
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. TODO, NO. TODO, AUGUST 2021 1

Distributed Self-Adjusting Tree Networks
Bruna S. Peres, Otávio A. O. Souza, Olga Goussevskaia, Chen Avin, and Stefan Schmid

F

Abstract—The performance of many data-centric cloud applications
critically depends on the performance of the underlying datacenter
network. Reconfigurable optical technologies have recently introduced a
novel opportunity to improve datacenter network performance, by allow-
ing to dynamically adjust the network topology according to the demand.
However, the vision of self-adjusting networks raises the fundamental
question how such networks can be efficiently operated in a scalable
and distributed manner.

This paper presents DiSplayNet, the first fully distributed self-
adjusting network. DiSplayNet relies on algorithms that perform de-
centralized and concurrent topological adjustments to account for
changes in the demand. We propose two natural metrics to evaluate the
performance of distributed self-adjusting networks, the amortized work
(the cost of routing on and adjusting the network) and the makespan
(the time it takes to serve a set of communication requests). We present
a rigorous formal analysis of the work and makespan of DiSplayNet,
which can be seen as an interesting generalization of analyses known
from sequential self-adjusting datastructures. We complement our the-
oretical contribution with an extensive trace-driven simulation study,
shedding light on the opportunities and limitations of leveraging spatial
and temporal locality and concurrency in self-adjusting networks.

Index Terms—Self-adjusting networks, decentralization, concurrency,
datacenters, amortized analysis, trace-driven simulations

1 INTRODUCTION

THE performance of many cloud-based applications crit-
ically depends on the underlying network, requiring

datacenter networks to provide low latency and high band-
width. For instance, in distributed machine learning appli-
cations that periodically require large data transfers, the
network is increasingly becoming a bottleneck [1]. Similarly,
stringent performance requirements are introduced by to-
day’s trend of resource disaggregation in datacenters where
fast access to remote resources (e.g., GPUs or memory) is
pivotal for the overall system performance [1]. Building
systems with strict performance requirements is especially
challenging under bursty traffic patterns as they are com-
monly observed in datacenter networks [2], [3], [4], [5], [6].

• B.S. Peres was and O.A.O.Souza and O. Goussevskaia are with the
Computer Science Department, Universidade Federal de Minas Gerais,
31270-901 Belo Horizonte, Brazil.
E-mails: bperes@dcc.ufmg.br, oaugusto@dcc.ufmg.br, olga@dcc.ufmg.br

• Chen Avin is with the School of Electrical and Computer Engineering,
Ben Gurion University of the Negev, P.O.B. 653 Beer-Sheva, Israel.
E-mail: avin@bgu.ac.il

• Stefan Schmid is with the Faculty of Computer Science, University of
Vienna, Währinger Straße 29, 1090 Vienna, Austria.
E-mail: stefan schmid@univie.ac.at

In order to deal with the explosively growing traffic
in datacenters, researchers have developed several innova-
tive datacenter topologies over the last years. While tra-
ditionally datacenter networks rely on (multi-rooted) fat-
tree topologies [7], [8], [9], more recent proposals revolve
around hypercubic topologies [10], [11] or topologies based
on expanders [12], [13], among others. All these networks
have in common that their topology is fixed and oblivious to
the traffic pattern it serves. In particular, these topologies are
optimized toward static and demand-oblivious properties
such as the degree, the diameter, or the mincut.

This paper is motivated by an intriguing alternative
vision of how datacenter networks should be operated:
namely in a demand-aware manner, dynamically adapting
the topology towards the workload it serves. Such self-
adjusting networks are empirically motivated: many mea-
surement studies show that datacenter traffic features much
spatial and temporal structure [2], [14], [15], which can be
exploited. For instance, it could be attractive to connect two
frequently communicating racks directly, rather than rout-
ing their traffic in a multi-hop fashion [16]. Self-adjusting
networks have received significant attention over the last
years and are enabled by emerging reconfigurable optical
technologies [17], e.g., based on optical circuit switches, 60
GHz wireless, and free-space optics [18], [19], [20], [21],
[22]. All these technologies allow to reconfigure the physical
communication topology at runtime. It has been shown
that dynamically reconfigurable networks can be attractive
and, e.g., achieve a performance similar to a demand-
oblivious full-bisection bandwidth network at 25 − 40%
lower cost [18], [21]. In general, the higher the given (spatial
and temporal) locality of the communication pattern, the
higher the possible gains of self-adjusting networks.

However, while the technologies enabling more flexi-
ble datacenter networks are maturing, today, we still do
not have a good understanding of how to actually exploit
these flexibilities. Indeed, self-adjusting networks still lack
theoretical foundations, from performance metrics to opti-
mization. In particular, the notion of self-adjusting networks
raises the basic question how such networks can be operated
in a scalable and hence distributed manner. This paper
aims to make a first step to address these questions, by
considering a most basic network topology, a self-adjusting
tree.

Putting Things Into Perspective. The approach pro-
posed in this paper is motivated by the observation that
the vision of self-adjusting networks is similar in spirit to
the vision of self-adjusting datastructures introduced by

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. TODO, NO. TODO, AUGUST 2021 2

Sleator and Tarjan: In their seminal work [23], Sleator and
Tarjan proposed splay trees, a new kind of Binary Search Tree
(BST) which self-adjusts to its usage pattern, moving more
frequently accessed elements closer to the root: this moving
cost is likely to be compensated in the future due to reduced
lookup times. In particular, Sleator and Tarjan proved upper
bounds on the amortized cost of splay trees.

The main difference between datastructures and com-
munication networks is that in the former, requests always
originate from the root (i.e., the pointer to the BST root),
whereas in the latter, requests occur between node pairs (e.g.,
top-of-rack switches in datacenters, or peers). A first pro-
posal to generalize splay trees to networks, short SplayNet,
has been presented in [24]. In SplayNet, communication
happens between arbitrary node pairs in the network and
nodes communicating more frequently perform local trans-
formations and become topologically closer to each other
over time. In particular, node pairs located in different
subtrees move toward their least common ancestor: there
is no need to move all the way to the network root in this
case. In order for such sequences of local topology changes
to be executed in real-time using any of the emerging
reconfiguration hardware, such as optical switches [17],
each network node should be able to decide and physically
change its communication links in a distributed and concur-
rent manner.

While SplayNets have been proven to be optimal for some
specific traffic patterns and have some interesting additional
features such as support for local routing, they are operated
centrally and are inherently sequential.

To the best of our knowledge, the fundamental question
of how to design distributed, i.e., decentralized and concur-
rent, dynamically self-adjusting network topologies, has not
been explored in the literature so far. Surprisingly, we are
also not aware of any distributed analysis of the performance
of classic self-adjusting splay trees under concurrent re-
configurations (existing performance analyses of concurrent
datastructures such as CBTrees [25] are sequential).

Our Contributions. This paper presents DiSplayNet,
the first fully distributed (decentralized and concurrent) self-
adjusting (splay-)tree network which comes with formal
performance guarantees. DiSplayNet relies on distributed
algorithms which adapt the topology to the workload au-
tomatically, in an online manner (i.e., without knowledge of
future demand).

This paper proposes two natural metrics to evaluate the
performance of any distributed self-adjusting network: (1)
The (amortized) work, which is similar to the performance
measures used in the context of self-adjusting data struc-
tures. It measures the cost of routing on and adjusting the
network. (2) The makespan, which measures the time it takes
to serve a set of communication requests.

Our main technical contribution is an amortized analysis
of DiSplayNet. We show that the proposed algorithm is
deadlock- and starvation-free, and we derive formal worst-
case guarantees on both amortized work and makespan. To
the best of our knowledge, this is the first upper bound on
the work needed to serve an arbitrary sequence of requests
using self-adjusting networks in a concurrent setting, as
existing bounds apply to sequential/centralized settings
[23], [24], [25].

We also report on simulation results (based on syn-
thetic traces and real datacenter workloads, including from
Microsoft [18] and Facebook [26]) which complement our
formal analysis. Our results indicate that decentralization
does not come at a price of additional reconfiguration work,
and can significantly increase the throughput of a network.
By comparing our results to an optimal static network, we
also shed light on when DiSplayNet is able to leverage
temporal locality. We find that even if the demand does not
feature any temporal locality (but requests are chosen i.i.d.)
our approach does not perform much worse than an opti-
mal static network which has complete knowledge of the
demand ahead of time; and when the demand features some
temporal structure, DiSplayNet soon outperforms statically
optimal networks.

