leading to NP-hardness!

Also an example that greedy can be bad.

We don’t know!



Let us focus on loop-freedom only:
always possible in n rounds! How?



Let us focus on loop-freedom only:
always possible in n rounds! How?

1

From the destination! Invariant: path suffix updated!



Let us focus on loop-freedom only:
always possible in n rounds! How?

12

From the destination! Invariant: path suffix updated!



Let us focus on loop-freedom only:
always possible in n rounds! How?

12

3

From the destination! Invariant: path suffix updated!



Let us focus on loop-freedom only:
always possible in n rounds! How?

1

From the destination! Invariant: path suffix updated!

2

3
4

5

6



Let us focus on loop-freedom only:
always possible in n rounds! How?

1

From the destination! Invariant: path suffix updated!

2

3
4

5

6



But how to minimize # rounds?



But how to minimize # rounds?

2 rounds easy, 3 rounds NP-
hard. Let’s take it offline!



What about capacity constraints?

1

2

2

1 1

1

1

w

s t

u v



What about capacity constraints?

1

2

2

1 1

1

1

Flow 1

w

s t

u v



What about capacity constraints?

1

2

2

1 1

1

1

Flow 1

Flow 2Can you find an update schedule?

w

s t

u v

e.g., cannot update 
red: congestion!



What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

Round 1: prepare

No flow! No flow!

No flow!



What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

Round 2

flow! No flow!

No flow!



What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

3. red@sRound 3

Capacity 2: ok!

3

No flow!



What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

3. red@sRound 4

Capacity 2: ok!

3

4

4. blue@w



What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

3. red@sRound 4

3

4

4. blue@w

Note: this (non-trivial) 
example was just a DAG, 

without loops!



Block Decomposition of DAGs

1

2

2

1 1

1

1

Flow 1

Flow 2

Block for a given flow: 
subgraph between two

consecutive nodes where
old and new route meet. w

s t

u v



Block Decomposition of DAGs

1

2

2

1 1

1

1

Block for a given flow: 
subgraph between two

consecutive nodes where
old and new route meet. w

s t

u v

Just one red block: r1 

r1



Block Decomposition of DAGs

1

2

2

1 1

1

1

Block for a given flow: 
subgraph between two

consecutive nodes where
old and new route meet. w

s t

u v

Two blue blocks: b1 and b2 

b1 b2



Block Decomposition of DAGs

1

2

2

1 1

1

1

Block for a given flow: 
subgraph between two

consecutive nodes where
old and new route meet. w

s t

u v

Dependencies: update b2 after r1 after b1. 

b1 b2
r1



Algorithms and Properties

❏ For k=2 flows
❏ Using dependency graph of DAG block decomposition: 

feasible update exists if and only if cycle-free dependency

❏ Also directly yields optimal number of rounds!

❏ For general k flows
❏ Harder: We need a weaker notion of dependency graph

❏ Only feasibility for constant k in polynomial-time

❏ For general k, NP-hard

❏ Not much more is known so far
❏ NP-hard on general networks already for 2 flows



Further Reading

Scheduling Loop-free Network Updates: It's Good to Relax!
Arne Ludwig, Jan Marcinkowski, and Stefan Schmid.
ACM Symposium on Principles of Distributed Computing (PODC), 
Donostia-San Sebastian, Spain, July 2015.

Transiently Secure Network Updates
Arne Ludwig, Szymon Dudycz, Matthias Rost, and Stefan Schmid.
42nd ACM SIGMETRICS, Antibes Juan-les-Pins, France, June 2016.

Can't Touch This: Consistent Network Updates for Multiple Policies
Szymon Dudycz, Arne Ludwig, and Stefan Schmid.
46th IEEE/IFIP International Conference on Dependable Systems 
and Networks (DSN), Toulouse, France, June 2016.

Congestion-Free Rerouting of Flows on DAGs
Saeed Akhoondian Amiri, Szymon Dudycz, Stefan Schmid, and 
Sebastian Wiederrecht. ArXiv Technical Report, November 2016.

https://net.t-labs.tu-berlin.de/~stefan/podc15.pdf
https://net.t-labs.tu-berlin.de/~stefan/sigmetrics16.pdf
https://net.t-labs.tu-berlin.de/~stefan/dsn16.pdf
https://net.t-labs.tu-berlin.de/~stefan/netup-dag-arxiv.pdf


Ctrl

Control

Programs

Control

Programs
Applications and 

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs



Ctrl

Control

Programs

Control

Programs
Applications and 

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

Claim: SDN allows for much
simpler data plane logic. 



