
Study the past if you would define the future*:

Secure Multi-Party SDN Updates

Liron Schiff Stefan Schmid
Tel Aviv University, Israel Aalborg University, Denmark

TU Berlin, Germany*Confucius

Routing Network

• A distributed process

Routing Network

• With distributed control

Routing Network

• Example: shortest paths

Routing Network

• Example 2: failure recovery

Routing Network

• But: expensive, not flexible…

Software Defined Network (SDN)

• Centralized control

Software Defined Network (SDN)

• Centralized control

Software Defined Network (SDN)

Centralized control

Control plane network

Fast data plane processing

Software Defined Network (SDN)

• Software frameworks

• Open standards

Software Defined Network (SDN)
• Events are sent to controller

– Link failures

– Unhandled packets

– etc… events

Software Defined Network (SDN)
• Controller sends commands

– Forwarding rule updates

– Statistics requests

– etc… commands

Software Defined Network (SDN)
• One point of failure:

Software Defined Network (SDN)
• Logically centralized, physically distributed

Distributed Control Security Issues
• The control network can be compromised

– Advanced Persistent Threat (APT)

– Insider

• Some controllers might be more vulnerable
– Physical isolation

– Logical isolation (policies)

– Control applications

– Admins

• We assume most controllers are secured

Distributed Control Security Issues
• A compromised control network:

• (we focus on one device)

Distributed Control Security Issues
• Malicious commands attack

Distributed Control Security Issues
• Solution: Sign commands with threshold cryptography

Fleet [S. Matsumoto , S. Hitz , A. Perrig 2014]

Bad cmd.Good cmd.

Distributed Control Security Issues
• Controller state corruption: deletion or injection of events

events

Remote
controller

Controller additions?
Reboots?

Bad cmds

Theoretical Approach
• Use a distributed shared log algorithm (e.g., Paxos)

• Each entity (device / controller):

– Suggests log entry (event / command)

– Considers previous entries

• Controllers can support other’s suggestion

• Device performs commands supported by majority

Theoretical Approach

• Cons:

– Most distributed shared log implementations are hard
to verify [D. Ongaro J. Ousterhout 2014]

– Limited support for failures / adversaries

– Expensive design for devices

Our Approach
• Recognize the asymmetry

– Device failure is inherently blocking

– Device “knows” the correct input (event history)

• Light adaptation to devices

– Store the hash of all sent events/commands (history)

– Accept command iff:
• Contains correct hash

• Signed (including the hash) by majority of controllers

Our Approach
• Other considerations:

– Prevent race conditions (events vs. commands)
• Keep a buffer of recent hash values

• Accept commands with hash within buffer

– Support fast initialization of new (or delayed) controllers
• Commands includes controller state hash

• New controller contacts “old” controller to receive state

• Then contacts device to verify state

Similar Distributed Control Issue
• Concurrent configuration updates

• Example: load-balancing

Left:1, Right:2Left:1, Right:2

Link load=2Link load=1

Similar Distributed Control Issue
• Concurrent configuration updates

• Example: load-balancing

Add 2 flows to left Add 2 flows to left

Our Approach [CCR16]
• Consider the centrality of the device

– Device failure is inherently blocking

– Device “knows” the current configuration

• Light adaptation to devices
– Implement conditional updates

– Based on OpenFlow (v1.4)

• Transactions over switch configuration space!
L. Schiff, S. Schmid, P. Kuznetsov: In-Band Synchronization for Distributed SDN
Control Planes. In ACM Computer Communication Review (CCR) 46(1): 37-43 (2016).

Zero

Our Approach [CCR16]
• Conditional updates

If left=1 then
Add 2 flows to left

If left=1 then
Add 2 flows to left

Abort

Summary

• SDN control plane might be compromised.

• Past events must be considered and verified.

• Our device centric approach provides a
lightweight solution.

• Same approach can solve concurrency issues.