Paper Organization. The remainder of this paper is orga-
nized as follows. Section 2 presents the model. In Section 3,
we describe our algorithm and analyze it subsequently in
Section 4. We report on our simulations in Section 5. After
reviewing related work (Section 6), we conclude in Section 7.

2 MODEL

Our objective is to design distributed algorithms for self-
adjusting networks which come with provable perfor-
mance guarantees. The network should connect a set V =
{v1, . . . , vn} of n nodes (e.g., top-of-rack switches or peers).
The input to the network design problem is a traffic de-
mand, given as a sequence σ = (σ1, σ2 . . . σm) of m com-
munication requests σi = (si, di) occurring over time, with
source si and destination di; m can be infinite. We use bi to
denote the time when a request σi = (si, di) ∈ V ×V is gen-
erated, and ei to denote the time in which it is completed.
The times between successive requests arrivals are assumed
to be at least one. The sequence σ is revealed over time, in an
online manner: the algorithm does not have any information
about the future requests σj at time t < bj . Moreover,
the sequence σ can be arbitrary: in our formal analysis we
consider a worst-case scenario, where σ is chosen adversar-
ially, in order to maximize the cost of a given distributed
algorithm. When serving these communication requests, the
network can adjust, and we denote the sequence of network
topologies over time by G1, G2, However, we require
that each Gi belongs to some “desirable” graph family G. In
particular, for scalability reasons, the networks should be of
constant degree.

In this paper we focus on tree networks only. Our mo-
tivation is that trees are the most basic graph family and
we envision that the self-adjusting links constitute only
a subset of the topology, the usual assumption in such
networks [18]. More specifically, we are interested in tree
networks that are locally routable, i.e., dynamic topological
changes do not require the global recomputation of routes.
As networks based on Binary Search Trees (BST) provide
these properties [24], we will focus on them and denote the
family of BST networks by T .

In order to minimize reconfiguration costs and adjust the
topology smoothly over time, the tree is reconfigured locally
through local rotations that preserve the BST properties: in
the spirit of the usual pointer-machine models [27], nodes
update a constant number of links to their neighborhoods

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. TODO, NO. TODO, AUGUST 2021 3

(at constant cost). We denote the tree at time t computed by
a given distributed algorithm (possibly accounting for the
communication requests σt′ with t′ < t) by Tt ∈ T .

Cost model: We will refer to local reconfigurations as
steps (a set of rotations). In particular, we will assume
that each step, which involves a constant number of link
changes, has a cost of O(1) (more details will follow).
Similarly, we assume that communication costs one unit per
link.

As we will see, the algorithm presented in this paper is
aggressive in how it moves communicating nodes together:
the communication cost of our algorithm is always in the
order of the reconfiguration cost. Hence, for our asymptotic
analysis, it will be sufficient to consider reconfiguration
costs only.

Time model: In order to study concurrency, we divide
the execution time in rounds: in a round, multiple (in-
dependent) nodes can make local reconfigurations (steps)
concurrently.

Our objective is to minimize the cost both in terms of work
(number of reconfiguration steps and routing cost) and the
cost in terms of time (time to process a given set of requests).

Definition 1. Work cost: Consider any initial tree T0 and
a sequence of communication requests σ = (σ1, . . . , σm). We
define the total cost as the number of steps (local rotations) to
fulfill all requests.

In terms of time, we aim to minimize the makespan:

Definition 2. Time cost: Consider any initial binary tree T0 and
a sequence of communication requests σ = (σ1, . . . , σm).
Makespan: T (T0, σ) = max

1≤i≤m
ei − min

1≤i≤m
bi.

We are interested in the worst-case performance over
arbitrary sequences of operations (rather than individual
operations), and hence, conduct an amortized analysis [28].
In our model, the amortized cost can be described as the
average cost per request for a given sequence σ of commu-
nication requests.

Definition 3. Amortized cost: For a sequence of communication
requests σ = (σ1, . . . , σm), if c(σi) is the (time or work) cost of
a request σi ∈ σ, the amortized cost is defined with respect to the
worst sequence σ and initial tree T0,
Amortized cost: CA = max

σ,T0

1
m

∑
σi∈σ

c(σi).

Note that we do not explicitly define the routing or the
control communication costs because, in our model, data
is sent only when the distance to the destination is one
(dt(s, d) = 1), so the routing and control costs are domi-
nated by the work and time costs of the meeting requests.

3 DISTRIBUTED RECONFIGURATION

At the heart of DiSplayNet lies a distributed topology recon-
figuration algorithm. It is based on the following concepts:

1) Local reconfigurations: In order to adjust the network
topology locally without violating local routing
properties, we leverage the zig, zig-zig, and zig-zag
operations known from splay trees (see Definition
4).

2) Independent clustering: In order to facilitate con-
current adjustments while avoiding deadlocks, we
compute (in a distributed manner) local clusters:
clusters are coordinated by a node requesting steps
(i.e., a cluster master), and can be updated in parallel,
without interference.

3) Prioritization: In order to avoid starvation, we prior-
itize requests according to their timestamp (bi).

In the following, we elaborate on each of these compo-
nents in more detail.

3.1 Order Preserving Transformations
To perform local routing and order preserving local recon-
figurations, our algorithm requires that each node u stores
the identifiers of its direct neighbors in the BST tree, i.e.,
its parent (u.p), its left child (u.l), its right child (u.r), as
well as the smallest (u.smallest) and the largest (u.largest)
identifiers currently present in the sub-tree rooted at u.

Upon a request σi = (u, v), the nodes u and v start mov-
ing towards each other, by performing local reconfigurations
that preserve the search-tree property. DiSplayNet imple-
ments such topological updates using the zig, zig-zig, and
zig-zag operations, known from splay trees [23]. We refer to
such a local reconfiguration as a step:

Definition 4. Step stept(u): Steps in DiSplayNet are performed
through rotations that preserve the BST properties. The link
updates in the network because of a step performed by a node u
in round t depend on the relative positions of u, its parent v and
its grandparent w. The three types of steps: (1) zig; (2) zig-zig;
and (3) zig-zag are shown in Figure 1. Note that a zig consists
of a single rotation, while a zig-zig and zig-zag consist of double
rotations.

v

B

u

T3

T1

T2

v

B
u

T3

T1 T2

zig

(a) zig

u
T3

T1

v

w

T4

T2

v

u

T1

w

T3

T2

T4

zig-zig

(b) zig-zig

v

B

u

w

T2

T4

T3

T1

T2 T3 T1

v

B

w

u

T4

zig-zag

(c) zig-zag

Fig. 1. Splaying step types (dashed lines represent the updated links).

As pointed out in [23], a step not only moves a node
upwards in the tree, preserving BST properties, but also
roughly halves the depth of every node along the ac-
cess path. This halving effect makes splaying efficient
in an amortized sense and is a property not shared by
other, simpler rotation heuristics, such as single rota-
tions [29] or move-to-root [30]. Unlike in splay trees, in
DiSplayNet nodes are not splayed to the root. Rather, upon
a request σi = (u, v), nodes u and v are rotated only toward
their lowest common ancestor:

Definition 5. Lowest Common Ancestor (LCA): The lowest
common ancestor of two nodes (u, v) ∈ V at time t, is the closest
node to u and v that has both u and v as descendants. A node can
be the lowest common ancestor of itself and another node.

Consider two nodes u and v, such that in round t, u.p =
v. If in round t + 1, u.p 6= v, we say that v changed the

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. TODO, NO. TODO, AUGUST 2021 4

r

z1

w1

v1

u1

z3

z2

w2

v2

u2

w3

v3

u3

(a) Round t: “Before”

r

z1

u1

v1 w1

z3

z2

u2

v2

w2

u3

v3

w3

(b) Round t+ 1: “After”

Fig. 2. Ex: 3 concurrent steps (clusters Ct(u1) . . . Ct(u3): ui: requesters,
zi: masters)

link to u. When performing a step, we consider that the
highest node sharing a link is responsible for that link, i.e.,
the parent node is in charge of a link to a child. Therefore, if
a link from a node v to node uwith u.p = v must be updated
because of a stept(x), v is responsible for informing u about
the link change.

In order to deal with concurrency, i.e., facilitate (and
maximize) simultaneous transformations while maintaining
a consistent BST and avoiding deadlocks and starvation,
we need nodes to come in consensus on which step to
participate in. Towards this end, our distributed algorithm
for DiSplayNet computes an independent set of clusters.