Ctrl

Control

Programs

Control

Programs
Applications and 

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

But some
functionality

should stay in 
data plane, e.g.?



Should Stay in Data Plane: Local Fast Failover

Ctrl

OpenFlow supports
preconfigured

failover rules: First 
line of defense. Via 
controller too slow!



Should Stay in Data Plane: Local Fast Failover

Ctrl

The Crux: How to define conditional rules which 
have local failure knowledge only? 

OpenFlow supports
preconfigured

failover rules: First 
line of defense. Via 
controller too slow!



1

2

3

4

6

5

The network:

Local Fast Failover



1

2

3

4

6

5

Without failures!

Traffic demand:
{1,2,3}->6

Local Fast Failover



1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Local Fast Failover



1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Local failover @1:
Does not know failures 

downstream!

Local Fast Failover



1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Local failover @1:
Does not know failures 

downstream!

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…



1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Local failover @1:
Reroute to 2!

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…



1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

But also from 2: 
6 not reachable.

Next: 3.

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…



1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Finally, 6 can be reached!

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…



1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Similarly for the other 
two flows.

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…



1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Max load:
3 

Local Fast Failover



1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2 

Local Fast Failover



1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2 

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…



1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2 

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

Tables statically defined, 
without global failure

knowledge: a local algorithm
without communication! 



1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2 

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

In order to load balance: 
prefixes of rows should be

different!



1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2 

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

Bad news (intriguing!): High load unavoidable even in 
well-connected residual networks: a price of locality.

Given L failures, load at least √L, although network still 
highly connected (n-L connected). E.g., L=n/2, load 

could be 2 still, but due to locality at least √n.



1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2 

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

Good news: Theory of local algorithms without
communication: symmetric block design theory.

Bad news (intriguing!): High load unavoidable even in 
well-connected residual networks: a price of locality.

Given L failures, load at least √L, although network still 
highly connected (n-L connected). E.g., L=n/2, load 

could be 2 still, but due to locality at least √n.



1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2 

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

Good news: Theory of local algorithms without
communication: symmetric block design theory.

Bad news (intriguing!): High load unavoidable even in 
well-connected residual networks: a price of locality.

Given L failures, load at least √L, although network still 
highly connected (n-L connected). E.g., L=n/2, load 

could be 2 still, but due to locality at least √n.

What about multihop networks? 
See Chiesa et al.



Further Reading

How (Not) to Shoot in Your Foot with SDN Local Fast Failover: A 
Load-Connectivity Tradeoff
Michael Borokhovich and Stefan Schmid.
17th International Conference on Principles of Distributed Systems 
(OPODIS), Nice, France, Springer LNCS, December 2013.

Load-Optimal Local Fast Rerouting for Dependable Networks
Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
47th IEEE/IFIP International Conference on Dependable Systems 
and Networks (DSN), Denver, Colorado, USA, June 2017.

https://net.t-labs.tu-berlin.de/~stefan/opodis13shoot.pdf
https://net.t-labs.tu-berlin.de/~stefan/dsn17failover.pdf


Ctrl

Control

Programs

Control

Programs
Applications and 

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

One word
about control

plane…



Ctrl

Control

Programs

Control

Programs
Applications and 

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

Claim: SDN introduces many
flexibilities in how control planes 

can be designed. 



Ctrl Ctrl Ctrl

Ctrl

One for all…

Ctrl

Ctrl

Ctrl
Ctrl

Ctrl

… one for each…

… anything between.



Ctrl Ctrl Ctrl

Ctrl

One for all…

Ctrl

Ctrl

Ctrl
Ctrl

Ctrl

… one for each…

… anything between.

What can be
computed locally?

E.g., to prolong lifetime
of routers with restricted

memory: cache only
heavy hitters! 

E.g., shortest paths: 
global problem



❏ Some insights from distributed computing are handy: but come in a 
new light!

❏ But finding right level of locality is non-trivial: tradeoff between inter-
controller communication and quality of solution

❏ E.g., in load balancing

Challenge: Right Level of Locality?

Points of
presence

Customer 
sites

Primary links



Further Reading

A Distributed and Robust SDN Control Plane for Transactional
Network Updates
Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid.
34th IEEE Conference on Computer Communications (INFOCOM), 
Hong Kong, April 2015.

Exploiting Locality in Distributed SDN Control
Stefan Schmid and Jukka Suomela.
ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking (HotSDN), Hong Kong, China, August 2013.

https://net.t-labs.tu-berlin.de/~stefan/infocom15.pdf
https://net.t-labs.tu-berlin.de/~stefan/hotsdn13loc.pdf


Challenge: Right Level of Locality?

❏ Also: how to manage switches inband?

