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We consider a natural problem dealing with weighted packet selection across a rechargeable 
link, which e.g., finds applications in cryptocurrency networks. The capacity of a link (𝑢, 𝑣) is 
determined by how many nodes 𝑢 and 𝑣 allocate for this link. Specifically, the input is a finite 
ordered sequence of packets that arrive in both directions along a link. Given (𝑢, 𝑣) and a packet 
of weight 𝑥 going from 𝑢 to 𝑣, node 𝑢 can either accept or reject the packet. If 𝑢 accepts the 
packet, the capacity on link (𝑢, 𝑣) decreases by 𝑥. Correspondingly, 𝑣’s capacity on (𝑢, 𝑣) increases 
by 𝑥. If a node rejects the packet, this will entail a cost affinely linear in the weight of the packet. 
A link is “rechargeable” in the sense that the total capacity of the link has to remain constant, but 
the allocation of capacity at the ends of the link can depend arbitrarily on the nodes’ decisions. 
The goal is to minimise the sum of the capacity injected into the link and the cost of rejecting 
packets. We show that the problem is NP-hard, but can be approximated efficiently with a ratio 
of (1 + 𝜀) ⋅ (1 +

√
3) for some arbitrary 𝜀 > 0.

1. Introduction

This paper considers a novel and natural throughput optimization problem where the goal is to maximise the number of packets 
routed through a network. The problem variant comes with a twist: link capacities are “rechargeable”, which is primarily motivated 
by payment-channel networks routing cryptocurrencies.

We confine ourselves to a single capacitated network link and consider a finite ordered sequence of packet arrivals in both 
directions along the link. This can be modelled by a graph that consists of a single edge between two vertices 𝑢 and 𝑣, where 𝑏𝑢
and 𝑏𝑣 represent the capacity 𝑢 and 𝑣 inject into the edge respectively. Each packet in the sequence has a weight (or value) and a 
direction (either going from 𝑢 to 𝑣, or from 𝑣 to 𝑢). When 𝑢 forwards a packet going in the direction 𝑢 to 𝑣, 𝑢’s capacity 𝑏𝑢 decreases 
by the packet weight and 𝑣’s capacity 𝑏𝑣 correspondingly increases by the packet weight (see Fig. 1 for an example). Node 𝑢 can also 
reject to forward a packet, incurring a cost linear in the weight of the packet. The links we consider are rechargeable in the sense 
that the total capacity 𝑏𝑢 + 𝑏𝑣 of the link can be arbitrarily distributed on both ends, but the total capacity of the link cannot be 
altered throughout the lifetime of the link. Given a packet sequence, our goal is to minimise the sum of the cost of rejecting packets 
and the amount of capacity allocated to a link.
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Fig. 1. The diagram on the top shows the outcome of 𝑢 successfully processing a packet 𝑥 of weight 10 along the link (𝑢, 𝑣). The subsequent capacities of 𝑢 and 𝑣
are 0 and 17 respectively. The diagram on the bottom shows the outcome where, even though the total capacity of the (𝑢, 𝑣) link is 17, 𝑢’s capacity of 10 on (𝑢, 𝑣) is 
insufficient to forward a packet 𝑥 of weight 15. As such, the subsequent capacities of 𝑢 and 𝑣 on the link (𝑢, 𝑣) remain the same.

The primary motivating example of our model is payment channel networks [9,10] supporting cryptocurrencies [1,14]. These 
networks are used to route payments of some amount (i.e. weighted packets in our model) in a multi-hop fashion between any two 
users of the network. In this way, users can directly transact with other users off-chain, and in so doing avoid the hefty transaction 
fees as well as long delays they would incur when transacting on the blockchain. Any two users in a payment channel network can 
create a channel (i.e. rechargeable link in our model) between themselves and deposit some funds only to be used in this channel 
(i.e. the initial capacity injected at each endpoint in our model). We note that users can always retrieve their funds in the payment 
channel at any time, but this would involve closing the channel and taking out the funds. For users that transact frequently and 
hence use payment channel networks, frequently closing channels and withdrawing their funds would defeat the purpose of them 
using payment channels as they would now need go back to transacting on the blockchain which is costly. Thus, the amount of funds 
injected into the payment channel can be seen as a “cost” for keeping the payment channel open to avoid using the blockchain. 
The total amount of funds deposited in the channel is its total capacity and remains invariant for the lifetime of the channel. Each 
payment moving across the channel simply updates the current balances (i.e. capacity at each end point of the link) of the two users 
in the channel, while maintaining that the total amount of funds in the channel remains the same.

Routing payments in payment channel networks comes with a profit: intermediate nodes on a payment route typically charge a 
fee for forwarding payments that is linear in the payment amount. Hence, if users reject to forward a payment, they would lose out on 
profiting from this fee and thereby incur the fee amount as opportunity cost. However, a depleted channel (i.e. a link with capacity 0
at one end) due to indiscriminate forwarding of payments can also impact transaction throughput. In particular, a depleted channel 
cannot forward any further payments unless the channel is closed and reopened with larger capacity, which also incurs corresponding 
cost. Hence the choice of how much capacity to inject into a channel and which transactions to forward and which to reject is crucial 
to maintain the lifetime of a payment channel [5,12,4]. Channels in payment channel networks are also rechargeable for security 
reasons, see [14] for more details.

Here we stress a crucial difference between our problem and problems on optimising flows and throughput in typical capacitated 
communication networks [7,15]. In traditional communication networks, the capacity is usually independent in the two directions 
of the link [11]. In our case, however, the amount of packets 𝑢 sends to 𝑣 in a link (𝑢, 𝑣) directly affects 𝑣’s capability to send packets, 
as each packet 𝑢 sends to 𝑣 increases 𝑣’s capacity on (𝑢, 𝑣).

We start with a description of rechargeable links, then explain the actions nodes can take and corresponding costs. Finally, we 
state our main results.

Rechargeable links One unique aspect of our problem is that the links we consider are rechargeable. Rechargeable links are links 
that satisfy the following properties:

1. Given a link (𝑢, 𝑣) with total capacity 𝑀 , the capacity can be arbitrarily split between both ends based on the number and 
weight of packets processed by 𝑢 and 𝑣. That is, 𝑏𝑢 and 𝑏𝑣 can be arbitrary as long as 𝑏𝑢 + 𝑏𝑣 =𝑀 and 𝑏𝑢, 𝑏𝑣 ≥ 0. See Fig. 1 for 
an example of how 𝑏𝑢 and 𝑏𝑣 can vary in the course of processing packets.

2. The total capacity of a link is invariant throughout the lifetime of the link. That is, it is impossible for nodes to add to or remove 
any part of the capacity in the link. In particular, if a node is incident to more than one link in the network, the node cannot 
transfer part of their capacity in one link to “top up” the capacity in the other one.