Definition 6. Cluster Ct(u): Consider the set of links that
are modified as a result of a stept(u), performed by some node
u ∈ Tt in round t. The parent node of each such link belongs
to a set of nodes that is referred to as the cluster Ct(u).1 In
each cluster Ct(u), u is the only node that can perform a step:
this ensures consistency of the local reconfigurations; the other
nodes in the cluster are then locked (paused) in round t. Each
cluster contains exactly one requester and exactly one master,
which together coordinate the step. For a given Ct(u), u is the
requester. The master node m ∈ Ct(u) is the highest node in
the tree m ∈ Tt participating in stept(u).

Figure 2 presents an example of three concurrent clusters
Ct(u1) through Ct(u3), where ui is the requester and zi is the
master of each cluster, in consecutive rounds t and t+ 1.

3.2 Reasoning About Progress
Before we proceed, we introduce a useful concept to de-
scribe and reason about (sequential and concurrent) tree
adjustment algorithms and their executions: the progress
matrix M. The progress matrix M is a function of σ, A
and T0, i.e., it is fully determined by these three parameters.

Each row in M represents a request σi ∈ σ, and each
column represents a round t. Each element Mσi,t in the
matrix indicates if at round t the request σi makes progress
(3) or is paused (7). In addition, before being generated
or after being fulfilled, the request’s status in the matrix is
represented by the inactive sign (-). We say that a request
is active from the moment it enters the system and until it
was served, after which it becomes inactive. We consider
that a request σi(si, di) makes progress at time t if one

1. |Ct(u)| = 4 if stept(u) is a zig-zig or zig-zag, |Ct(u)| = 3 if it is a
zig.

step (stept(si) or stept(di)) is performed in t. Otherwise,
if σi is active and does not make progress at time t, we
say that σi is paused. A request σi is prevented from making
progress when another node in its neighborhood (or cluster)
is making progress (as described in Sections 3.1 and 3.3).

The progress matrix can also be used to represent exe-
cutions of sequential algorithms, such as SplayNet [24]. To
simplify the understanding, we start with this case accord-
ingly. In a nutshell, the (sequential) algorithm SplayNet
splays si and di upwards upon request σi = (si, di). First
the source si is splayed until it becomes an ancestor of
the destination, after which di is splayed until it becomes
a child of si. Only after this has been achieved, the next
request σi+1 = (si+1, di+1) is processed. Table 1 presents an
example of the progress matrix for such an algorithm. Once
a request σi enters the network, it makes progress until it is
fulfilled. By the sequential nature of the algorithm, nothing
can cause a request that is making progress to pause. When
it is completed, and only then, the next request is allowed
to progress.

We can also see the work cost in the progress matrixM:
the check marks (3) represent progress, and their total
number corresponds to the total work. To measure the time
cost per request, we can sum the number of columns in
which the inactive sign (-) does not appear. The makespan
(see Definition 2) is represented by the number of columns
in the progress matrix, i.e., the total number of rounds for
all the nodes to complete the requests. In prior work it has
been shown that the amortized cost in terms of work for
a retrieval tree is O(log n) per operation, in sequential [23]
and distributed [31] scenarios.

However, the decentralized algorithm we present in
the following allows for concurrent steps. That is, multiple
communication pairs are active simultaneously and are
performing steps in parallel.

3.3 Algorithm

With these concepts in mind, we can now present our
algorithms in detail. DiSplayNet can be best described in
terms of a state machine, executed by each node in parallel.
Figure 3 shows the possible state transitions. Each node can
be in one of five states:

1) Passive: A node is in passive state at time t if it is
not the source or destination of any request in σi ∈
σ, bi ≤ t;

2) Handshake: A node si (or di) is in handshake state
at time t if it has an active request, i.e., ∃σi(si, di) ∈
σ, bi ≤ t, but an agreement between si and di on
starting working on σi has not been reached;

3) Climbing: A node si (or di) is climbing at time t if
there is an active request σi(si, di) ∈ σ, bi ≤ t for
which a handshake has been completed; addition-
ally si (or di) 6= LCAt(si, di);

4) Waiting: A node si (or di) is waiting at time t if there
is an active request σi(si, di) ∈ σ, bi ≤ t for which
a handshake has been completed and either si or di
is an ancestor of the other, i.e., is the LCAt(si, di).

5) Communicating: A node si or di is communicating
at time t if there is an active request σi(si, di) ∈

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. TODO, NO. TODO, AUGUST 2021 5

TABLE 1
Progress matrixM(σ, SPLAYNET, T0). Each column represents one round. A row represents the execution time-line of a request σi ∈ σ. In each

round, a request can make progress (3), be paused (7) or be inactive (-).

1 2 3 4 5 6 7 . . . t− 6 t− 5 t− 4 t− 3 t− 2 t− 1 t
σ1 3 3 3 - - - - . . . - - - - - - -
σ2 - 7 7 3 3 3 - . . . - - - - - - -
. .
σm−1 - - - - - - - . . . 3 3 - - - - -
σm - - - - - - - . . . 7 7 3 3 3 3 -

Handshake

T2

T3
Waiting

T5

T6

Communicating

T7

T7

Climbing

T4

T6

Passive

T1

T1: Upon new request start handshake
T2: Started a request and is not LCA
T3: Started a request as LCA
T4: Reached LCA
T5: Left LCA due to higher-priority node
T6: Source and destination nodes meet
T7: Fulfill the communication request

Fig. 3. DiSplayNet state transition diagram (updateState()).

σ, bi ≤ t for which a handshake has been completed
and dt(si, di) = 1.

In order to ensure deadlock and starvation freedom,
concurrent splaying steps are chosen according to a priority
in DiSplayNet. Given two requests σi and σj , we say that σi
has a higher priority than σj if i < j. An older request
in the network has a higher priority than a more recent
request. Note that, a node s in the Waiting state might be
removed from the LCA position by a splaying step with
higher priority. If that happens, s returns to the Climbing
state and resumes requesting splaying steps. Finally, when
source and destination meet, they communicate and all the
data is sent.

To synchronize the process between the nodes, the dis-
tributed algorithm proceeds in rounds. Each round is com-
prised of a sequence of three routines. Essentially, each node
in DiSplayNet executes:

while (true) do {preStep(); clusterStep(); sendData();}

In the beginning of each round, four time-slots are
reserved for a three-way handshake procedure between the
source-destination node pairs in the Handshake state. This
routine is described in Algorithm 1 (preStep()) and is
necessary to check if the destination node of a request
is available to start the communication. The source node
begins by sending a handshake request to the destination
node of that message. The destination node maintains a

Algorithm 1 DiSplayNet preStep()
1: Start New Handshake (1 time-slot)

if Handshake for some σi(s, d) then
send sync(σi) to d;
insert sync(σi) into sync buffer;

2: Send Ack to Source (1 time-slot)
upon receiving each sync(σj):

insert sync(σj) into sync buffer;
get highest priority sync(σk) in sync buffer;
if k 6= i then

send Ack(sync(σk)) to source node of σk;

3: Send Ack to Destination (1 time-slot)
upon receiving Ack(sync(σi(s, d))):

send Ack(Ack(sync(σi))) to d;
updateState(); //goto clusterStep(); (Fig. 3, Alg. 2)
clear sync buffer;

4: End Handshake (1 time-slot)
upon receiving Ack(Ack(sync(σk(s, d)))):

updateState(); //goto clusterStep();
clear sync buffer;

priority queue (sync buffer) with possibly other such re-
quests and commits to the one with the highest priority. We
assume that the small control messages exchanged during
the handshake phase are sent at no additional cost over a
one-hop communication backbone.2

Next each node executes the cluster step routine, com-
prised of five (synchronized) phases, summarized in Al-
gorithm 2 (clusterStep()): (1) Cluster Requests; (2) Top-
down Acks; (3) Bottom-up Acks; (4) Link Updates; (5) State
Updates. Each node u ∈ V maintains a local (cluster) buffer,
containing a priority queue of cluster requests, generated
by itself, its right or left child, one of its four grandchildren
or one of its eight great-grandchildren. In each round, each
request(Cu) is sent upwards to its master (a 2-hop ancestor in
the case of a zig, or a 3-hop ancestor in the case of a zig-zig
or zig-zag). Once all requests have been received, the highest
priority request is acknowledged top-down, from master to
requester. If its request is the highest priority request it has
received in phase 1, upon receiving a top-down acknowl-
edgment, the requester sends an acknowledgment upwards
to the master. A set of nodes form a cluster Cu if they have
received a top-down and a bottom-up acknowledgment for
request(Cu).

2. This assumption is justified by the fact that hybrid architectures,
where self-adjusting links are integrated into a static network, are likely
to prevail [20].