Ctrl

Ctrl

unmanaged!



Further Reading

Medieval: Towards A Self-Stabilizing, Plug & Play, In-Band SDN 
Control Network (Demo Paper)
Liron Schiff, Stefan Schmid, and Marco Canini.
ACM Sigcomm Symposium on SDN Research (SOSR), Santa Clara, 
California, USA, June 2015.

https://net.t-labs.tu-berlin.de/~stefan/sosr15medieval.pdf


Ctrl

Control

Programs

Control

Programs

Let’s talk about security!



Ctrl

Control

Programs

Control

Programs

Let’s talk about security!

In particular: 
malicious switches

(less studied).



Ctrl

Control

Programs

Control

Programs

Let’s talk about security!

In particular: 
malicious switches

(less studied).

Note: Governments etc. don’t have resources 
to build their own trusted hardware.



Ctrl

Control

Programs

Control

Programs

Let’s talk about security!

The case for insecure data
planes: many incidents

❏ Attackers have compromised
routers

❏ Compromised routers are
traded underground

❏ Vendors have left backdoors
open

❏ National security agencies
can bug network equipment

❏ …



What a malicious switch could do:

1 drop/reroute/exfiltrate 2 mirror

3 modify 4 inject



New attack vector:

❏ DoS on controller

❏ Harms availability

❏ E.g., force other
switches into default
behavior

Ctrl

Control

Programs

Control

Programs

More and New Attacks in SDN



Ctrl

Control

Programs

Control

Programs

❏ Idea: exploit controller to
communicate information: 
«Teleportation»

Another New SDN Attack: Teleportation



Ctrl

Control

Programs

Control

Programs

❏ Idea: exploit controller to
communicate information: 
«Teleportation»

❏ Controller reacts to switch
events (packet-ins) by sending
flowmods/packet-outs/… etc.: 
can be exploited to transmit
information

❏ E.g., in MAC learning: src MAC 
0xBADDAD

❏ Can also modulate information
implicitly (e.g., frequency of
packetins)

❏ E.g.: covert communication, 
bypass firewall, coordinate
attack

Another New SDN Attack: Teleportation



Ctrl

Control

Programs

Control

Programs

❏ Idea: exploit controller to
communicate information: 
«Teleportation»

❏ Controller reacts to switch
events (packet-ins) by sending
flowmods/packet-outs/… etc.: 
can be exploited to transmit
information

❏ E.g., in MAC learning: src MAC 
0xBADDAD 

❏ Can also modulate information
implicitly (e.g., frequency of
packetins)

❏ E.g.: covert communication, 
bypass firewall, coordinate
attack

Another New SDN Attack: Teleportation
Difficult to detect: (1) The teleported information follows 

the normal traffic pattern of control communication, 
indirectly between any switch and the controller. (2) 

Teleportation channel is inside the typically encrypted 
OpenFlow channel. Cannot easily be detected with 

modern IDS, even if they operate in the control plane.



Ctrl

Control

Programs

Control

Programs

❏ Idea: exploit controller to
communicate information: 
«Teleportation»

❏ Controller reacts to switch
events (packet-ins) by sending
flowmods/packet-outs/… etc.: 
can be exploited to transmit
information

❏ E.g., in MAC learning: src MAC 
0xBADDAD 

❏ Can also modulate information
implicitly (e.g., frequency of
packetins)

❏ E.g.: covert communication, 
bypass firewall, coordinate
attack

Another New SDN Attack: Teleportation

E.g., 2 switches try to use 
the same DPID, exploit pave 

path technique, etc. 



Ctrl

Control

Programs

Control

Programs

Another Front: Virtualized Switches

Attack vector:

❏ The virtualized data plane



Further Reading

Outsmarting Network Security with SDN Teleportation
Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.
2nd IEEE European Symposium on Security and Privacy (EuroS&P), 
Paris, France, April 2017.

https://net.t-labs.tu-berlin.de/~stefan/eurosp17.pdf


Ctrl

Control

Programs

Control

Programs

Another Front: Virtualized Switches

Attack vector:

❏ The virtualized data plane

Background:

❏ Packet processing and 
other network functions
are more and more
virtualized

❏ E.g., runing on servers at 
the edge of the datacenter

❏ Example: OVS

Advantage: 

❏ Cheap and 
performance ok!

❏ Fast and easy
deployment



Attack vector:

❏ The virtualized data plane

Background:

❏ Packet processing and 
other network functions
are more and more
virtualized

❏ E.g., runing on servers at 
the edge of the datacenter

❏ Example: OVS

Advantage: 

❏ Cheap and 
performance ok!

