
Concurrent Connected 
Components

University of Vienna
25 January 2019 (slides revised 30 January)

Robert E. Tarjan
Princeton University and Intertrust Technologies

joint work with Sixue Liu, Princeton



Observations

Over the last 60 years, computer scientists have 
developed many beautiful and theoretically 
efficient algorithms.

But many such algorithms have yet to be used in 
practice.  Some fail when used improperly, or  
are less efficient than simpler methods with 
worse theoretical efficiency.



Why?

Software developers, pressed for time, may 
choose the simplest solution that works, or 
seems to.
They may use ideas from theory but simplify 
them in ways that may not work. (“A little 
knowledge is a dangerous thing.”). Or, they may  
build their own solution and provide a flawed 
efficiency analysis.



How should theoreticians respond?

Develop and analyze simple methods.  The 
analysis can be complicated, but the algorithm 
must be simple.
Apply theory to analyze and improve methods 
used or usable in practice.  



How should practitioners respond?

Bring experts in early: get feedback while there 
is still time to make changes.
Build on-going relationships: short-term gains 
are predictable, long-term gains not, but may be 
much more valuable.

Open two-way feedback is critical.



My personal research goal
Develop and analyze reference algorithms:

algorithms from “the book”
a la “proofs from the book” (Erdős)

Algorithms as simple as possible, with provable
resource bounds for important input classes, 

and efficient in practice
Systematically explore the design space

Einstein: “Make everything as simple as 
possible, but not simpler”



Connected Components
The most basic graph problem?

In an undirected graph, two vertices are 
connected if there is a path between them.  A 
connected component (henceforth just a 
component) is a maximal set of pairwise-
connected vertices.
Problem: Given a graph, compute its 
components.
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How to represent components?

Label all vertices in each component with a 
unique vertex in the component: can test if two 
vertices are in the same component by 
comparing their labels.
Assume n vertices, 1,…, n; m edges
Minimum labeling: Minimum vertex in 
component.
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Classic sequential algorithms

Graph search: breadth-first, depth-first or any 
other kind of search.
Disjoint set union: Use a disjoint-set (union-find) 
data structure. 



Maintain a collection of disjoint sets, initially 
singletons, each with a unique canonical 
element, subject to two operations:
unite(x, y): If x and y are in different sets, unite 
these sets and choose a canonical element for 
the new set.
find(x): Return the canonical element of the set 
containing x. 

Disjoint set union



Components via disjoint set union

for each edge {x, y} do unite(x, y)
for each v do v.label = find(v)

Need not actually execute the second loop, just 
use find as needed: v and w are in the same 
component iff find(v) = find(w)   



Running time
Graph search: O(m + n)
Disjoint set union - compressed trees with path 
compression and linking by rank:
O((m + n)a(n, m/n))
Disjoint set union uses only the edge set, 
supports individual and batch edge insertions, 
with intermixed queries
(inverse-Ackermann amortized time per unite or 
find, for all practical purposes constant)



Is this the end of the story?



What if the graph is really big?
[beyondplm.com]
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How big is ”big”?

Billions of vertices, trillions of edges



Concurrency

Can we speed up the computation using lots of 
processes, as many as O(1) per edge?

Computation models:
Common memory (PRAM)
Distributed memory (message-passing)



Naïve algorithm (“label propagation”)
for each v do v.p = v;
repeat

for each arc (v, w) do if v.p < w.p then w.p ¬ v.p
until no parent changes

Arcs (v, w) and (w, v) represent edge {v, w}
Loops run synchronously in parallel
Write conflicts resolved in favor of smallest value
v.p is the label of v (“p” for “parent”) 
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Why think of labels as parents?
The vertices v and the arcs (v, v.label) define a 
directed graph (digraph)
If the only cycles are loops (arcs of the form (v, 
v)), the digraph consists of a set of rooted trees:

v is a root iff v = v.label
v.label is the parent of v if v ¹ v.label

If labels never increase, all cycles are loops
Flat tree: the parent of each vertex is the root.     



How many rounds?



How many rounds?

Q(d) where d is the maximum diameter of a 
component

This algorithm does concurrent breadth-first 
search from smallest vertices in components 

(plus extra work)
Slow on high-diameter graphs 



Faster?