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. TODO, NO. TODO, AUGUST 2021 6

Algorithm 2 DiSplayNet clusterStep()
1: Cluster Requests (3 time-slots)

if Climbing for some σi(s, d) then
send request(Cu) upward;
insert request(Cu) into cluster buffer;

upon receiving request(Cw):
insert request(Cw) into cluster buffer;
forward request(Cw) upward;

2: Top-down Acks (3 time-slots)
get highest priority request(Cx) in cluster buffer;
if Master(request(Cx)) then

send Ack(request(Cx)) downward;
upon receiving top-down ack request(Cw):
if w = x then

forward Ack(request(Cw)) to requester;

3: Bottom-up Acks (3 time-slots)
upon receiving top-down ack(request(Cu)):

if Requester(request(Cu)) and u = x then
send Ack(request(Cu)) up to master;
create Cu;
join Cu;

else
forward Ack(request(Cu)) to master;
join Cu;

4: Link Updates (3 time-slot)
if in(Cu) then

update links according to Cu;

5: State Updates (1 time-slot)
updateState(); (Fig. 3)
clear cluster buffer;
leave cluster;

Finally, if the distance between the source and the desti-
nation of an active message is one, the two enter the Commu-
nicating state, the data is transferred to the destination, and
both nodes either return to the Passive or Handshake states
(Fig. 3).

3.4 Concurrent Progress Matrix
In a concurrent setting, instead of each row in the progress
matrix representing a request σi, each row represents an
individual source or destination node, since both nodes si
and di work in parallel. Moreover, since a node v ∈ V can
participate in several requests, e.g., σi(v, di) and σj(sj , v), it
might be assigned several rows, e.g. si and dj in the progress
matrix.

To illustrate how progress is made in a concurrent
scenario, let us look at an example request sequence
σ = (σ1(s1, d1), σ2(s2, d2), σ3(s3, d3)) in a DiSplayNet, il-
lustrated in Figure 4 (the destination node d1 (in T1 or T2) is
not depicted in the picture, and we assume that it performs
steps towards its source node s1 during the depicted five
rounds). The corresponding progress matrix is depicted in
Table 2. In rounds t and t + 1 (Figure 4(a)-(b)), node s3 is
paused by the source s1 node of request σ1, while nodes s2
and d2 make progress; in round t+ 2 (Figure 4(c)), node
s3 is bypassed by s2; in round t+ 3 (Figure 4(d)), s3 is

s1

s3

s2 d2

d3

T1 T2

(a)

s1

s3

s2 d2

d3

T1 T2

(b)

s1

s2

s3

d2

d3

T1 T2

(c)

s1

s2

d2

s3

d3

T1 T2

(d)

s1

s2

s3

d2

d3

T1 T2

(e)

Fig. 4. Example of concurrent execution of a DiSplayNet, progress
matrix in Table 2.

bypassed by d2, and nodes s2 and d2 meet and exchange
data; in round t+ 4 (Figure 4(e)), request σ2 is no longer
active, so s3 makes progress again; because σ3 has lower
priority than σ1, it will remain locked (paused or bypassed)
by either s1 or d1, until σ1 completes and is no longer active.

4 ANALYSIS

In this section we formally analyze the correctness and
performance of DiSplayNet. Firstly we prove that the decen-
tralized reconfiguration underlying DiSplayNet is deadlock-
free. Subsequently, we present an amortized analysis of the
work (reconfiguration cost) of DiSplayNet under worst-case
request sequences. Finally, we derive an upper bound on
the makespan, i.e., the time it takes to serve a batch of
communication requests.

In the following helper lemma, we argue that differ-
ent clusters do not interfere and form “independent sets”,
which is useful to prove deadlock freedom and required for
the amortized performance analysis.

Lemma 1. All link updates are consistent and clusters are
disjoint.

Proof. The proof follows from the fact that each node ac-
knowledges at most one cluster Ct(u) request in round t,
originated by the highest priority node u in its neighbor-
hood (Algorithm 2, phases 2,3). Therefore, no node can
belong to more than one cluster. Moreover, all links in the
network are updated simultaneously in each round, which
maintains consistency (Algorithm 2, phase 4).

More specifically, Algorithm 2 ensures that only the
nodes that change a link to a child will belong to a clus-
ter Ct(u). For the sake of contradiction, assume there is a
node p ∈ Ct(u) that is the parent of node c /∈ Ct(u), and that
during stept(u), the link between p and c is modified. Let us
consider another concurrent step stept(x) in round t, such
that c ∈ Ct(x). stept(x) cannot update the link between p
and c, because p /∈ Ct(x).

An essential property of DiSplayNets is that they never
enter deadlock.

Theorem 1. DiSplayNets are deadlock- and starvation-free.

Proof. Proof by induction on the priority of σi, the lowest-
priority request in σ that has not been completed be-
fore round t > 0. Base Case: Consider the first re-
quest σ1(s1, d1) ∈ σ. Since σ1 has the highest priority in σ
and, by Lemma 1, clusters are disjoint and link updates are
consistent, no other σi(si, di) ∈ σ can prevent nodes s1 or d1
from making progress in every round, until d(s1, d1) = 1.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. TODO, NO. TODO, AUGUST 2021 7

TABLE 2
Concurrent progress matrix: M(σ,DiSplayNet, T0), σ = (σ1(s1, d1), σ2(s2, d2), σ3(s3, d3))

1 2 3 . . . t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 . . . t′ . . . t′′

s1 3 3 3 . . . 3 3 3 3 3 3 . . . - 3 . . . -
d1 3 3 3 . . . 3 3 3 3 3 3 . . . - 3 . . . -
s2 - 3 3 . . . 3 3 3 3 - - . . . - - . . . -
d2 - 3 3 . . . 3 3 7 3 - - . . . - - . . . -
s3 - - 3 . . . 7 7 7 7 3 7 7 . . . 3 . . . -
d3 - - 3 . . . 7 7 7 7 7 7 7 . . . 3 . . . -

Therefore, σ1(s1, d1) has no obstructions and will complete
without any pauses. Hypothesis: All requests σj ∈ σ | 1 ≤
j ≤ i − 1 have completed before round t. Note that the
induction hypothesis does not exclude the possibility that
∃σk, k > i, completed before round t. Step: Consider the
request σi(si, di). By the induction hypothesis, all requests
with higher priority have completed in round t, so σi is
the request with highest priority. Thus, it has no more
obstructions and will complete without interruptions.

In order to compute the worst case cost over arbitrary
sequences, we conduct an amortized analysis of the per-
formance of DiSplayNet. We introduce a potential function
to amortize actual costs. Consider a DiSplayNet instance
Tt in round t. Let size st(u), u ∈ Tt denote the number
of nodes in the subtree of node u, including u. We define
the rank of node u as rt(u) = log2(st(u)) and the total
rank r(Tt) as the sum of the ranks of all nodes in Tt. Note
that the maximum size and rank of a node is n and log2 n,
respectively. The potential of a given DiSplayNet instance
Tt in round t is then the sum of the ranks of all nodes in
the tree: φ(Tt) =

∑n
i=1 rt(i). In the potential method, the

amortized cost ĉt(u) of an operation stept(u) is the actual
cost ct(u), plus the increase in potential δt(u) due to the
operation stept(u), where δt(u) = φ(Tt) − φ(Tt−1). This
gives us: ĉt(u) = ct(u) + φ(Tt)− φ(Tt−1).

To understand the amortized analysis, it is useful to
revisit the sequential Progress Matrix (see Table 1). From the
sequential splay tree and SplayNet analysis it follows that
fulfilling a request σi ∈ σ consists of pi steps, represented
by a sequence of pi of consecutive checks in a row in Mσi

.
Each check mark represents a node performing a step of
cost O(1). Thus, the actual cost to fulfill σi is

∑pi
t=1O(1).

To calculate the amortized cost of σi, we must calculate the
total potential change (∆), summing the individual changes
per step (δ), which gives us δt(σi) =

∑pi
t=1 φ(Tt)− φ(Tt−1).

This summation results in a telescoping series in which
all terms cancel except the first and the last. Thus, the
amortized cost of request σi can be represented by: pi +
φ(Tei)−φ(Tbi). From this, we later derive a total amortized
cost of O(log n) per request.

In the concurrent scenario the analysis is more challeng-
ing. We can only guarantee that the source and destination
nodes from the highest priority request (σ1(s1, d1)) have
consecutive X in the progress matrix. For all the other
nodes si and di, the consecutive progress can be interrupted,
resulting in several consecutive progress sequences. An
interruption can cause the potential to change drastically,
i.e., for each consecutive progress sequence we can have, in
the worst case, a change in potential of log n.