❏ Fast and easy 
deployment

Ctrl

Control

Programs

Control

Programs

Security Challenges: Insecure Dataplane

New vulnerability: 
collocation. Switches 

run with evelated (root) 
priviledges.



Attack vector:

❏ The virtualized data plane

Background:

❏ Packet processing and 
other network functions
are more and more
virtualized

❏ E.g., runing on servers at 
the edge of the datacenter

❏ Example: OVS

Advantage: 

❏ Cheap and 
performance ok!

❏ Fast and easy 
deployment

Ctrl

Control

Programs

Control

Programs

Security Challenges: Insecure Dataplane

New vulnerability: 
collocation. Switches 

run with evelated (root) 
priviledges.

Collocated with e.g., controllers, 
hypervisors, guest VMs, VM 
image and network management, 
identity management (of admins 
and tenants), etc.



A Case Study: OVS

❏ OVS: a production quality switch, widely deployed in the Cloud

❏ After fuzzing just 2% of the code, found major vulnerabilities:

❏ E.g., two stack overflows when malformed MPLS packets are parsed

❏ These vulnerabilities can easily be weaponized:

❏ Can be exploited for arbitrary remote code execution

❏ E.g., our «reign worm» compromised cloud setups within 100s

❏ Significance

❏ It is often believed that only state-level attackers (with, e.g., control over
the vendor’s supply chain) can compromise the data plane

❏ Virtualized data planes can be exploited by very simple, low-budget 
attackers: e.g., by renting a VM in the cloud and sending a single
malformed MPLS packet



The Reign Worm

Exploits 4 problems:

1. Security assumptions: Virtual switches often run with elevated
(root) priviledges by design.

2. Collocation: virtual switchs reside in virtualized servers (Dom0), and 
are hence collocated with other and possibly critical cloud software, 
including controller software

3. Logical centralization: the control of data plane elements is often
outsourced to a centralized software. The corresponding
bidirectional communication channels can be exploited to spread
the worm further.

4. Support for extended protocol parsers: Virtual switches provide
functionality which goes beyond basic protocol locations of normal 
switches (e.g., handling MPLS in non-standard manner)



The Reign Worm: Step 1

Attacker VM sends a malicious packet that compromises its 
server, giving the remote attacker control of the server. 



The Reign Worm: Step 2

Attacker controlled server compromises the controllers’
server, giving the remote attacker control of the controllers’ server. 

Bidirectional
communication channel



The Reign Worm: Step 3

The compromised controllers’ server propagates
the worm to the remaining uncompromised server. 



The Reign Worm: Step 4

All the servers are controlled by the remote attacker.



Further Reading

Reigns to the Cloud: Compromising Cloud Systems via the Data 
Plane
Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas 
Hetzelt, Jean-Pierre Seifert, Anja Feldmann, and Stefan Schmid.
ArXiv Technical Report, October 2016.

https://net.t-labs.tu-berlin.de/~stefan/vswitch-security-implications.pdf


Ctrl

Control

Programs

Control

Programs

Let’s talk about security!

Challenge: how to build secure
networks if hardware untrusted?



Opportunity: Adversarial Trajectory Sampling

Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

Principle:

❏ Sample subset of
packets (based on 
hash value) anytime

❏ Get complete route 
for sampled packets

❏ Efficient: sampling



Principle:

❏ Sample subset of
packets (based on 
hash value) anytime

❏ Get complete route 
for sampled packets

❏ Efficient: sampling

Opportunity: Adversarial Trajectory Sampling

Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

Not sampled!

Sampled!



Principle:

❏ Sample subset of
packets (based on 
hash value) anytime

❏ Get complete route 
for sampled packets

❏ Efficient: sampling

Opportunity: Adversarial Trajectory Sampling

Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

Problem: knows which
packets are sampled and 

which not! Can manipulate
others without risk!



Principle:

❏ Sample subset of
packets (based on 
hash value) anytime

❏ Get complete route 
for sampled packets

❏ Efficient: sampling

Opportunity: Adversarial Trajectory Sampling

Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

Problem: knows which
packets are sampled and 

which not! Can manipulate
others without risk!

How to make trajectory sampling secure to malicious switches?



Opportunity: Adversarial Trajectory Sampling

Adversarial Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling



Opportunity: Adversarial Trajectory Sampling

Adversarial Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

Idea: leverage SDN!

Secure communication
channels: can

distributed sampling
values in a secure and 

redundant way!



Opportunity: Adversarial Trajectory Sampling

Adversarial Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

Different switches sample 
different packets!

Idea: leverage SDN!

Secure communication
channels: can

distributed sampling
values in a secure and 

redundant way!



