
Concurrent Connected
Components

University of Vienna
25 January 2019 (slides revised 30 January)

Robert E. Tarjan
Princeton University and Intertrust Technologies

joint work with Sixue Liu, Princeton

Observations

Over the last 60 years, computer scientists have
developed many beautiful and theoretically
efficient algorithms.

But many such algorithms have yet to be used in
practice. Some fail when used improperly, or
are less efficient than simpler methods with
worse theoretical efficiency.

Why?

Software developers, pressed for time, may
choose the simplest solution that works, or
seems to.
They may use ideas from theory but simplify
them in ways that may not work. (“A little
knowledge is a dangerous thing.”). Or, they may
build their own solution and provide a flawed
efficiency analysis.

How should theoreticians respond?

Develop and analyze simple methods. The
analysis can be complicated, but the algorithm
must be simple.
Apply theory to analyze and improve methods
used or usable in practice.

How should practitioners respond?

Bring experts in early: get feedback while there
is still time to make changes.
Build on-going relationships: short-term gains
are predictable, long-term gains not, but may be
much more valuable.

Open two-way feedback is critical.

My personal research goal
Develop and analyze reference algorithms:

algorithms from “the book”
a la “proofs from the book” (Erdős)

Algorithms as simple as possible, with provable
resource bounds for important input classes,

and efficient in practice
Systematically explore the design space

Einstein: “Make everything as simple as
possible, but not simpler”

Connected Components
The most basic graph problem?

In an undirected graph, two vertices are
connected if there is a path between them. A
connected component (henceforth just a
component) is a maximal set of pairwise-
connected vertices.
Problem: Given a graph, compute its
components.

[vitoshoacademy.com]

[figure from D. Eppstein]

[math.stackexchange]

How to represent components?

Label all vertices in each component with a
unique vertex in the component: can test if two
vertices are in the same component by
comparing their labels.
Assume n vertices, 1,…, n; m edges
Minimum labeling: Minimum vertex in
component.

Minimum labeling
75

2

3

1

6

4

1 1
2 1
3 1
4 1
5 1
6 1
7 1

Classic sequential algorithms

Graph search: breadth-first, depth-first or any
other kind of search.
Disjoint set union: Use a disjoint-set (union-find)
data structure.

Maintain a collection of disjoint sets, initially
singletons, each with a unique canonical
element, subject to two operations:
unite(x, y): If x and y are in different sets, unite
these sets and choose a canonical element for
the new set.
find(x): Return the canonical element of the set
containing x.

Disjoint set union

Components via disjoint set union

for each edge {x, y} do unite(x, y)
for each v do v.label = find(v)

Need not actually execute the second loop, just
use find as needed: v and w are in the same
component iff find(v) = find(w)

Running time
Graph search: O(m + n)
Disjoint set union - compressed trees with path
compression and linking by rank:
O((m + n)a(n, m/n))
Disjoint set union uses only the edge set,
supports individual and batch edge insertions,
with intermixed queries
(inverse-Ackermann amortized time per unite or
find, for all practical purposes constant)

Is this the end of the story?

What if the graph is really big?
[beyondplm.com]

[Max Delbruck Center for Molecular Medicine]

[Stack exchange]

[hub.packtub.com]

How big is ”big”?

Billions of vertices, trillions of edges

Concurrency

Can we speed up the computation using lots of
processes, as many as O(1) per edge?