Node actions and costs First, we note that creating a link incurs an initial cost of the amount the node allocates in the link. That is, 
if node 𝑢 allocates 𝑏𝑢 in link (𝑢, 𝑣), the cost of creating the link (𝑢, 𝑣) for 𝑢 would be 𝑏𝑢. Consider a link (𝑢, 𝑣) in the network and a 
packet going from 𝑢 to 𝑣 along the edge. Node 𝑢 can choose to do the following to the packet:

– Accept packet. Node 𝑢 can accept to forward the packet if their capacity in (𝑢, 𝑣) is at least the weight of the packet. The result 
of doing so decreases their capacity by the packet weight and increases the capacity of 𝑣 by the packet weight. Note that apart 
from gradually depleting a node’s capacity, accepting the packet does not incur any cost.

– Reject packet. Node 𝑢 can also reject the packet. This could happen if 𝑢’s capacity is insufficient, or if accepting the packet 
2

would incur a larger cost in the future. For a packet of weight 𝑥, the cost of rejecting the packet is 𝑓 ⋅ 𝑥 +𝑚 where 𝑓, 𝑚 ∈ℝ+.
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We note that node 𝑢 does not need to take any action for packets going in the opposite direction (i.e. from 𝑣 to 𝑢) as these packets 
do not affect 𝑢’s cost. See Section 2 for more detail regarding packets.

Our contributions We introduce the natural weighted packet selection problem and show that it is NP-hard by a reduction from 
subset sum. Our main contribution is an efficient constant-factor approximation algorithm. We further initiate the discussion of how 
our approach can be generalised from a single link to a more complex network.

Organisation Section 2 introduces the requisite notations and definitions we use in our paper, and also a formal statement of the 
weighted packet selection for a link problem. Section 3 provides the necessary algorithmic building blocks we use to construct our 
main algorithm. In Section 4, we present our main approximation algorithm and prove that it achieves an approximation ratio of 
(1 +𝜀)(1 +

√
3) for weighted packet selection in Theorem 1. We show that weighted packet selection for a link is NP-hard in Section 5. 

Finally, we discuss some possible generalisations of our algorithm from a single link to a larger network in Section 6. We conclude 
our work by discussing future directions in Section 7.

2. Notation and definitions

Packet sequence Let (𝑢, 𝑣) be a link. We denote an ordered sequence of packets by 𝑋𝑡 = (𝑥1, … , 𝑥𝑡). Each packet 𝑥𝑖 ∈𝑋𝑡 has a weight 
and a direction. We simply use 𝑥𝑖 ∈ℝ+ to denote the weight of the packet 𝑥𝑖. We say a packet 𝑥𝑖 goes in the left to right direction 
(resp. right to left) if it goes from 𝑢 to 𝑣 (resp. from 𝑣 to 𝑢). Let 𝑋→ denote the subsequence of 𝑋𝑡 that consists of packets going from 
left to right and 𝑋← the subsequence of 𝑋𝑡 that consists of packets going from right to left. For an integer 𝑡 ≥ 1, we use [𝑡] to denote 
{1, … , 𝑡}.

Problem definition We now formally define weighted packet selection for a link. The input to our problem is a rechargeable link 
(𝑢, 𝑣) and a sequence of packets 𝑋𝑡 arriving on that link. We adopt the optimisation problem perspective over the entire link, instead 
of individual nodes. That is, we suppose nodes 𝑢 and 𝑣 collaborate and act as a coalition regardless of how they decide to initially 
split the capacity on both ends. The problem therefore is to compute the initial capacity and distribution (how it should be split on 
both ends) on the link as well as to decide on whether to accept or reject each packet in 𝑋𝑡 such that the overall solution minimises 
the sum of the rejection cost as well as the cost of the capacity locked in the link.

Optimal algorithm and costs Let 𝑥min be the weight of the packet with the smallest weight in 𝑋𝑡 and 𝑀max be the total capacity in 
the link needed to accept all packets. 𝑀max for 𝑋𝑡 is easy to compute in time (𝑡) and is upper bounded by the sum of the weight of 
all packets in 𝑋𝑡. Similarly, given any sequence of decisions, we can compute the minimal cost of the capacity locked in the link and 
optimal initial distribution of capacity by greedy simulation. Let 𝑂𝑃𝑇 be the cost of the optimal algorithm and 𝑂𝑃𝑇𝑀 be the cost of 
the optimal algorithm using a capacity of 𝑀 in the link. Additionally, we use 𝑂𝑃𝑇𝑅 to denote the cost of the optimal algorithm for 
rejecting packets and 𝑂𝑃𝑇𝐶 to denote the corresponding capacity cost (i.e., amount of capacity injected in the link). Similarly, we 
use 𝑂𝑃𝑇𝑅

𝑀
to denote the cost for rejecting packets of the optimal algorithm using a capacity of 𝑀 in the link (note that 𝑂𝑃𝑇𝐶

𝑀
=𝑀 , 

𝑂𝑃𝑇 =𝑂𝑃𝑇𝐶 +𝑂𝑃𝑇𝑅, and 𝑂𝑃𝑇𝑅
𝑀

≤𝑂𝑃𝑇𝑅).

3. Preliminary insights and algorithmic building blocks

We start our investigation of the weighted packet selection problem by describing a procedure to approximate the optimal 
capacity in a link using binary search and use this approximation to derive a lower bound on the cost of the optimal algorithm. We 
then describe a linear program that fractionally accepts packets (i.e. part of a packet can be accepted) given a fixed link capacity 𝑀
and show that the solution of the linear program given 𝑀 is a lower bound on the cost of the optimal algorithm given 𝑀 . These 
results are used as building blocks for our main algorithm and theorem in Section 4. Nevertheless, we also present a simpler example 
of how to use the solution of the linear program that also comes with some guarantees in Section 3.3 which may be of independent 
interest.

3.1. Approximating the optimal capacity

We present a lemma that allows us to fix the capacity of the link to some value 𝑀 ∈ℝ+ for a small trade-off in the approximation 
ratio. Recall that 𝑥min is the weight of the smallest packet in 𝑋𝑡 and 𝑀max is the capacity needed to accept all packets. Observe that 
if the optimal capacity is not 0, it has to lie in the interval [𝑥min, 𝑀max]. We thus fix some 𝜀 > 0 and perform a search for 𝑀 over all 
𝑘 ∈ ℕ such that 𝑥min(1 + 𝜀)𝑘 ≤𝑀max. Let us denote by 𝐿𝐵𝑀 any lower bound on 𝑂𝑃𝑇𝑅

𝑀
, the optimal rejection cost using at most 

capacity 𝑀 .

Lemma 1. For any 𝜀 > 0, let  = {𝑥min(1 + 𝜀)𝑘|𝑘 ∈ ℕ and 𝑥min(1 + 𝜀)𝑘 ≤𝑀max} ∪ {0}. Then, the following inequality holds:

(
𝑀

)

3

min
𝑀∈

𝐿𝐵𝑀 +
1 + 𝜀

≤𝑂𝑃𝑇
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Proof. We first analyse the case where the optimal algorithm rejects all packets. In this case, we know that since  contains 0, 
𝐿𝐵0 ≤𝑂𝑃𝑇

𝑅
0 =𝑂𝑃𝑇0 =𝑂𝑃𝑇 , so the inequality holds.