Shortcut (also called compress, halve):
for each v do v.p = v.p.p

A shortcut roughly halves the depths of all 
vertices
Might lead to an algorithm that takes O(lgn) 
rounds 



Algorithm C (for Connect)

for each v do v.p ¬ v;
repeat
{ C: for each (v, w) do if v.p < w.p then w.p ¬ v.p;

S: for each v do v.p ¬ v.p.p;}
until no parent changes

(not in SOSA paper)



Algorithm A (for Arc Alteration)
for each v do v.p = v;
repeat
{  C: for each (v, w) do if v < w.p then w.p = v;

S: for each v do v.p = v.p.p;
A: for each (v, w) do if v.p ¹ w.p

then replace (v, w) by (v.p, w.p)
else delete (v, w)} until no parent changes

Possible advantage vs. algorithm A: #edges 
decreases as algorithm proceeds
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Possible drawback?

Algorithms C and A maintain trees (labels only 
decrease)
But they can split a tentative component (by 
moving a subtree)
We call an algorithm monotonic if it  does not 
split tentative components
If non-monotonicity is a drawback, what is a 
solution?



Algorithm R (for root-connect)

for each v do v.p ¬ v;
repeat
{ R: for each (v, w) do if v.p < w.p.p & w.p.p = w.p

then w.p.p ¬ v.p;
S: for each v do v.p ¬ v.p.p}

until no parent changes



Surprisingly, C, A, and R are new
(as far as we can tell)



How many rounds?



A little history 

First era
1980’s – 2000’s

Theoreticians

PRAM (parallel random access machine)

Goal: minimize time and total work (even if at 
the expense of algorithm complication)



PRAM

Each process has a small private memory, can 
access large shared memory
Processes run synchronously in lockstep, at least 
on reads and writes to common memory
PRAM variants handle read and write conflicts 
differently 



PRAM variants

EREW (exclusive read, exclusive write): no 
concurrent reads of or writes to the same 
location in the common memory
CREW (concurrent read, exclusive write): 
concurrent reads allowed, no concurrent writes
CRCW (concurrent read, concurrent write): 
concurrent reads and writes allowed



Handling of write conflicts

Common: all concurrent writes to the same 
location must be of the same value
Arbitrary: among concurrent writes to the same 
location, an arbitrary one succeeds
Priority: among concurrent writes, the one done 
by the highest-priority process succeeds
Combining: values concurrently written to the 
same location are combined using some 
symmetric function, such as minimum or sum.

H



First-era work mostly used one of three models:
Arbitrary CRCW PRAM

CREW PRAM
EREW PRAM

Not a COMBINING CRCW PRAM



Notable results
Shiloach & Vishkin, 1982: Arbitrary CRCW PRAM 
algorithm, O(lgn) steps and O((m + n)lgn) work
Maintains trees and is monotone
Does not do minimum labeling
Two shortcuts per round
Extra steps to guarantee that each round 
combines every flat tree (height at most 1) with 
some other tree
Analysis is not straightforward



S & V example shows that a simpler version of 
their algorithm takes W(n) steps in the worst 
case
Their example works for algorithm R as well
Conclusion: To get a significantly simpler 
(deterministic) algorithm, COMBINING PRAM 
(stronger model) needed



Awerbuch and Shiloach, 1987: Variant of 
Shiloach-Vishkin algorithm, simpler, same 
bounds, simpler analysis
Reif, 1984: Simple randomized algorithm, O(lgn) 
steps and O((m + n)lgn) work, all trees flat 
Johnson and Metaxis, 1997: O(lg3/2n)-steps on a 
CREW PRAM; is monotonic, but does not
maintain acyclicity: uses a variant of shortcutting 
to eliminate any cycles it creates  



Many more-complicated algorithms with o(m+n) 
work bounds, using sparsification, edge 
alteration, process reassignment and other 
techniques

Halperin and Zwick, 1996, 2001: Two 
randomized EREW algorithms running in O(lgn) 
steps and O((m + n)/lgn) work.  One of these 
finds spanning trees of the components.