Computation models:
Common memory (PRAM)
Distributed memory (message-passing)

Naïve algorithm (“label propagation”)
for each v do v.p = v;
repeat

for each arc (v, w) do if v.p < w.p then w.p ¬ v.p
until no parent changes

Arcs (v, w) and (w, v) represent edge {v, w}
Loops run synchronously in parallel
Write conflicts resolved in favor of smallest value
v.p is the label of v (“p” for “parent”)

75

2

3

1

6

4

1
2
3
4
5
6
7

75

2

3

1

6

4

1 1
2 2
3 2
4 1
5 3
6 4
7 5

75

2

3

1

6

4

1 1 1
2 2 2
3 2 2
4 1 1
5 3 2
6 4 1
7 5 3

75

2

3

1

6

4

1 1 1 1
2 2 2 2
3 2 2 2
4 1 1 1
5 3 2 2
6 4 1 1
7 5 3 1

75

2

3

1

6

4

1 1 1 1 1
2 2 2 2 2
3 2 2 2 2
4 1 1 1 1
5 3 2 2 1
6 4 1 1 1
7 5 3 1 1

75

2

3

1

6

4

1 1 1 1 1 1
2 2 2 2 2 2
3 2 2 2 2 1
4 1 1 1 1 1
5 3 2 2 1 1
6 4 1 1 1 1
7 5 3 1 1 1

75

2

3

1

6

4

1 1 1 1 1 1 1
2 2 2 2 2 2 1
3 2 2 2 2 1 1
4 1 1 1 1 1 1
5 3 2 2 1 1 1
6 4 1 1 1 1 1
7 5 3 1 1 1 1

Why think of labels as parents?
The vertices v and the arcs (v, v.label) define a
directed graph (digraph)
If the only cycles are loops (arcs of the form (v,
v)), the digraph consists of a set of rooted trees:

v is a root iff v = v.label
v.label is the parent of v if v ¹ v.label

If labels never increase, all cycles are loops
Flat tree: the parent of each vertex is the root.

How many rounds?

How many rounds?

Q(d) where d is the maximum diameter of a
component

This algorithm does concurrent breadth-first
search from smallest vertices in components

(plus extra work)
Slow on high-diameter graphs

Faster?

Shortcut (also called compress, halve):
for each v do v.p = v.p.p

A shortcut roughly halves the depths of all
vertices
Might lead to an algorithm that takes O(lgn)
rounds

Algorithm C (for Connect)

for each v do v.p ¬ v;
repeat
{ C: for each (v, w) do if v.p < w.p then w.p ¬ v.p;

S: for each v do v.p ¬ v.p.p;}
until no parent changes

(not in SOSA paper)

Algorithm A (for Arc Alteration)
for each v do v.p = v;
repeat
{ C: for each (v, w) do if v < w.p then w.p = v;