The following lemma allows us to compute potentials
based on columns.

Lemma 2. Given a DiSplayNet T and the resp. progress ma-
trix M, in any column of M, corresponding to a round t, all
nodes making progress in round t belong to separate clusters.

Proof. Each cluster is a set of nodes participating in a
single step (Lemma 1). For each node u making progress
in round t, u is either climbing or waiting. Thus, for
each node u making progress in round t (or column t
in M), either there is a cluster Ct(u) of nodes participating
in stept(u), in which u is the requester; or there is a cluster
of size 1 (Ct(u) = {u}) of a node that is waiting. Every
node in Ct(u) but u cannot make progress, since each cluster
has only one requester, and only the requester node makes
progress.

At the heart of our amortized analysis lies the following
observation: the total potential change in one round which
consists of multiple steps, is simply the sum of the potential
changes of the individual clusters.

Lemma 3. Consider a DiSplayNet instance Tt and let Ct be
the set of clusters in round t. The total potential change in
round t is δt =

∑
∀Ct(j)∈Ct δ(Ct(j)).

Proof. The potential of Tt is the sum of the ranks of all nodes
in u ∈ Tt. A stept(u) can only change the rank of nodes
in cluster Ct(u). By Lemma 1, clusters are disjoint, i.e., a
node cannot be in more than one cluster at a time. Thus,
only one cluster can change the rank of a node per round.
Therefore, φ(Tt+1)− φ(Tt) = δt =

∑
∀Ct(j)∈Ct δt(Ct(j)).

Lemma 4. [23] Consider a DiSplayNet instance Tt and let δt be
the total potential change in round t, caused by a single stept(u).
We have that:

• δt(u) ≤ 3(rt(u) − rt−1(u)) − 2, if the step is a zig-zig
or zig-zag;

• δt(u) ≤ 3(rt(u)− rt−1(u)), if the step is a zig.

Thereby, since we can represent the potential change for
each step in terms of the rank change of the requester node,
and combining Lemmas 2 and 3, we obtain the amortized
cost to perform all steps in round t:

ĉ(Ct) =
∑

∀Ct(j)∈Ct

c(stept(j)) +
∑

∀Ct(j)∈Ct

δ(Ct(j))

where c(stept(j)) is the actual cost to perform stept(j).

Definition 7. Bypass: Consider a sequence of communication
requests σ = (σ1, σ2, . . . , σm) and a pair of active requests σi =
{si, di} ∈ σ and σj = {sj , dj} ∈ σ, such that σi has higher

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. TODO, NO. TODO, AUGUST 2021 8

priority, i.e., i < j. We say that a node ni ∈ σi bypasses a
node nj ∈ σj if, in some round t, ni is a descendant of nj and,
in round t+ 1, ni becomes an ancestor of nj .

A bypass can only happen if distance dt(ni, nj) ≤ 2 and
ni performs a stept(ni) and nj participates in cluster Ct(ni),
of which ni is the requester (Definition 6). Note that, when a
node is bypassed, its subtree can decrease in size. Since the
potential of a subtree is a function of its size, and the only
operation that can decrease the size of the subtree of a node
with an active request is a bypass, we have the following
observation: a node can only lose potential due to a concurrent
higher-priority request as a result of a bypass.

Lemma 5. Given a sequence of communication requests σ =
(σ1, σ2, . . . , σm), a source or destination node of a request σi ∈ σ
with priority i can be bypassed by at most 2(i − 1) = O(m)
concurrent requests.

Proof. Consider one pair of nodes ni ∈ σi = (si, di)
and nj ∈ σj = (sj , dj), where i < j. The first observa-
tion is that ni can bypass nj at most once. Consider, by
contradiction, that ni bypasses nj for the second time in
some round t. We know that ni has previously bypassed nj
in some round t′ < t. By Definition 7, in round t′ node ni
was a descendant of nj and in round t′ + 1 it became its
ancestor. Therefore, in order to bypass nj for the second time
in round t, node ni must have been bypassed by node nj in
the time interval [t′ + 1, t− 1], However, this is not possible
by Algorithm 2, since the priority of nj is lower than that
of ni. Note that node nj can only become an ancestor of ni
as a result of a step(nj). In case nj is carried upwards by
some other node nh, as a result of a step(nh), ni would not
be part of the subtree of nj as a result.

Since a node can only be bypassed by the source or
destination nodes of requests with higher priority, a node
that belongs to the lowest-priority request σm can suffer the
most bypasses in σ, which is at most 2(m− 1).

Lemma 6. Consider a DiSplayNet T0 on n nodes and a sequence
of communication requests σ = (σ1, . . . , σm). The amortized
work cost of any σi ∈ σ is CA = O(m log n).

Proof. Consider the (concurrent) progress matrix M for
a given DiSplayNet T . For each row in M, there are
sequences of consecutive rounds in which some node
makes progress. By Lemma 5, a node can be bypassed at
most 2(m − 1) times, i.e., there can be at most 2(m − 1)
pauses in each row of M that causes the node to drop
potential. Thus, for each source or destination node, there
are at most 2m sequences of rounds in which it makes
progress and rises potential. Consider that, for each row u
of M, each progress interval i starts in round is, ends in
round if and has length pi (rounds). Then, the total potential
change to perform all steps requested by node u is upper
bounded by:

∆(u) ≤
2m∑
i=1

if∑
t=is

δt(u)

≤
2m∑
i=1

 if∑
t=is

(3(rt(u)− rt−1(u))− 2) + 1

≤

2m∑
i=1

((3(rif (u)− ris(u))− 2pi) + 1)

≤ 6m(log n) + 2m−
2m∑
i=1

2pi. (1)

Splaying a node u from its current location up to the
LCA of itself and its destination, possibly facing 2(m − 1)
bypasses, consists of at most 2m sequences of pi stepst(u),
each comprised by a double rotation (zig-zig or zig-zag),
plus possibly one single rotation (zig) at the end of each
interval. The last single rotation is needed in case in some
time slot t, the distance between node u and the LCA
becomes equal to one.

Observe that each double rotation has cost 2 and a single
rotation has cost 1. So the actual cost is upper bounded

by
2m∑
i=1

2pi+2m. By replacing this value in Eq. 1, we conclude

that the amortized cost to complete any request σi ∈ σ
is O(m log n).

Theorem 2. Consider a DiSplayNet T0 on n nodes and a
sequence of communication requests σ = (σ1, . . . , σm). The total
work cost to fulfill σ is O(m(m+ n) log n).

Proof. By Lemma 6, the amortized cost to fulfill each re-
quest σi ∈ σ is O(m log n). Since the net potential drop over
σ is at most nm log n, the result follows.

Theorem 3. Consider a DiSplayNet T0 on n nodes and a
sequence of communication requests σ = (σ1, . . . , σm). The
makespan of σ is O(m(m+ n) log n).

Proof. The time cost of a request σi ∈ σ is equal to the
number of rounds in which it performs steps, or makes
progress, plus the number of rounds in which it is paused.
As illustrated in the progress matrix M (Table 2), each
paused round of a request σi’s must overlap in time with
a step (work) performed by a higher-priority request in σ.
Therefore, the makespan is upper bounded by the total
number of non-paused rounds inM, i.e., the maximum total
number of steps (work) of all m requests, given in Theorem
2.

5 SIMULATIONS

To complement our formal worst-case analysis and to shed
light on the performance of DiSplayNets under more re-
alistic workloads, both in terms of work cost and time
(makespan and throughput) we conducted simulations. In
this section, we report on our main insights.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. TODO, NO. TODO, AUGUST 2021 9

TABLE 3
Datasets: n nodes, m requests, T(σ) temporal, NT(σ) non-temporal

(spatial) locality

Dataset n m T(σ) NT(σ)
ProjecToR [18] 128 10, 000 very low very high
PFabric [33] 144 10, 000 very high very low
Multigrid [34] 1, 024 1, 000, 000 high high
Bursty [2] 1, 024 10, 000 very high very low
Facebook [35] 159 1, 000, 000 very low very low
Splay Tree 128 10, 000 very low low

5.1 Setup and baselines
Our simulations are event-driven and based on the
Sinalgo [32] network simulator. In order to generate a se-
quence over time, we assumed a Poisson distribution for
the request arrival, with λ = 0.05.

To better understand and compare the simulation re-
sults, we implemented three baseline algorithms. To study
the benefit of dynamic reconfiguration performed by DiS-
playNets (DSN), we implemented two static networks:

• BT: a balanced static BST network. This baseline
represents the optimum topology when all pairs of
nodes are equally likely to communicate.