Now, suppose that the optimal algorithm accepts at least one packet. This means 𝑂𝑃𝑇𝐶 ≥ 𝑥min. So there exists a 𝑘 ∈ℕ such that 
𝑥min(1 + 𝜀)𝑘−1 ≤𝑂𝑃𝑇𝐶 ≤ 𝑥min(1 + 𝜀)𝑘. Set 𝑀 = 𝑥min(1 + 𝜀)𝑘. We need to show that 𝐿𝐵𝑀 + 𝑀

1+𝜀 ≤𝑂𝑃𝑇 =𝑂𝑃𝑇𝑅 +𝑂𝑃𝑇𝐶 . From the 
way we choose 𝑀 , we know that 𝑀1+𝜀 ≤𝑂𝑃𝑇

𝐶 .

Now we just need to show 𝐿𝐵𝑀 ≤ 𝑂𝑃𝑇𝑅. Observe that the optimal rejection cost for any link with larger capacity is always at 
most the rejection cost for any link with smaller capacity, as in the worst case the algorithm in the former setting accepts the same 
set of packets that the algorithm in the latter setting accepts. Thus, for any 𝑀 ′ ≥𝑀 , 𝑂𝑃𝑇𝑅

𝑀 ′ ≤𝑂𝑃𝑇
𝑅
𝑀

. And since we chose 𝑀 as an 
upper bound on 𝑂𝑃𝑇𝐶 , it means 𝑂𝑃𝑇𝑅 =𝑂𝑃𝑇𝑅

𝑂𝑃𝑇𝐶
≥𝑂𝑃𝑇𝑅

𝑀
≥𝐿𝐵𝑀 . □

Looking ahead, we describe an algorithm that is a (1 +
√
3)-approximation of 𝐿𝐵𝑀 in Section 4. Thus, together with Lemma 1, 

we can use this algorithm to approximate weighted packet selection with a ratio of (1 + 𝜀)(1 +
√
3) by running the algorithm at most 

1
𝜀
log 𝑀max

𝑥min
times. We note that choosing a smaller value of 𝜀 yields a better approximation, but increases the running time.

3.2. Linear program formulation

Here, we describe a linear program that computes a lower bound for 𝑂𝑃𝑇𝑅
𝑀

. We first observe that due to the capacity constraints, 
the optimal algorithm with capacity 𝑀 cannot accept packets with weight larger than 𝑀 . Hence, for the rest of the analysis, we 
assume that all packets in 𝑋𝑡 have weight less than 𝑀 .

In the linear program, we allow accepting a fractional amount of a packet. That is, we create a variable 0 ≤ 𝑦𝑖 ≤ 𝑥𝑖 for every 
packet 𝑥𝑖 ∈𝑋𝑡 that represents the extent to which the packet is accepted. For instance, 𝑦𝑖 =

𝑥𝑖

2 means that half of 𝑥𝑖 is accepted. We 
introduce variables 𝑆𝐿,𝑖 and 𝑆𝑅,𝑖 denoting the capacity on the left and right ends of the link after processing first 𝑖 packets from 𝑋𝑡. 
We reiterate that due to the rechargeable property of the link, 𝑆𝐿,𝑖 +𝑆𝑅,𝑖 =𝑀 , and 0 ≤ 𝑆𝐿,𝑖, 𝑆𝑅,𝑖 ≤𝑀 .

We can now formulate the linear program in eq. (1):

minimise
∑
𝑖

𝑓 (𝑥𝑖 − 𝑦𝑖) +𝑚
𝑥𝑖 − 𝑦𝑖
𝑥𝑖

(1)

subject to ∀𝑖 ∶ 𝑦𝑖,𝑆𝐿,𝑖,𝑆𝑅,𝑖 ≥ 0

∀𝑖 ∶ 𝑦𝑖 ≤ 𝑥𝑖
∀𝑖 ∶ 𝑆𝐿,𝑖 + 𝑆𝑅,𝑖 =𝑀

∀𝑥𝑖 ∈𝑋→ ∶ 𝑆𝐿,𝑖 = 𝑆𝐿,𝑖−1 − 𝑦𝑖
∀𝑥𝑖 ∈𝑋→ ∶ 𝑆𝑅,𝑖 = 𝑆𝑅,𝑖−1 + 𝑦𝑖
∀𝑥𝑖 ∈𝑋← ∶ 𝑆𝐿,𝑖 = 𝑆𝐿,𝑖−1 + 𝑦𝑖
∀𝑥𝑖 ∈𝑋← ∶ 𝑆𝑅,𝑖 = 𝑆𝑅,𝑖−1 − 𝑦𝑖

Let 𝐿𝑃𝑀 be the solution of the linear program with capacity parameter 𝑀 . The following lemma states that 𝐿𝑃𝑀 is a lower 
bound of the optimal cost of the weighted packet selection for a link problem with capacity 𝑀 .

Lemma 2. 𝐿𝑃𝑀 ≤𝑂𝑃𝑇𝑀 for all 𝑀 .

Proof. 𝑂𝑃𝑇𝑀 is an admissible solution to the linear program. If some other (fractional) solution is found, we know that it is at most 
𝑂𝑃𝑇𝑀 . □

The linear program can be solved in time (𝑛𝜔) where 𝑛 is the number of variables in the linear program and 𝜔 the matrix 
multiplication exponent [8] (currently 𝜔 is around 2.37).

3.3. Example algorithm

We present an example of how to use the solution of the linear program in Section 3.2 for some fixed capacity 𝑀 to create an 
algorithm that uses twice as much capacity as the linear program but guarantees that all packets that are fully accepted by the linear 
program (i.e. 𝑥𝑖 = 𝑦𝑖) will also be fully accepted by the algorithm.

Algorithm 1 describes the decision making process only for packets coming from left to right on the link, i.e. 𝑋→. As the decision 
process for 𝑋← is symmetric, we omit it to avoid repetition. The algorithm takes as input the solution to the linear program and the 
packet sequence 𝑋𝑡. Recall that 𝑆𝐿,𝑖 and 𝑆𝑅,𝑖 for 𝑖 ∈ [𝑡] are the capacity distributions from the linear program solution on the left 
and right end of the link respectively after processing the 𝑖th packet. The algorithm uses the initial distribution 𝑆𝐿,0 and 𝑆𝑅,0, and 
4

additionally splits the extra 𝑀 capacity into 2 “reserve buckets” 𝑅𝐿 and 𝑅𝑅 of size 𝑀2 each on both ends. Thus, the initial capacity 
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Algorithm 1 Algorithm accepting all fully accepted packets.