S: for each v do v.p = v.p.p;
A: for each (v, w) do if v.p ¹ w.p

then replace (v, w) by (v.p, w.p)
else delete (v, w)} until no parent changes

Possible advantage vs. algorithm A: #edges
decreases as algorithm proceeds

75

2

3

1

6

4

1
2
3
4
5
6
7

75

2

3

1

6

4

C
1 1
2 2
3 2
4 1
5 3
6 4
7 5

75

2

3

1

6

4

C S
1 1 1
2 2 2
3 2 2
4 1 1
5 3 2
6 4 1
7 5 3

75

2

3

1

6

4

C S A
1 1 1
2 2 2
3 2 2
4 1 1
5 3 2
6 4 1
7 5 3

75

2

3

1

6

4

C S A C
1 1 1 1
2 2 2 2
3 2 2 1
4 1 1 1
5 3 2 2
6 4 1 1
7 5 3 3

75

2

3

1

6

4

C S A C S
1 1 1 1 1
2 2 2 2 2
3 2 2 1 1
4 1 1 1 1
5 3 2 2 2
6 4 1 1 1
7 5 3 3 1

75

2

3

1

6

4

C S A C S A
1 1 1 1 1
2 2 2 2 2
3 2 2 1 1
4 1 1 1 1
5 3 2 2 2
6 4 1 1 1
7 5 3 3 1

75

2

3

1

6

4

C S A C S A
1 1 1 1 1
2 2 2 2 2
3 2 2 1 1
4 1 1 1 1
5 3 2 2 2
6 4 1 1 1
7 5 3 3 1

75

2

3

1

6

4

C S A C S A C
1 1 1 1 1 1
2 2 2 2 2 1
3 2 2 1 1 1
4 1 1 1 1 1
5 3 2 2 2 2
6 4 1 1 1 1
7 5 3 3 1 1

75

2

3

1

6

4

C S A C S A C S
1 1 1 1 1 1 1
2 2 2 2 2 1 1
3 2 2 1 1 1 1
4 1 1 1 1 1 1
5 3 2 2 2 2 1
6 4 1 1 1 1 1
7 5 3 3 1 1 1

75

2

3

1

6

4

C S A C S A C S A
1 1 1 1 1 1 1
2 2 2 2 2 1 1
3 2 2 1 1 1 1
4 1 1 1 1 1 1
5 3 2 2 2 2 1
6 4 1 1 1 1 1
7 5 3 3 1 1 1

Possible drawback?

Algorithms C and A maintain trees (labels only
decrease)
But they can split a tentative component (by
moving a subtree)
We call an algorithm monotonic if it does not
split tentative components
If non-monotonicity is a drawback, what is a
solution?

Algorithm R (for root-connect)

for each v do v.p ¬ v;
repeat
{ R: for each (v, w) do if v.p < w.p.p & w.p.p = w.p

then w.p.p ¬ v.p;
S: for each v do v.p ¬ v.p.p}

until no parent changes

Surprisingly, C, A, and R are new
(as far as we can tell)

How many rounds?

A little history

First era
1980’s – 2000’s

Theoreticians

PRAM (parallel random access machine)

Goal: minimize time and total work (even if at
the expense of algorithm complication)

PRAM

Each process has a small private memory, can
access large shared memory
Processes run synchronously in lockstep, at least
on reads and writes to common memory
PRAM variants handle read and write conflicts
differently

PRAM variants

EREW (exclusive read, exclusive write): no
concurrent reads of or writes to the same
location in the common memory
CREW (concurrent read, exclusive write):
concurrent reads allowed, no concurrent writes
CRCW (concurrent read, concurrent write):
concurrent reads and writes allowed

Handling of write conflicts

Common: all concurrent writes to the same
location must be of the same value
Arbitrary: among concurrent writes to the same
location, an arbitrary one succeeds
Priority: among concurrent writes, the one done
by the highest-priority process succeeds
Combining: values concurrently written to the
same location are combined using some
symmetric function, such as minimum or sum.

H

First-era work mostly used one of three models:
Arbitrary CRCW PRAM

CREW PRAM
EREW PRAM

Not a COMBINING CRCW PRAM

Notable results
Shiloach & Vishkin, 1982: Arbitrary CRCW PRAM
algorithm, O(lgn) steps and O((m + n)lgn) work
Maintains trees and is monotone
Does not do minimum labeling
Two shortcuts per round
Extra steps to guarantee that each round
combines every flat tree (height at most 1) with
some other tree
Analysis is not straightforward

S & V example shows that a simpler version of
their algorithm takes W(n) steps in the worst
case
Their example works for algorithm R as well
Conclusion: To get a significantly simpler
(deterministic) algorithm, COMBINING PRAM
(stronger model) needed

Awerbuch and Shiloach, 1987: Variant of
Shiloach-Vishkin algorithm, simpler, same
bounds, simpler analysis
Reif, 1984: Simple randomized algorithm, O(lgn)
steps and O((m + n)lgn) work, all trees flat
Johnson and Metaxis, 1997: O(lg3/2n)-steps on a
CREW PRAM; is monotonic, but does not
maintain acyclicity: uses a variant of shortcutting
to eliminate any cycles it creates

Many more-complicated algorithms with o(m+n)
work bounds, using sparsification, edge
alteration, process reassignment and other
techniques

Halperin and Zwick, 1996, 2001: Two
randomized EREW algorithms running in O(lgn)
steps and O((m + n)/lgn) work. One of these
finds spanning trees of the components.