All the PRAM algorithms we have found in the 
literature are monotonic  



Second era
1990’s – present
Practitioners
Distributed (message-passing) model or a 
variant, based on new distributed computing 
frameworks: MAPREDUCE, HADOOP, etc.
Goal: speed in practice - algorithm needs to be 
implementable by a competent programmer



Dismissal of existing PRAM algorithms as too 
complicated or not implementable on 
distributed model
Invention of “simpler” algorithms, but with 
flawed proofs of resource bounds



Distributed model

Each process has a local memory, no common 
global memory
Each round in lockstep, all processes can do one 
of two kinds of steps:
Send messages to other processes it knows 
about 
Do arbitrary local computation
The model ignores both in-bound and out-
bound message contention



Restriction to components problem
One process per edge and vertex
Initially, each edge process knows the processes of 
its ends, each vertex process knows nothing

Q(lgd) steps are needed to compute components
The O(lgd) algorithm sends many very large 
messages and hence is not practical (more later)
Algorithms C, A, and R use messages of O(lgn) bits, 
as do many of those in the literature



Three examples
Stergio, Rughwani, and Tsioutsiouliklis, 2018: 
algorithm like C but with an extended connect 
step and a variant of shortcutting that combines 
old and new labels
Their “proof” of O(lgn) steps is incorrect.
Solves problems on huge graphs fast in practice, 
on Hronos platform (clever handling of message 
contention, other optimizations)
This paper got us started



Yan, et al., 2014: algorithm in the PREGEL 
framework, simplified version of SV algorithm, 
claimed O(lgn) round bound, but on S & V 
example runs in W(n) rounds: they resolve write 
conflicts arbitrarily
Burkhardt, 2018: splits each edge into two arcs, 
alters these arcs separately, does a form of 
implicit shortcutting, claimed O(lgd) round 
bound, but counterexample of Andoni et al., 
2018, shows false



Our bounds for C, A, and R
C & A: O(lg2n) rounds
Analysis combines new ideas with ideas from 
the analysis of disjoint set union algorithms
Correct bound: Q(lgn)?
R: Q(lgn) rounds
Analysis uses a variant of the potential function 
of A & S and a novel multi-round analysis: flat 
trees can linger for a non-constant number of 
rounds



Algorithms C and A run in O(lg2 n) rounds.
The number of active vertices decreases by a constant 
factor every O(lg n) rounds.

Algorithm R runs in O(lg n) time.
The sum of the heights of active trees decreases by a 
constant factor every constant number of rounds.



Analysis of algorithm R

After two rounds all trees contain at least two 
vertices (except in components of one vertex)
A tree is passive in a round if it does not change 
during a round, active if it does
The potential  F(T) of an active tree T is its 
height plus one, plus one more if  flat
The potential of a passive tree is zero



Let T be an active tree at the end of round k
The constituent trees of T at the end of round j £
k are those at the end of round j whose vertices 
are in T
The potential F(Tj) of T in round j is the sum of 
the potentials of its constituent trees
Lemma: F(Tk – 1) ³ F(Tk), and if k – j ³ 5,

F(Tj) ³ (4/3)F(Tk)



Proof sketch
A shortcut reduces the potential by almost a 
factor of two
A calculation gives F(Tk – 1) ³ F(Tk), and F(Tk – 1) 
³ (6/5)F(Tk) if T has height at least 4
If T has height at most 3 and has at least one 
active constituent tree of sufficient height, or at 
least two constituent trees, the lemma holds
Otherwise T only has one active constituent tree
After at most four rounds, all constituent trees 
are combined, and T is passive, a contradiction 



Fewer rounds?

Andoni et al., 2018 give a complicated algorithm 
with an O((lgd)lglgm/nn) round bound on a 
powerful version of the distributed model

We (Liu, Tarjan, Zhong) can simplify their 
algorithm and implement it on a COMBINING 
CRCW PRAM, a much weaker model. 



Asynchronous processes?

Recent work on concurrent disjoint set union by 
Jayanti and Tarjan (PODC 2016 and unpublished) 
will (we think) translate into efficient 
asynchronous concurrent algorithms for 
connected components



Thanks!

For details see our arXiv paper
(revision of our SOSA 2019 paper)