Input: packet sequence 𝑋𝑡 , capacity 𝑀 , solution of LP: 𝑆𝐿,𝑖, 𝑆𝑅,𝑖, 𝑦𝑖 .
Output: decisions to accept or reject

1: initialise 𝑅𝐿 = 𝑀

2
, 𝑅𝑅 = 𝑀

2
2: for 𝑖 ∈ [𝑡] do

3: if 𝑥𝑖 ∈𝑋→ then

4: if 𝑅𝐿 ≥ 𝑥𝑖 − 𝑦𝑖 then

5: Accept

6: 𝑅𝐿 =𝑅𝐿 − (𝑥𝑖 − 𝑦𝑖)
7: 𝑅𝑅 =𝑅𝑅 + (𝑥𝑖 − 𝑦𝑖)
8: 𝑆𝐿,𝑖 = 𝑆𝐿,𝑖 − 𝑦𝑖
9: 𝑆𝑅,𝑖 = 𝑆𝑅,𝑖 + 𝑦𝑖

10: else

11: Reject

12: 𝑅𝐿 =𝑅𝐿 + 𝑦𝑖
13: 𝑅𝑅 =𝑅𝑅 − 𝑦𝑖
14: 𝑆𝐿,𝑖 = 𝑆𝐿,𝑖 − 𝑦𝑖
15: 𝑆𝑅,𝑖 = 𝑆𝑅,𝑖 + 𝑦𝑖

of the left node would be 𝑆𝐿,0 + 𝑅𝐿 and the initial capacity of the right node would be 𝑆𝑅,0 + 𝑅𝑅. Intuitively, one can think of 
the additional capacity in 𝑅𝐿 and 𝑅𝑅 as a reserve source of capacity that is used to help Algorithm 1 fully accept packets that are 
fractionally accepted in the linear program solution. We stress that Algorithm 1 always maintains the invariant that 𝑆𝐿,𝑖 + 𝑆𝑅,𝑖 =𝑀
and 𝑅𝐿 +𝑅𝑅 =𝑀 for all 𝑖.

When processing each packet, say packet 𝑖 which is wlog in 𝑋→, the algorithm first checks if there is sufficient excess capacity 
in 𝑅𝐿 to accept the remaining fraction of packet 𝑖 (Line 4 in Algorithm 1). If so, the packet is accepted using (𝑥𝑖 − 𝑦𝑖) capacity 
from 𝑅𝐿 and 𝑦𝑖 capacity from 𝑆𝐿,𝑖. The capacity of 𝑆𝐿,𝑖 decreases by 𝑦𝑖 and the capacity of 𝑆𝑅,𝑖 increases by 𝑦𝑖, and the capacity 
in 𝑅𝐿 decreases by (𝑥𝑖 − 𝑦𝑖) while the capacity in 𝑅𝑅 increases by the same amount. If there is insufficient capacity in 𝑅𝐿,𝑖, i.e. 
𝑅𝐿,𝑖 < 𝑥𝑖 − 𝑦𝑖, the algorithm takes 𝑦𝑖 from 𝑅𝑅,𝑖 and adds it to 𝑆𝑅,𝑖+1, and takes 𝑦𝑖 from 𝑆𝐿,𝑖 and adds it to 𝑅𝐿,𝑖+1 (see Lines 12 to 15

in Algorithm 1). Note that the updates to 𝑆𝐿,𝑖 and 𝑆𝑅,𝑖 at each step are exactly as the solution to the linear program (Lines 8 and 9

and Lines 14 and 15).

Lemma 3. Given the solution of the linear program, a sequence of packets 𝑋𝑡, and link capacity 𝑀 , Algorithm 1 incurs a link capacity cost 
of 2𝑀 and accepts all packets fully accepted in the linear program.

Proof. Wlog, let the 𝑖th packet in the sequence belong to 𝑋→. After processing the 𝑖th packet 𝑥𝑖, we denote 𝑅𝐿 (resp. 𝑅𝑅) at that 
step as 𝑅𝐿,𝑖 (resp. 𝑅𝑅,𝑖). We show that the link, at time 𝑖, has capacity at least 𝑆𝐿,𝑖 on the left and at least 𝑆𝑅,𝑖 on the right.

When 𝑅𝐿,𝑖 is large enough to accept packet 𝑥𝑖, we use 𝑦𝑖 capacity from 𝑆𝐿,𝑖 and 𝑥𝑖 − 𝑦𝑖 capacity from 𝑅𝐿,𝑖. The capacity 𝑦𝑖 from 
the accepted packet goes to 𝑆𝑅,𝑖+1 and the rest (𝑥𝑖 − 𝑦𝑖) of the capacity goes to 𝑅𝑅,𝑖+1 .

If the packet is forced to be rejected, we know that 𝑅𝐿,𝑖 < 𝑥𝑖 − 𝑦𝑖. Since 𝑅𝑅,𝑖 =𝑀 −𝑅𝐿,𝑖, we know that 𝑅𝑅,𝑖 >𝑀 − 𝑥𝑖 + 𝑦𝑖, and 
because all packets have weight smaller than 𝑀 , 𝑅𝑅,𝑖 > 𝑦𝑖 follows. This means we can take 𝑦𝑖 from 𝑅𝑅,𝑖 and add it to 𝑆𝑅,𝑖+1 and 
remove 𝑦𝑖 from 𝑆𝐿,𝑖 (because the capacity disappeared from there) and add it to 𝑅𝐿,𝑖+1 .

If the packet is fully accepted, then 𝑥𝑖 − 𝑦𝑖 = 0. This means that the condition 𝑅𝐿,𝑖 ≥ 𝑥𝑖 − 𝑦𝑖 is satisfied and the algorithm accepts 
it. □

We conclude this example with two remarks.

Remark 1. Lemma 3 holds for any initial distribution of 𝑅𝐿 and 𝑅𝑅 so long as 𝑅𝐿 +𝑅𝑅 =𝑀 .

Remark 2. Algorithm 1 is greedy and accepts all packets as long as 𝑅𝐿 ≥ 𝑥𝑖 − 𝑦𝑖. This could be suboptimal as it might not have 
enough capacity in 𝑅𝐿 to accept important packets later in the sequence. However, to maintain the condition 𝑅𝐿, 𝑅𝑅 ≥ 0 in line 4
of Algorithm 1, we can substitute the conditional check 𝑅𝐿 ≥ 𝑥𝑖 − 𝑦𝑖 with 𝑅𝑅 < 𝑦𝑖 at any point. Then, the proof of Lemma 3 still 
holds. We note that one could use this as a heuristic to develop a better approximation as it allows more fine-grained control over 
the greediness of the algorithm.

4. A constant approximation algorithm

Based on the insights in the previous section, we now present a (1 +
√
3)-approximation algorithm for the weighted packet 

selection for a link problem with fixed capacity 𝑀 . We present the formal description of the algorithm in Algorithm 2 for packets 
𝑥𝑖 ∈𝑋→ and omit the procedure for 𝑥𝑖 ∈𝑋← as the decision process is symmetric.