• OPT: a statically optimum BST network, imple-
mented using the dynamic program from [24], which
is demand-aware and optimized towards the request
frequency distribution of a given communication se-
quence. This baseline has the advantage of knowing
the distribution ahead of time.

Neither of the two static baselines incur any reconfiguration
costs, but only communication costs (one unit cost per link).
Furthermore, we implemented a sequential self-adjusting
network, to investigate the benefit and limitation of con-
currency:

• SplayNet (SN): a sequential self-adjusting network,
based on the algorithm from [24].

5.2 Datasets
To generate request workloads, we leverage two datasets
collected from three real systems (ProjecToR [36], Multigrid
[34], and Facebook [35]) and three artificially generated
datasets (PFabric [33], Bursty [2] and Splay Tree), as shown
in Table 3. We divided the input workloads into test groups
according to their type of locality, as follows:

High non-temporal and low temporal locality (ProjecToR):
The ProjecToR dataset [36] describes the distribution of com-
munication probability between 8, 367 pairs of nodes in a
network of n = 128 nodes (top of racks), randomly selected
from 2 production groups, running between Map Reduce
operations, index builders, database and systems storage.
We sampled a sequence of m = 10, 000 independent and
identically distributed requests (i.i.d.) in time by the com-
munication matrix provided and repeated each experiment
30 times. A single source-destination pair is responsible
for 28% of all communication, and only a few pairs are
responsible for as much as 80% of all communication. This
dataset has no temporal and high non-temporal locality.

High temporal and low non-temporal locality (PFabric and
Bursty): The PFabric (0.8 trace) dataset [33] consists of a

synthetic trace generated by executing simulations scripts
in NS2, with a Poisson arrival process, reproducing a web
search (high) workload scenario. When a flow arrives, the
source and destination nodes are chosen uniformly at ran-
dom. We sampled a sequence of m = 10, 000 communica-
tion requests from a network of n = 144 nodes. This dataset
presents high temporal and non-temporal locality.

The Bursty dataset was generated artificially to have
very high temporal and very low non-temporal locality,
following a methodology for synthetic workload generation,
presented in [2]. For each request (m = 10, 000), a pair
of source-destination nodes (s, d) was chosen uniformly at
random from a network of n = 1024 nodes. With high
probability (p > 0.9), the request from s to d was repeated,
until a different pair was chosen (with probability 1− p).

High temporal and non-temporal locality (Multigrid): The
Multigrid dataset [34] consists of high-performance comput-
ing applications, such as solutions of Poisson’s equations,
hyperbolic components of the Navier-Stokes equation, and
solution for elliptical linear system models. We collected
a sample of m = 1, 000, 000 requests for a network of
n = 1024 nodes. This dataset presents high levels of locality,
both temporal and non-temporal.

Low locality (Facebook and Splay Tree): The Fbflow trace
consists of real-system Fbflow3 samples collected from three
production clusters on Facebook. The per-packet sampling
is uniformly distributed with rate 1:30000, flow samples are
aggregated every minute, and node IPs are anonymized.
We focused on cluster A only and processed the data as
follows. Firstly, we removed all inter-cluster or intra-rack
requests, keeping only inter-rack requests within the same
cluster. Then, we globally sorted the requests by timestamp.
Finally, we mapped the anonymized IPs to a consecutive
value range starting at 0. This resulted in a sequence of m =
1, 000, 000 requests, originated in a 24-hour time window,
in a network comprised of n = 159 nodes. In this dataset
no source-destination pair accounts for more than 0.15% of
overall traffic, so the spatial locality is low. Moreover, due
to the way the samples were collected, this dataset has low
temporal locality.

Since DiSplayNets are an extension of self-adjusting data
structures, it is interesting to analyze their performance
on request sequences encountered in self-adjusting data
structures. The Splay Tree dataset consists of artificial com-
munication sequences (m = 10, 000, n = 1024), where
each message’s destination is the root node of the network
and the source is chosen randomly, following a normal
distribution (std = 0.8) over the remaining n− 1 nodes.

5.3 Results

In order to evaluate the performance of DiSplayNet rel-
ative to the baselines, we made empirical measurements
of the total (reconfiguration) work, total routing cost of
the static baselines, throughput and makespan of the dy-
namic self-adjusting networks, as well as the number of
concurrent clusters and number of pauses and bypasses of
DiSplayNets, for different communication patterns.

3. Fbflow is a network monitoring system that samples packet head-
ers from Facebook’s machine fleet.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. TODO, NO. TODO, AUGUST 2021 10

(a) (b) (c) (d)

Fig. 5. ProjecToR (n = 128,m = 10, 000): High non-temporal, low temporal locality

(a) (b) (c) (d)

Fig. 6. Bursty (n = 1024,m = 10, 000): high temporal, low non-temporal locality

(a) (b) (c) (d)

Fig. 7. PFabric trace 0.8 (n = 144,m = 10, 000): high temporal, low non-temporal locality

5.3.1 Work: a price of decentralization?

DiSplayNet× SplayNet: The decentralized nature of DiS-
playNet is likely to introduce an overhead compared to a
central and sequential, and hence optimized, approach to
reconfigure networks. This is also suggested by our formal
worst-case bounds. To verify whether our formal bounds
are too pessimistic and to measure the work overhead em-
pirically, we ran several experiments using different request
workloads.

Interestingly, our simulation results suggest that the
overhead in terms of work is negligible compared to a cen-
tralized algorithm. Figures 5a, 6a, 7a, 8a, 9a, and 10a show
the total work, measured in number of steps performed
by DiSplayNet and the baselines, for all datasets. The re-
sults show that there is indeed little difference between

the concurrent algorithm and the sequential one. In the
facebook dataset DiSplayNet actually performed less work
than SplayNet, as shown in Figure 10a. This shows that the
analytical upper bound on the number of bypasses (conflicts
between parallel splaying operations), derived in Lemma 5,
is quite pessimistic. A bypass, therefore, represents a rare
event in practice, which allows for efficient parallel work
execution by DiSplayNet, as we discuss in the next section.

Dynamic reconfiguration × static baselines: For the datasets
with low temporal locality (ProjecToR 5a, Splay Tree 9a and
Facebook 10a) the total work performed by an optimum
static network (recall that OPT knows σ a priori) is slightly
lower than that by SplayNet and DiSplayNet. This is
expected, given that OPT, by definition, is the optimum
topology for the given request frequency distribution. Since
requests are distributed i.i.d. in time, dynamic reconfig-

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. TODO, NO. TODO, AUGUST 2021 11

0

2

4

6

8

10

12

14

16

OPT SN DSN BT

W
or

k
x1

06

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7
Time (rounds) x106

R
eq

ue
st

s
co

m
pl

et
ed

/r
ou

nd

SN
DSN

(b)

Fig. 8. Multigrid (n = 1, 024,m = 1, 000, 000): high temporal, high non-
temporal locality

uration cannot improve on that. For datasets with high
temporal locality (Bursty 6a, PFabric 7a and Multigrid 8a),
on the other hand, we can see that OPT performs more work
than SplayNet and DiSplayNet, which shows that dynamic
network reconfiguration is able to optimize the network
topology dynamically over time, exploiting the temporal
locality in the request sequence. The static balanced BST
(BT) presents work cost close to OPT in all datasets, except
in ProjecToR 5a, where the high spatial locality leverage
unbalanced tree topologies.

5.3.2 Throughput
Concurrent adjustments turn out to greatly improve the
amount of communication requests which can be handled
by the network. In Figures 5b, 6b, 7b, 8b, 9b, and 10b,
we compare the throughput of dynamic self-adjusting net-
works, measured as the number of completed requests per
round during the entire simulation, for all datasets. Note
that there are no static baselines in these plots, since the
measures of makespan or throughput do not apply to a
static network topology without a specification of a com-
munication model.

DiSplayNet× SplayNet: It can be seen that, compared
to the sequential execution of SplayNet, DiSplayNet sig-
nificantly improves the throughput, for all datasets, except
Splay Tree, where the throughput plots are exactly the same
(Figure 9b). In the latter, since all requests are addressed to
the root, the execution of DiSplayNets becomes sequential.
The gain in time cost of DiSplayNets is especially pro-
nounced in workloads with either low spatial (Bursty 6b
and Facebook 10b) or high temporal (Bursty 6b, PFabric 7b
and Multigrid 8b) locality. In the ProjecToR trace (5b), on
the other hand, where temporal locality is low and spatial
locality is high, the difference in throughput is less pro-
nounced. Because some source-destination pairs generate as
much as 80% of all data traffic, causing the local queues at
these nodes to get long, the request completion is forced to
become sequential, even in the concurrent implementation.