Opportunity: Adversarial Trajectory Sampling

Adversarial Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

e.g., injects packet 
(e.g., for exfiltration)



Opportunity: Adversarial Trajectory Sampling

Adversarial Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

Does not report
packet!

Reports packet!

e.g., injects packet 
(e.g., for exfiltration)



Opportunity: Adversarial Trajectory Sampling

Adversarial Trajectory Sampling

❏ Classic tool to monitor packet routes: trajectory sampling

Does not report
packet!

Reports packet!

e.g., injects packet 
(e.g., for exfiltration)

If sampled before 
and after: 

Inconsistency 
detected!



Further Reading

Software-Defined Adversarial Trajectory Sampling
Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.
ArXiv Technical Report, May 2017.

https://net.t-labs.tu-berlin.de/~stefan/adv-traj-sampling.pdf


Software-Defined Wifi



Further Reading

OpenSDWN: Programmatic Control over Home and 
Enterprise WiFi
Julius Schulz-Zander, Carlos Mayer, Bogdan Ciobotaru, 
Stefan Schmid, and Anja Feldmann.
ACM Sigcomm Symposium on SDN Research (SOSR), 
Santa Clara, California, USA, June 2015.

https://net.t-labs.tu-berlin.de/~stefan/sosr15.pdf


Automatically Verifiable!

Claim: SDN networks can be
automatically and 

programmatically configured
and verified.



Computational Tractability?

Emulating Turing 
machine with two
switches? (Ribbon in 
packet?)



Further Reading

WNetKAT: A Weighted SDN Programming and 
Verification Language
Kim G. Larsen, Stefan Schmid, and Bingtian Xue.
20th International Conference on Principles of
Distributed Systems (OPODIS), Madrid, Spain, December 
2016.

https://net.t-labs.tu-berlin.de/~stefan/opodis16.pdf


Conclusion

❏ SDN introduces many flexibilities

❏ But also new challenges

❏ How to exploit flexibilities algorithmically?

❏ How to deal with remote controller(s)? 

❏ New (and old) security challenges

❏ Another grand challenge: predictable performance in 
virtualized SDNs



Algorithms for flow rerouting:

Can't Touch This: Consistent Network Updates for Multiple Policies

Szymon Dudycz, Arne Ludwig, and Stefan Schmid.

46th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Toulouse, France, June 2016.

Transiently Secure Network Updates

Arne Ludwig, Szymon Dudycz, Matthias Rost, and Stefan Schmid.

42nd ACM SIGMETRICS, Antibes Juan-les-Pins, France, June 2016.

Scheduling Loop-free Network Updates: It's Good to Relax!

Arne Ludwig, Jan Marcinkowski, and Stefan Schmid.

ACM Symposium on Principles of Distributed Computing (PODC), Donostia-San Sebastian, Spain, July 2015. 

Good Network Updates for Bad Packets: Waypoint Enforcement Beyond Destination-Based Routing Policies

Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid.

13th ACM Workshop on Hot Topics in Networks (HotNets), Los Angeles, California, USA, October 2014.

Congestion-Free Rerouting of Flows on DAGs

Saeed Akhoondian Amiri, Szymon Dudycz, Stefan Schmid, and Sebastian Wiederrecht.

ArXiv Technical Report, November 2016.

Survey of Consistent Network Updates

Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio.

ArXiv Technical Report, September 2016.

Security of the data plane:

Outsmarting Network Security with SDN Teleportation

Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.

2nd IEEE European Symposium on Security and Privacy (EuroS&P), Paris, France, April 2017.

See also CVE-2015-7516.

Reigns to the Cloud: Compromising Cloud Systems via the Data Plane

Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-Pierre Seifert, Anja Feldmann, and Stefan Schmid.

ArXiv Technical Report, October 2016.

teleportation

attacking the cloud

survey

loop-freedom

multiple policies

waypointing

loop-freedom

waypointing

capacity constraints

https://net.t-labs.tu-berlin.de/~stefan/dsn16.pdf
https://net.t-labs.tu-berlin.de/~stefan/sigmetrics16.pdf
http://net.t-labs.tu-berlin.de/~stefan/podc15.pdf
http://net.t-labs.tu-berlin.de/~stefan/hotnets14update.pdf
https://net.t-labs.tu-berlin.de/~stefan/netup-dag-arxiv.pdf
https://net.t-labs.tu-berlin.de/~stefan/survey-network-update-sdn.pdf
https://net.t-labs.tu-berlin.de/~stefan/eurosp16.pdf
https://wiki.onosproject.org/display/ONOS/Security+advisories
https://net.t-labs.tu-berlin.de/~stefan/vswitch-security-implications.pdf