In a nutshell, Algorithm 2 consists of three main ideas: first, it uses 𝑀 capacity to follow the decisions made by the linear program 
solution as much as possible, using an additional 

√
3𝑀 as reserve capacity to fully accept some packets that were fractionally 

accepted by the linear program. Second, Algorithm 2 tries to maintain a balance in the distribution of capacity in both ends of the 
5

link. Intuitively, any packet that is accepted by the linear program can be accepted when the algorithm is in this balanced state.
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Lastly, whenever the capacity is unbalanced: one side (wlog left side) has too little capacity, the algorithm prioritises accepting 
packets that come from right to left as well as rejecting packets that go from left to right. This brings the capacity at both sides to 
the balanced state, and our analysis shows that the approximation ratio is maintained below 1 +

√
3.

Input and initial capacity distribution Algorithm 2 takes as input 𝑋𝑡 and the solution of linear program given a fixed capacity 𝑀 . 
Recall that 𝑆𝐿,𝑖 and 𝑆𝑅,𝑖 for 𝑖 ∈ [𝑡] are the capacity distributions from the linear program solution on the left and right end of the 
link respectively after processing the 𝑖th packet. The algorithm uses the initial distribution 𝑆𝐿,0 and 𝑆𝑅,0, and additionally creates 2

“reserve capacity buckets” 𝑅𝐿 and 𝑅𝑅 of size 
√
3
2 𝑀 each on both ends. Thus, the initial capacity of the left node would be 𝑆𝐿,0 +𝑅𝐿

and the initial capacity of the right node would be 𝑆𝑅,0 +𝑅𝑅. Intuitively, one can think of the additional capacity in 𝑅𝐿 and 𝑅𝑅 as 
a reserve source of capacity that is used to help Algorithm 2 fully accept packets that are fractionally accepted in the linear program 
solution.

Algorithm 2 accepts packets in the following way: for a packet of size 𝑥𝑖 wlog in 𝑋→, assuming there is sufficient capacity in 
𝑅𝐿, the packet is accepted using (𝑥𝑖 − 𝑦𝑖) capacity from 𝑅𝐿 and 𝑦𝑖 capacity from 𝑆𝐿,𝑖. The capacity of 𝑆𝐿,𝑖 decreases by 𝑦𝑖 and the 
capacity of 𝑆𝑅,𝑖 increases by 𝑦𝑖, and the capacity in 𝑅𝐿 decreases by (𝑥𝑖−𝑦𝑖) while the capacity in 𝑅𝑅 increases by the same amount. 
If the algorithm rejects 𝑥𝑖, the algorithm takes 𝑦𝑖 from 𝑅𝑅,𝑖 and adds it to 𝑆𝑅,𝑖+1, and takes 𝑦𝑖 from 𝑆𝐿,𝑖 and adds it to 𝑅𝐿,𝑖+1. We 
stress that in doing so, the algorithm always ensures that the updates to 𝑆𝐿,𝑖 and 𝑆𝑅,𝑖 at each step are exactly the same as the solution 
to the linear program. We also note that Algorithm 2 always maintains the invariant that 𝑆𝐿,𝑖 + 𝑆𝑅,𝑖 =𝑀 and 𝑅𝐿 +𝑅𝑅 =

√
3𝑀 for 

all 𝑖.
We distinguish between three phases of Algorithm 2. We say the algorithm is in the balanced phase if both 𝑅𝐿 ≥

√
3−1
2 𝑀 and 

𝑅𝑅 ≥

√
3−1
2 𝑀 . If 𝑅𝐿 <

√
3−1
2 𝑀 , we say the algorithm is in the left phase, and if 𝑅𝑅 <

√
3−1
2 𝑀 , we say the algorithm is in the right 

phase. We also distinguish between 2 types of packets: little-accepted and almost-accepted packets. We say a packet is little-accepted

if 𝑦𝑖
𝑥𝑖
<

√
3

1+
√
3
, and almost-accepted if 𝑦𝑖

𝑥𝑖
≥

√
3

1+
√
3
.

Balanced phase In the balanced phase, Algorithm 2 accepts all packets that are almost-accepted in the linear program solution. It 
also accepts little-accepted packets that allow it to remain in the balanced phase. That is, for a little-accepted packet 𝑥𝑖 wlog in 𝑋→, 
it first checks if the left reserve 𝑅𝐿 is sufficient to forward the packet, and that doing so keeps the algorithm in the balanced phase 
(Line 4). If 𝑅𝐿 does not have sufficient capacity, the algorithm rejects 𝑥𝑖 (Line 8).

We first show in the following lemma that rejecting any little-accepted packet is safe in the sense that doing so will not push the 
approximation ratio of the algorithm above 1 +

√
3.

Lemma 4. All little-accepted packets can be rejected while keeping the approximation ratio below 1 +
√
3.

Proof. Recall that rejecting a packet 𝑥𝑖 incurs a cost of 𝑓𝑥𝑖 +𝑚. From Eq. (1), the cost of a little-accepted packet 𝑥𝑖 for the linear 
program is 𝑓 ⋅ (𝑥𝑖 − 𝑦𝑖) +𝑚

𝑥𝑖−𝑦𝑖
𝑥𝑖

≥
𝑓𝑥𝑖

1+
√
3
+ 𝑚

1+
√
3
= 1

1+
√
3
(𝑓𝑥𝑖 +𝑚). From Lemma 2, we know that the solution of the linear program 

for a fixed capacity 𝑀 is a lower bound on the optimal solution with capacity 𝑀 , hence rejecting little-accepted packets will not 
increase the approximation ratio above 1 +

√
3. □

In the next lemma, we show that processing little-accepted packets does not affect whether the algorithm stays in the balanced 
phase or not. This simplifies the decision making process of Algorithm 2 as it can just focus on the decision problem for almost-

accepted packets.

Lemma 5. Algorithm 2 never leaves the balanced phase after processing a little-accepted packet.

Proof. Each little-accepted packet moves at most 1
1+

√
3
𝑀 from the left side to the right side of a link, and at most 

√
3

1+
√
3
𝑀 from the 

right side to the left side of a link.

Because 𝑅𝐿 +𝑅𝑅 =
√
3𝑀 and any packet has a weight at most 𝑀 , if 𝑅𝐿 − 1

1+
√
3
𝑀 <

√
3−1
2 𝑀 , then 𝑅𝑅 −

√
3

1+
√
3
𝑀 ≥

√
3−1
2 𝑀 .

That means that rejecting a little-accepted packet from 𝑋→ does not create a situation where 𝑅𝑅 <
√
3−1
2 𝑀 . □

Left phase Since Algorithm 2 accepts all almost-accepted packets in the balanced phase, it would sometimes have to enter the left 
or right phase. Here we describe the procedure for what happens in the left phase (the right phase is analogous).

Suppose Algorithm 2 enters the left phase after processing packet 𝑥𝑖−1. The objective of Algorithm 2 in this phase is to accept 
all almost-accepted packets among the unprocessed packets (i.e. packets 𝑥𝑖, … , 𝑥𝑡). If this is not possible, the algorithm rejects some 
of them such that both of the following conditions hold: first, the approximation ratio remains 1 +

√
3, and second, the algorithm 
6

returns to a balanced phase.
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Algorithm 2 (1 +
√
3)-approximation algorithm.