5.3.3 DiSplayNet: zooming into concurrent execution
In this section we take a closer look into the concurrent exe-
cution of DiSplayNet. In particular, we analyze the number
of active clusters per simulation round (Figures 5c, 6c, 7c, 9c,
and 10c) and the Cumulative Distribution Function (CDF)

of the number of pauses and bypasses per communication
request (Figures 5d, 6d, 7d, 9d, and 10d). Recall that a pause
can increase the time cost but not the work cost of a request,
whereas a bypass may increase both.

Concurrent clusters: Analyzing the distribution of the
number of active clusters per round, we observe that there
were 0 clusters in a few rounds. This means that no new
requests were generated in those rounds and all the previ-
ous requests had already completed, i.e., the network was
idle. Furthermore, in some rounds, there was only 1 active
cluster, i.e., the execution was sequential. This occurred
more frequently in the ProjecToR (5c) and Splay Tree (9c)
datasets. In the Bursty (6c), PFabric (7c) and Facebook (10c))
datasets, we observe greater concurrency, as the number of
concurrent active clusters per round reached values as high
as 10.

Pauses and bypasses: Analyzing the CDFs of the number
of bypasses performed in each communication request, we
observe that a bypass occurred less than 30 times in more
than 99% of requests, in all datasets. The number of pauses
per request was considerably higher, reaching values as
high as 6, 000 in the workloads with m = 10, 000 requests
and 50, 000 in the Facebook dataset, with m = 1, 000, 000
requests. Nevertheless, by analyzing the CDFs, we can see
that such long waiting time is a relatively rare event, remain-
ing below 500, 2, 000 and 5, 000 in 99% of requests in the
real-world workloads ProjecToR (5d), Facebook (10d), and
PFabric (7d), respectively. In the Splay Tree workload (9d)
the number of pauses and bypasses was close to 0, given
its sequential execution. In the Bursty workload (6d), the
number of pauses was slightly higher than in the real-world
workloads, due to its artificially high temporal locality.
There is a relationship between higher concurrency and
higher number of pauses, given that a higher number of
active clusters per round (as in the Bursty dataset 6c) results
in more conflicts among concurrent requests.

5.3.4 Final Remarks
It is worth noting that, in a real reconfigurable hardware
scenario, the cost of a network reconfiguration will be signif-
icantly higher than that of forwarding a packet through one
link. In this work, in order to make a platform-independent
evaluation, in all experiments, we assumed that the static
baselines incur only communication costs, one unit per link,
and the dynamic approaches incur a cost of one unit for
each single rotation, and a cost of two units for each double
rotation. The actual gains in performance, however, will
greatly depend on the specifics of each network reconfig-
uration technology, as well as on the pace of technological
development and innovation in this sector.

6 RELATED WORK

Reconfigurable networks have been explored both in the
context of datacenters, e.g., [18], [19], [20], [21], in wide-
area networks [37], [38], [39], and, more traditionally, in the
context of overlays [40], [41]. See [42] for a recent algorithmic
taxonomy of the field. Many existing network design algo-
rithms rely on estimates or snapshots of the traffic demands,
from which an optimized network topology is (re)computed
periodically [43], [44], [45], [46], [47], [48], [49]. However,

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. TODO, NO. TODO, AUGUST 2021 12

(a) (b) (c) (d)

Fig. 9. Splay Tree (n = 1024,m = 10, 000): low spatial and temporal locality

(a) (b) (c) (d)

Fig. 10. Facebook (n = 159,m = 1, 000, 000): low spatial and temporal locality

they do not account for the actual reconfiguration costs. In
contrast, we in this paper present a more refined model,
accounting also for the reconfiguration costs, and allowing
us to study (within our model) the tradeoff between the
benefits and costs of reconfigurations. Other interesting
solutions are dynamic skip graphs [50] which minimize the av-
erage routing costs between arbitrary communication pairs
by performing topological adaptation to the communication
pattern, and Flattening [31] which optimizes the commu-
nication cost of point-to-point requests over a k-ary tree,
by performing local tree transformations according to the
request pattern. However, these solutions do not come with
any concurrency support or analysis.

The work closest to ours is SplayNet [24]. However,
SplayNet is based on centralized algorithms (e.g., rely on a
global controller or scheduler), and is purely sequential. In
contrast, we in this paper present the first distributed, i.e.,
decentralized and concurrent implementation of SplayNet.
This is a non-trivial extension, both in terms of the result and
the required techniques (e.g., ensuring liveness is straight-
forward in a centralized architecture). The distributed set-
ting fundamentally changes basic notions such as the work-
ing set (in a distributed setting, keeping working set nodes
close to the root is insufficient) and makes it impossible
to amortize costs by employing the usual telescopic sum
approach [23], [24].

7 CONCLUSION

Motivated by emerging reconfigurable datacenter networks
whose topology can be adapted toward the traffic in

a demand-aware manner, we developed and analyzed
DiSplayNet, the first self-adjusting network which is fully
distributed. DiSplayNet comes with analytical perfor-
mance guarantees and also performs well in our simulations
under different real-world and synthetic workloads.

Our work opens several interesting avenues for future
research. On the theory front, it will be interesting to study
lower bounds for our algorithm and the problem in general,
and investigate the optimality of the performance bounds
derived in this paper. On the more applied front, it will be
interesting to study the integration and use of self-adjusting
links of the topology with links that are not self-adjusting:
hybrid architectures are likely to prevail also in the future.

ACKNOWLEDGMENTS

The authors would like to thank Capes, Fapemig and CNPq.
Research supported by the European Research Council
(ERC), grant agreement 864228 (AdjustNet), 2020-2025

REFERENCES

[1] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh et al., “HPCC: High Precision
Congestion Control,” in Proc. of the ACM Special Interest Group on
Data Communication, 2019, pp. 44–58.

[2] C. Avin, M. Ghobadi, C. Griner, and S. Schmid, “On the complexity
of traffic traces and implications,” in Proc. ACM SIGMETRICS,
2020.

[3] J. Woodruff, A. W. Moore, and N. Zilberman, “Measuring bursti-
ness in data center applications,” in Proc. 2019 Workshop on Buffer
Sizing, 2019.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. TODO, NO. TODO, AUGUST 2021 13

[4] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-
resolution measurement of data center microbursts,” in Proc. of
the 2017 Internet Measurement Conference, 2017, pp. 78–85.

[5] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Under-
standing tcp incast throughput collapse in datacenter networks,”
in Proc. of the 1st ACM workshop on Research on enterprise networking,
2009, pp. 73–82.

[6] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R.
Ganger, G. A. Gibson, and S. Seshan, “Measurement and analysis
of tcp throughput collapse in cluster-based storage systems.” in
FAST, vol. 8, 2008, pp. 1–14.

[7] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 4, pp. 63–74, Aug. 2008.

[8] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson, “F10: A
fault-tolerant engineered network,” in USENIX NSDI, 2013, pp.
399–412.

[9] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Ban-
non, S. Boving, G. Desai, B. Felderman, P. Germano et al., “Jupiter
rising: A decade of clos topologies and centralized control in
google’s datacenter network,” ACM SIGCOMM computer commu-
nication review, vol. 45, no. 4, pp. 183–197, 2015.

[10] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “Bcube: a high performance, server-centric network
architecture for modular data centers,” Proc. ACM SIGCOMM
Computer Communication Review, vol. 39, no. 4, pp. 63–74, 2009.

[11] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang, “MDCube: a high
performance network structure for modular data center intercon-
nection,” in Proc. ACM Int. Conference on Emerging Networking
Experiments and Technologies (CONEXT), 2009, pp. 25–36.

[12] S. Kassing, A. Valadarsky, G. Shahaf, M. Schapira, and A. Singla,
“Beyond fat-trees without antennae, mirrors, and disco-balls,” in
Proc. ACM SIGCOMM, 2017, pp. 281–294.

[13] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish:
Networking data centers, randomly,” in USENIX NSDI, vol. 12,
2012, pp. 17–17.

[14] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: measurements & analysis,” in
Proc. 9th ACM Internet Measurement Conference (IMC), 2009, pp.
202–208.

[15] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside
the social network’s (datacenter) network,” in ACM SIGCOMM
Computer Communication Review, vol. 45, no. 4. ACM, 2015, pp.
123–137.

[16] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Pa-
pen, A. C. Snoeren, and G. Porter, “Rotornet: A scalable, low-
complexity, optical datacenter network,” in Proc. ACM SIGCOMM,
2017, pp. 267–280.

