

#### Study the past if you would define the future\*: Secure Multi-Party SDN Updates

Liron Schiff

Tel Aviv University, Israel

Stefan Schmid

Aalborg University, Denmark TU Berlin, Germany

\*Confucius

• A distributed process

















Fast data plane processing

- Software frameworks
- Open standards



PEN







• One point of failure:





• Logically centralized, physically distributed



- The control network can be compromised
  - Advanced Persistent Threat (APT)
  - Insider
- Some controllers might be more vulnerable
  - Physical isolation
  - Logical isolation (policies)
  - Control applications
  - Admins
- We assume most controllers are secured

• A compromised control network:



• Malicious commands attack



• Solution: Sign commands with threshold cryptography

Fleet [S. Matsumoto , S. Hitz , A. Perrig 2014]



• Controller state corruption: deletion or injection of events



### **Theoretical Approach**

• Use a distributed shared log algorithm (e.g., Paxos)

- Each entity (device / controller):
  - Suggests log entry (event / command)
  - Considers previous entries
- Controllers can support other's suggestion
- Device performs commands supported by majority

#### **Theoretical Approach**

- Cons:
  - Most distributed shared log implementations are hard to verify [D. Ongaro J. Ousterhout 2014]
  - Limited support for failures / adversaries
  - Expensive design for devices

## Our Approach

- Recognize the asymmetry
  - Device failure is inherently blocking
  - Device "knows" the correct input (event history)

- Light adaptation to devices
  - Store the hash of all sent events/commands (history)
  - Accept command iff:
    - Contains correct hash
    - Signed (including the hash) by majority of controllers

### Our Approach

• Other considerations:

- Prevent race conditions (events vs. commands)
  - Keep a buffer of recent hash values
  - Accept commands with hash within buffer
- Support fast initialization of new (or delayed) controllers
  - Commands includes controller state hash
  - New controller contacts "old" controller to receive state
  - Then contacts device to verify state

## Similar Distributed Control Issue

- Concurrent configuration updates
- Example: load-balancing



## Similar Distributed Control Issue

- Concurrent configuration updates
- Example: load-balancing



# Our Approach [CCR16]

- Consider the centrality of the device
  - Device failure is inherently blocking
  - Device "knows" the current configuration

Zero

- Light adaptation to devices
  - Implement conditional updates
  - Based on OpenFlow (v1.4)
- Transactions over switch configuration space!

L. Schiff, S. Schmid, P. Kuznetsov: In-Band Synchronization for Distributed SDN Control Planes. In ACM Computer Communication Review (CCR) 46(1): 37-43 (2016).

#### Our Approach [CCR16]

• Conditional updates



#### Summary

• SDN control plane might be compromised.

• Past events must be considered and verified.

• Our device centric approach provides a lightweight solution.

• Same approach can solve concurrency issues.