Input: packet sequence 𝑋𝑡 , capacity 𝑀 , solution of 𝐿𝑃𝑀 :𝑆𝐿,𝑖, 𝑆𝑅,𝑖, 𝑦𝑖 .
Output: decisions to accept or reject

1: initialise 𝑅𝐿 =
√
3
2
𝑀 , 𝑅𝑅 =

√
3
2
𝑀

2: for 𝑖 ∈ [𝑡] do

3: if 𝑥𝑖 ∈𝑋→ then

4: if 𝑅𝐿 − (𝑥𝑖 − 𝑦𝑖) ≥
√
3−1
2
𝑀 then

5: Accept

6: 𝑅𝐿 =𝑅𝐿 − (𝑥𝑖 − 𝑦𝑖)
7: 𝑅𝑅 =𝑅𝑅 + (𝑥𝑖 − 𝑦𝑖)
8: else if 𝑥𝑖 is little-accepted then

9: Reject

10: 𝑅𝐿 =𝑅𝐿 + 𝑦𝑖
11: 𝑅𝑅 =𝑅𝑅 − 𝑦𝑖
12: else

13: 𝜙𝐴, 𝜙𝑅, 𝑈, 𝑅′
𝐿
, 𝑗← DIVIDE(𝑅𝐿, 𝐿𝑃𝑀, 𝑋𝑡, 𝑖)

14: 𝑈𝑅 ← {}
15: if 𝑅′

𝐿
< 0 then

16: 𝑈𝑅, 𝑅′
𝐿
← REJECTBIG(𝑋𝑡, 𝑈, 𝑅′

𝐿
)

17: Accept all 𝑥𝑖 ∈ 𝜙𝐴 ∪ (𝑈 ⧵𝑈𝑅)
18: Reject all 𝑥𝑖 ∈ 𝜙𝑅 ∪𝑈𝑅 .

19: 𝑅𝐿 =𝑅′
𝐿

20: 𝑅𝑅 =
√
3𝑀 −𝑅𝐿

21: 𝑖 = 𝑗

To do so, Algorithm 2 calls a subroutine DIVIDE (Line 13 in Algorithm 2) to sort all unprocessed packets into three sets: 𝜙𝐴, 𝜙𝑅, 𝑈 . 
Set 𝜙𝐴 contains all packets from 𝑋←. These will be accepted as they will increase the left capacity reserve 𝑅𝐿 and help to bring Al-

gorithm 2 back into the balanced phase. Set 𝜙𝑅 contains little-accepted packets from 𝑋→. These will be rejected and from Lemma 4

we know that doing so does not increase the approximation ratio. Set 𝑈 contains almost-accepted packets from 𝑋→. Some of these 
packets will be accepted and some rejected in a way that maintains the approximation ratio.

DIVIDE (described in Algorithm 3) takes as input the packet sequence 𝑋𝑡, the solution of the linear program as well as the current 
capacity in the left reserve 𝑅𝐿. DIVIDE creates the sets 𝜙𝐴, 𝜙𝑅, 𝑈 incrementally by processing each unprocessed packet and accepting 
packets from 𝜙𝐴 ∪𝑈 and rejecting packets from 𝜙𝑅 until one of the following stopping conditions occurs:

1. 𝑅𝐿 < 0 which would mean the left capacity reserves are depleted

2. 𝑅𝐿 >

√
3−1
2 𝑀

3. all packets are processed

If the first stopping condition is reached (Line 15 in Algorithm 2), the procedure REJECTBIG is called. REJECTBIG (described 
in Algorithm 4) takes as input the set 𝑈 and outputs another set 𝑈𝑅 ⊂ 𝑈 . This set 𝑈𝑅 is created by greedily selecting the biggest 
sized packets in 𝑈 (Line 3 in Algorithm 4) and adding them to 𝑈𝑅. These packets will be rejected and the left capacity reserves 
will be accordingly updated after each rejected packet (Line 6 in Algorithm 4). The procedure REJECTBIG terminates when the left 
capacity reserves 𝑅𝐿 ≥

√
3−1
2 .

Now we show that if DIVIDE terminates on either the second and third stopping condition, Algorithm 2 will either be in the 
balanced phase (second stopping condition) or all packets will be processed and Algorithm 2 terminates (third stopping condition).

Lemma 6. If DIVIDE returns 𝑅′
𝐿
≥ 0 and 𝑗, all almost-accepted packets between 𝑖 and 𝑗 are accepted by Algorithm 2 and either all packets 

are processed or 𝑅𝑅,𝑗 ≥
√
3−1
2 𝑀 and 𝑅𝐿,𝑗 ≥

√
3−1
2 𝑀 .

Proof. There are two reasons why DIVIDE returned 𝑅′
𝐿
≥ 0: either 𝑅′

𝐿
≥

√
3−1
2 or 𝑗 = 𝑡.

In both cases, we note that DIVIDE simulated accepting all packets from 𝜙𝐴 and 𝑈 and rejecting all packets from 𝜙𝑅, and at no 
time 𝑅′

𝐿
went below 0. That means that Algorithm 2 just repeats decisions of DIVIDE.

Finally, since 𝑅𝐿 + 𝑅𝑅 =
√
3 and all packets are smaller than 𝑀 , this means that Algorithm 2 after emerging from left-phase 

cannot plunge to a right-phase right away. □

As the penultimate step in our analysis, we show in the next lemma that REJECTBIG does not bring the approximation ratio 
of Algorithm 2 over 1 +

√
3. We do this by computing the rejection cost incurred by Algorithm 2 on packets from 𝑈𝑅 and showing 

that it is always lower than (1 +
√
3) times the cost of the linear program on 𝑈 . As the solution of the linear program is a lower bound 

on the cost of the optimal algorithm, this shows that Algorithm 2 maintains the approximation ratio even when rejecting packets 
7

from 𝑈𝑅.
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Algorithm 3 Function DIVIDE to create sets 𝜙𝐴, 𝜙𝑅, and 𝑈 .

Input: packet sequence 𝑋𝑡 , solution of LP :𝑆𝐿,𝑖, 𝑆𝑅,𝑖, 𝑦𝑖 , value 𝑅𝐿 , capacity 𝑀 ,

Output: sets 𝜙𝐴, 𝜙𝑅, 𝑈 , resulting 𝑅𝐿
1: 𝑅𝐿 =𝑅𝐿 − (𝑥𝑖 − 𝑦𝑖)
2: 𝜙𝐴, 𝜙𝑅, 𝑈 ← {}, {}, {𝑥𝑖}
3: 𝑗 = 𝑖
4: while 𝑅𝐿 ≥ 0 and 𝑅𝐿 <

√
3−1
2

and 𝑗 < 𝑡 do

5: 𝑗 = 𝑗 + 1
6: if 𝑥𝑗 ∈𝑋→ and 𝑥𝑗 is almost-accepted then

7: 𝑅𝐿 =𝑅𝐿 − (𝑥𝑗 − 𝑦𝑗 )
8: 𝑈 ←𝑈 ∪ 𝑥𝑗
9: else if 𝑥𝑗 ∈𝑋→ and 𝑥𝑗 is little-accepted then

10: 𝑅𝐿 =𝑅𝐿 + 𝑦𝑗
11: 𝜙𝑅 ← 𝜙𝑅 ∪ 𝑥𝑗
12: else

13: 𝑅𝐿 =𝑅𝐿 + (𝑥𝑗 − 𝑦𝑗 )
14: 𝜙𝐴 ← 𝜙𝐴 ∪ 𝑥𝑗
15: return 𝜙𝐴, 𝜙𝑅, 𝑈, 𝑅𝐿, 𝑗

Algorithm 4 Function REJECTBIG to prune out packets from 𝑈 .