[17] M. N. Hall, K.-T. Foerster, S. Schmid, and R. Durairajan, “A
survey of reconfigurable optical networks,” in Optical Switching
and Networking (OSN), Elsevier, 2021.

[18] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni,
G. Ranade, P.-A. Blanche, H. Rastegarfar, M. Glick, and D. Kilper,
“ProjecToR: Agile reconfigurable data center interconnect,” in
SIGCOMM Conference. ACM, 2016, pp. 216–229.

[19] H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G. M. Voelker,
G. Papen, A. C. Snoeren, and G. Porter, “Circuit switching under
the radar with reactor,” in Proc. of the 11th USENIX Conference
on Networked Systems Design and Implementation. USA: USENIX
Association, 2014, pp. 1–15.

[20] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Sub-
ramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid
electrical/optical switch architecture for modular data centers,”
ACM SIGCOMM Computer Communication Review, vol. 41, no. 4,
pp. 339–350, 2011.

[21] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P.
Longtin, H. Shah, and A. Tanwer, “Firefly: A reconfigurable wire-
less data center fabric using free-space optics,” in ACM SIGCOMM
Computer Communication Review, vol. 44. ACM, 2014, pp. 319–330.

[22] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao,
and H. Zheng, “Mirror mirror on the ceiling: Flexible wireless
links for data centers,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 443–454, 2012.

[23] D. Sleator and R. Tarjan, “Self-adjusting binary search trees,”
Journal of the ACM (JACM), vol. 32, no. 3, pp. 652–686, 1985.

[24] S. Schmid, C. Avin, C. Scheideler, M. Borokhovich, B. Haeupler,
and Z. Lotker, “SplayNet: Towards Locally Self-adjusting Net-

works,” IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1421–1433, Jun.
2016.

[25] Y. Afek, H. Kaplan, B. Korenfeld, A. Morrison, and R. E. Tarjan,
“The CB Tree: A Practical Concurrent Self-Adjusting Search Tree,”
Distrib. Comput., vol. 27, no. 6, p. 393–417, Dec. 2014.

[26] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside
the social network’s (datacenter) network,” in ACM SIGCOMM
Computer Communication Review, vol. 45, no. 4. ACM, 2015, pp.
123–137.

[27] P. Bose, K. Douı̈eb, and S. Langerman, “Dynamic optimality for
skip lists and b-trees,” in Proc. 19th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2008, pp. 1106–1114.

[28] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Intro-
duction to Algorithms, 2nd ed. McGraw-Hill Higher Education,
2001.

[29] J. R. Bitner, “Heuristics that dynamically organize data structures,”
SIAM J. Comput., vol. 8, no. 1, pp. 82–110, 1979.

[30] B. Allen and I. Munro, “Self-organizing binary search trees,” J.
ACM, vol. 25, no. 4, pp. 526–535, Oct. 1978.

[31] M. K. Reiter, A. Samar, and C. Wang, “Self-optimizing distributed
trees,” in IEEE IPDPS, 2008, pp. 1–12.

[32] D. C. Group, “Sinalgo - simulator for network algorithms,”
http://disco.ethz.ch/projects/sinalgo/index.html, 2007, accessed
10-January-2020.

[33] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prab-
hakar, and S. Shenker, “PFabric: Minimal near-Optimal Datacenter
Transport,” in ACM SIGCOMM Conference, 2013, p. 435–446.

[34] U. DOE, “Characterization of the DOE mini-apps.”
https://portal.nersc.gov/project/CAL/overview.htm, (accessed
August 2021).

[35] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside
the social network’s (datacenter) network,” in ACM SIGCOMM
Conference, 2015, pp. 123–137.

[36] “ProjecToR dataset,” www.microsoft.com/en-
us/research/project/projector-agile-reconfigurable-data-center-
interconnect, (accessed August 2021).

[37] S. Jia, X. Jin, G. Ghasemiesfeh, J. Ding, and J. Gao, “Competitive
analysis for online scheduling in software-defined optical wan,”
in Proc. IEEE INFOCOM, 2017.

[38] X. Jin, Y. Li, D. Wei, S. Li, J. Gao, L. Xu, G. Li, W. Xu, and J. Rexford,
“Optimizing bulk transfers with software-defined optical wan,” in
Proc. ACM SIGCOMM, 2016, pp. 87–100.

[39] R. Singh, M. Ghobadi, K.-T. Foerster, M. Filer, and P. Gill, “Rad-
wan: rate adaptive wide area network,” in ACM SIGCOMM
Conference, 2018, pp. 547–560.

[40] C. Scheideler and S. Schmid, “A distributed and oblivious heap,”
in ICALP, ser. Lecture Notes in Computer Science (LNCS), vol.
5556. Springer, 2009, pp. 571–582.

[41] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker,
“Topologically-aware overlay construction and server selection,”
in Proc. IEEE INFOCOM, vol. 3, 2002, pp. 1190–1199.

[42] C. Avin and S. Schmid, “Toward demand-aware networking: A
theory for self-adjusting networks,” in ACM SIGCOMM Computer
Communication Review, 2018.

[43] A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang,
“Proteus: a topology malleable data center network,” in ACM
Workshop on Hot Topics in Networks (HotNets), 2010.

[44] C. Avin, K. Mondal, and S. Schmid, “Demand-aware network
design with minimal congestion and route lengths,” in Proc. IEEE
INFOCOM, 2019.

[45] ——, “Demand-aware network designs of bounded degree,” in
Proc. Int. Symposium on Distributed Computing (DISC), 2017.

[46] C. Avin, A. Hercules, A. Loukas, and S. Schmid, “rdan: Toward
robust demand-aware network designs,” in Information Processing
Letters (IPL), 2018.

[47] K.-T. Foerster, M. Ghobadi, and S. Schmid, “Characterizing the al-
gorithmic complexity of reconfigurable data center architectures,”
in Proc. ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), 2018.

[48] K.-T. Foerster, M. Pacut, and S. Schmid, “On the complexity of
non-segregated routing in reconfigurable data center architec-
tures,” in ACM SIGCOMM Computer Communication Review, 2019.

[49] T. Fenz, K.-T. Foerster, S. Schmid, and A. Villedieu, “Efficient non-
segregated routing for reconfigurable demand-aware networks,”
in Proc. IFIP Networking, 2019.

[50] S. Huq and S. Ghosh, “Locally self-adjusting skip graphs,”
arXiv:1704.00830, 2017.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. TODO, NO. TODO, AUGUST 2021 14

Bruna Soares Peres Bruna Peres received her
PhD degree in Computer Science in 2019 from
Universidade Federal de Minas Gerais (UFMG).
She is currently working as a software engineer
at Google Brazil. Her research interests include
algorithm design and analysis for computer net-
works.

Otávio Augusto de Oliveira Souza Otávio A.
de O. Souza received the M.Sc degree in Com-
puter Science in 2020 from Universidade Federal
de Minas Gerais (UFMG), Brazil, where he is
currently a PhD candidate in Computer Science.
His research interest is in computer networking.

Olga Goussevskaia Olga Goussevskaia is an
associate professor of computer science at Uni-
versidade Federal de Minas Gerais (UFMG),
Brazil. She received her PhD in computer sci-
ence in 2009 from ETH Zurich, Switzerland. Her
main research interests include modeling, al-
gorithm design and analysis in communication
networks, with emphasis on distributed systems,
wireless networks and complex systems.

Chen Avin Chen Avin is an associate professor
in the School of Electrical and Computer En-
gineering at the Ben Gurion University of the
Negev, Israel which he joined in October 2006.
He received the B.Sc. degree in communication
systems engineering from Ben Gurion Univer-
sity, Israel, in 2000, and his M.S. and Ph.D. de-
grees in computer science from the University
of California, Los Angeles (UCLA), CA, USA,
in 2003 and 2006, respectively. His current re-
search interests are: data-driven graphs and net-

works algorithms, modeling and analysis with emphasis on demand-
aware networks, distributed systems, social networks and randomized
algorithms for networking.

Stefan Schmid Stefan Schmid is professor for
computer science at the University of Vienna,
Austria. He received his MSc (2004) and PhD
(2008) from ETH Zurich, Switzerland. Subse-
quently, Stefan Schmid worked as postdoc at TU
Munich and the University of Paderborn (2009),
in Germany. From 2009 to 2015, he was a senior
research scientist at T-Labs in Berlin, Germany,
and from 2015 to 2018, an Associate Professor at
Aalborg University, Denmark. His research inter-
ests revolve around the fundamental algorithmic

problems of networked and distributed systems.