All the PRAM algorithms we have found in the
literature are monotonic

Second era
1990’s – present
Practitioners
Distributed (message-passing) model or a
variant, based on new distributed computing
frameworks: MAPREDUCE, HADOOP, etc.
Goal: speed in practice - algorithm needs to be
implementable by a competent programmer

Dismissal of existing PRAM algorithms as too
complicated or not implementable on
distributed model
Invention of “simpler” algorithms, but with
flawed proofs of resource bounds

Distributed model

Each process has a local memory, no common
global memory
Each round in lockstep, all processes can do one
of two kinds of steps:
Send messages to other processes it knows
about
Do arbitrary local computation
The model ignores both in-bound and out-
bound message contention

Restriction to components problem
One process per edge and vertex
Initially, each edge process knows the processes of
its ends, each vertex process knows nothing

Q(lgd) steps are needed to compute components
The O(lgd) algorithm sends many very large
messages and hence is not practical (more later)
Algorithms C, A, and R use messages of O(lgn) bits,
as do many of those in the literature

Three examples
Stergio, Rughwani, and Tsioutsiouliklis, 2018:
algorithm like C but with an extended connect
step and a variant of shortcutting that combines
old and new labels
Their “proof” of O(lgn) steps is incorrect.
Solves problems on huge graphs fast in practice,
on Hronos platform (clever handling of message
contention, other optimizations)
This paper got us started

Yan, et al., 2014: algorithm in the PREGEL
framework, simplified version of SV algorithm,
claimed O(lgn) round bound, but on S & V
example runs in W(n) rounds: they resolve write
conflicts arbitrarily
Burkhardt, 2018: splits each edge into two arcs,
alters these arcs separately, does a form of
implicit shortcutting, claimed O(lgd) round
bound, but counterexample of Andoni et al.,
2018, shows false

Our bounds for C, A, and R
C & A: O(lg2n) rounds
Analysis combines new ideas with ideas from
the analysis of disjoint set union algorithms
Correct bound: Q(lgn)?
R: Q(lgn) rounds
Analysis uses a variant of the potential function
of A & S and a novel multi-round analysis: flat
trees can linger for a non-constant number of
rounds

Algorithms C and A run in O(lg2 n) rounds.
The number of active vertices decreases by a constant
factor every O(lg n) rounds.

Algorithm R runs in O(lg n) time.
The sum of the heights of active trees decreases by a
constant factor every constant number of rounds.

Analysis of algorithm R

After two rounds all trees contain at least two
vertices (except in components of one vertex)
A tree is passive in a round if it does not change
during a round, active if it does
The potential F(T) of an active tree T is its
height plus one, plus one more if flat
The potential of a passive tree is zero

Let T be an active tree at the end of round k
The constituent trees of T at the end of round j £
k are those at the end of round j whose vertices
are in T
The potential F(Tj) of T in round j is the sum of
the potentials of its constituent trees
Lemma: F(Tk – 1) ³ F(Tk), and if k – j ³ 5,

F(Tj) ³ (4/3)F(Tk)

Proof sketch
A shortcut reduces the potential by almost a
factor of two
A calculation gives F(Tk – 1) ³ F(Tk), and F(Tk – 1)
³ (6/5)F(Tk) if T has height at least 4
If T has height at most 3 and has at least one
active constituent tree of sufficient height, or at
least two constituent trees, the lemma holds
Otherwise T only has one active constituent tree
After at most four rounds, all constituent trees
are combined, and T is passive, a contradiction

Fewer rounds?

Andoni et al., 2018 give a complicated algorithm
with an O((lgd)lglgm/nn) round bound on a
powerful version of the distributed model

We (Liu, Tarjan, Zhong) can simplify their
algorithm and implement it on a COMBINING
CRCW PRAM, a much weaker model.

Asynchronous processes?

Recent work on concurrent disjoint set union by
Jayanti and Tarjan (PODC 2016 and unpublished)
will (we think) translate into efficient
asynchronous concurrent algorithms for
connected components

Thanks!

For details see our arXiv paper
(revision of our SOSA 2019 paper)