Input: packet sequence 𝑋𝑡 , set 𝑈 , value 𝑅′
𝐿

Output: set 𝑈𝑅 , value 𝑅′
𝐿

1: 𝑈𝑅 ← {}
2: while 𝑅′

𝐿
<

√
3−1
2

do

3: 𝑥𝑘 ← biggest packet from 𝑈
4: 𝑈 ←𝑈 ⧵ 𝑥𝑘
5: 𝑈𝑅 ←𝑈𝑅 ∪ {𝑥𝑘}
6: 𝑅′

𝐿
=𝑅′

𝐿
+ 𝑥𝑘

7: return 𝑈𝑅, 𝑅′
𝐿

Lemma 7. In Algorithm 2, for sets 𝑈 and 𝑈𝑅 the following inequality holds:

(1 +
√
3)

∑
𝑥𝑖∈𝑈

𝑓 ⋅
(
𝑥𝑖 − 𝑦𝑖

)
+𝑚

𝑥𝑖 − 𝑦𝑖
𝑥𝑖

≥
∑
𝑥𝑖∈𝑈𝑅

𝑓𝑥𝑖 +𝑚

Proof. If 𝑅′
𝐿
≥ 0, we know that all almost-accepted transactions are accepted from Lemma 6. For 𝑅′

𝐿
< 0 we prove that (1 +√

3) 
∑
𝑥𝑖∈𝑈

(
𝑥𝑖 − 𝑦𝑖

)
≥
∑
𝑥𝑖∈𝑈𝑅 𝑥𝑖, then we argue that the whole theorem holds.

Let 𝐷 =𝑅𝐿,𝑖−1 −𝑅′
𝐿

where 𝑅′
𝐿

is the value returned by DIVIDE in Algorithm 2. We know from the fact that 𝑅𝐿,𝑖−1 is the amount 

of reserves on the left before the left phase and 𝑅′
𝐿
< 0, thus 𝐷 ≥

√
3−1
2 𝑀 .

By following the changes of 𝑅′
𝐿

in DIVIDE, we get

∑
𝑥𝑖∈𝑈

𝑥𝑖 − 𝑦𝑖 =𝐷 +
∑
𝑥𝑖∈𝜙𝑅

𝑦𝑖 +
∑
𝑥𝑖∈𝜙𝐴

𝑥𝑖 − 𝑦𝑖

Therefore, we know that 
∑
𝑥𝑖∈𝑈 𝑥𝑖 − 𝑦𝑖 ≥𝐷.

Algorithm REJECTBIG removes transactions from 𝑈 until 
∑
𝑥𝑖∈𝑈𝑅 𝑥𝑖 ≥ 𝐷. If the condition is satisfied, we know that REJECTBIG

returns 𝑈𝑅, because 𝑅′
𝐿
≥

√
3−1
2 .

If |𝑈𝑅| = 1, we know that 
∑
𝑥𝑖∈𝑈𝑅 𝑥𝑖 ≤𝑀 , because every 𝑥𝑖 ≤𝑀 . So in that case 

∑
𝑥𝑖∈𝑈𝑅 𝑥𝑖 ≤𝑀 ≤ (1 +

√
3)

√
3−1
2 𝑀 ≤ (1 +

√
3)𝐷.

If |𝑈𝑅| > 1, we know that rejecting just one transaction is not enough. This means the biggest transaction has size at most 𝐷, so ∑
𝑥𝑖∈𝑈𝑅 𝑥𝑖 ≤ 2𝐷 ≤ (1 +

√
3)𝐷.

Now, we know that Algorithm 2 rejects less size than the linear program multiplied by (1 +
√
3). This implies that (1 +√

3) 
∑
𝑥𝑖∈𝑈 𝑓 ⋅

(
𝑥𝑖 − 𝑦𝑖

)
≥
∑
𝑥𝑖∈𝑈𝑅 𝑓𝑥𝑖, and leaves us to prove (1 +

√
3) 
∑
𝑥𝑖∈𝑈 𝑚

𝑥𝑖−𝑦𝑖
𝑥𝑖

≥
∑
𝑥𝑖∈𝑈𝑅 𝑚.

But we know that the transactions are moved to 𝑈𝑅 from the biggest size to smallest size. This means that for every 𝑥𝑘 ∈ 𝑈𝑅
and 𝑥𝑙 ∈ 𝑈 , 𝑥𝑘 > 𝑥𝑙 , and so 𝑥𝑙−𝑦𝑙

𝑥𝑙
≥

𝑥𝑙−𝑦𝑙
𝑥𝑘

holds. Let 𝑥∗ be the size of the smallest transaction in 𝑈𝑅. It suffices to show that 

(1 +
√
3) 
∑
𝑥𝑖∈𝑈

𝑥𝑖−𝑦𝑖
𝑥∗

≥
∑
𝑥𝑖∈𝑈𝑅

𝑥𝑖

𝑥∗
≥
∑
𝑥𝑖∈𝑈𝑅 𝑥𝑖. However, we know that 

∑
𝑥𝑖∈𝑈𝑅 𝑥𝑖 ≤ 2𝐷 ≤ (1 +

√
3)𝐷 ≤ (1 +

√
3) 
∑
𝑥𝑖∈𝑈 𝑥𝑖 − 𝑦𝑖 since ∑

𝑥𝑖∈𝑈 𝑥𝑖 − 𝑦𝑖 ≥𝐷. Thus, we conclude that (1 +
√
3) 
∑
𝑥𝑖∈𝑈 𝑚

𝑥𝑖−𝑦𝑖
𝑥𝑖

≥
∑
𝑥𝑖∈𝑈𝑅 𝑚. □

We now have all the necessary ingredients to state and prove our main theorem, which is that weighted packet selection can be √
8

approximated with an approximation ratio of (1 + 𝜀)(1 + 3).
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Theorem 1. The weighted packet selection for a link problem can be approximated with a ratio (1 + 𝜀)(1 +
√
3) in time (𝑛𝜔 ⋅ 1

𝜀
⋅ log 𝑀max

𝑥min
), 

where 𝜔 is the exponent of 𝑛 in matrix multiplication.

Proof. We perform a search for the capacity of the link according to Lemma 1 and for every capacity 𝑀 searched we solve the 
linear program (as stated in Equation (1)) and run Algorithm 2. The solution is the output of Algorithm 2 with the smallest cost.

We know that 𝑥min(1 + 𝜀)
1
𝜀
⋅log 𝑀max

𝑥min ≥𝑀max. That means we need to solve the linear program and run Algorithm 2 at most 
1
𝜀
⋅ log 𝑀max

𝑥min
times.

From Lemma 2 we know that the solution of the linear program with parameter 𝑀 is a lower bound for 𝑂𝑃𝑇𝑅
𝑀

.

From Lemma 3, we know that Algorithm 2 accepts all fully-accepted packets. The algorithm can reject any little-accepted packets 
by Lemma 4. We also know from Lemma 5 that in the balanced phase Algorithm 2 accepts all almost-accepted packets and never 
leaves the phase after processing little-accepted packets. Finally, Lemma 7 shows that even in a left (or right) phase the approximation 
ratio of Algorithm 2 on almost-accepted packets is 1 +

√
3. This means Algorithm 2 is (1 +

√
3)-approximation algorithm for the 

solution of the linear program. Moreover, the algorithm uses (1 +
√
3) times more capacity that the linear program.

Using Lemma 1, we find that the selected solution is a (1 + 𝜀)(1 +
√
3)-approximation of the weighted packet selection for a link 

problem. □

5. Hardness

In this section, we show that weighted packet selection for a link is generally NP-hard.

Theorem 2. Weighted packet selection for a link is NP-hard.

Proof. We show a reduction from the subset sum problem, which is known to be NP-hard [2]. In the subset sum problem, we are 
given a multiset of integers  ∶= {𝑖1, 𝑖2, … , 𝑖𝑛} and a target integer 𝑆 . The goal is to find a subset of  with a sum of 𝑆 .

Consider the following question in the weighted packet selection for a link problem: “is the cost below a given value?” We show 
this question is NP-hard.

We set the constants to 𝑚 = 0 and 𝑓 = 3
4 . We create a packet sequence consisting of 𝑖1, 𝑖2, … , 𝑖𝑛 where the 𝑗th packet in the 

sequence has weight 𝑖𝑗 which is the 𝑗th element in . These packets all go from left to right. Then we add a packet of weight 𝑆 going 
from right to left.

Suppose that there exists ′ ⊆ , such that 
∑
𝑗∈′ 𝑖𝑗 = 𝑆 . Then we show that the cost is at most 14𝑆 + 3

4
∑
𝑗∈ 𝑖𝑗 .

The solution reaching that cost is as follows: nodes start with capacity 𝑆 on the right and accept all packets from ′ and then 
accept the last packet of weight 𝑆 . The cost is then 𝑆 + 3

4
∑
𝑗∈⧵′ 𝑖𝑗 . Since 

∑
𝑗∈′ 𝑖𝑗 = 𝑆 , the bound holds.

Now, suppose that there is no subset of  summing to 𝑆 . Let  ⊆  be any set with sum 𝐴. We follow the same procedure as 
described above by starting with 𝐴 capacity on the right and accept all packets from . The cost for the packets going from left to 
right is 𝐴 + 3

4
∑
𝑗∈⧵ 𝑖𝑗 =

1
4𝐴 + 3

4
∑
𝑗∈ 𝑖𝑗 . Depending on whether 𝐴 < 𝑆 or 𝐴 > 𝑆 , the last packet of size 𝑆 can be either accepted 

or rejected. Thus, we need to add min(max(𝑆 −𝐴, 0), 34𝑆) to the overall cost, which represents either the additional capacity cost of 
“topping up” the initial capacity of 𝐴 on the right side by 𝑆 − 𝐴 such that we can accept the last packet, or the additional cost of 
rejecting the last packet 𝑆 , whichever is smaller. Since 𝐴 ≠ 𝑆 , we know that

1
4
𝐴+ 3

4
∑
𝑗∈

𝑖𝑗 +min(max(𝑆 −𝐴,0), 3
4
𝑆) > 1

4
𝑆 + 3

4
∑
𝑗∈

𝑖𝑗

Rearranging, we get min(max(𝑆 −𝐴, 0), 34𝑆) >
1
4 (𝑆 −𝐴), which means that weighted packet selection for a link is NP-hard. □

6. Extensions

We highlight two natural and interesting directions to generalise our approach from a link to a network.

6.1. Cyclic redistribution of capacity to reduce cost

Suppose node 𝑢 on link (𝑢, 𝑣) is incident to ≥ 2 links (let us call one of the incident links (𝑢, 𝑤)). From our definition of rechargeable 
links (see Section 1), we know it is not possible for 𝑢 to increase the capacity on the (𝑢, 𝑣) link by transferring excess capacity from 
(𝑢, 𝑤). However, if (𝑢, 𝑣) and (𝑢, 𝑤) are part of a larger cycle in the network, 𝑢 can send excess capacity from link to link in a cyclic 
fashion starting from the (𝑢, 𝑤) link and ending at (𝑢, 𝑣) while maintaining the invariant that the total capacity on each link as well 
as the sum of all the capacities of a node on their incident links remains the same. This can be done at any point in time without the 
need to transfer packets. We call this cyclic redistribution (note that this is possible on payment channel networks [12,13,5] and is 
known as rebalancing) and illustrate it with an example in Fig. 2. In some situations, especially if the cost of closing and recreating 
9

a link is extremely large, the possibility of cheaply shifting capacities in cycles can reduce the overall cost to nodes in the network.
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Fig. 2. The graph on the left depicts three nodes 𝑢, 𝑣, 𝑤 connected in a cycle. The numbers by each link close to a node represent the capacity of a node in a certain 
link. 𝑢 can increase their capacity by 10 on the (𝑢, 𝑣) link by first sending the excess capacity of 10 to 𝑤 along the (𝑢, 𝑤) link. Then 𝑤 sends the excess capacity of 10
to 𝑣 along (𝑤, 𝑣). Finally, 𝑣 sends capacity of 10 back to 𝑢 along (𝑣, 𝑢). The graph on the right depicts the updated capacities of each node on each link after cyclic 
redistribution.

Let us denote the cost of decreasing capacities by 𝑥 on the right and increasing it by 𝑥 on the left using cyclic redistribution by 
𝐶(𝑓𝑥 +𝑚) for some 𝐶 ≥ 1 (one can view 𝐶 as a function of the length of the cycle one sends the capacities along).

Here, we sketch an approximation algorithm that solves the weighted packet selection for a link problem with the possibility of 
cyclic redistribution. Note that our sketch is not precise, we simply modify Algorithm 2 where we assume the constants are already 
optimised for the basic problem.

We modify the linear program by adding variables 𝑜𝑖, 𝑖 ∈ [𝑡] with constraints 0 ≤ 𝑜𝑖 ≤𝑀 . The variable 𝑜𝑖 denotes the capacity 
that was shifted from one side to the other before the algorithm processes packet 𝑥𝑖. We also modify the capacity constraints in the 
following way (for the case where 𝑥𝑖−1 ∈𝑋← and 𝑥𝑖 ∈𝑋←): 𝑆𝐿,𝑖 = 𝑆𝐿,𝑖−1 − 𝑜𝑖 + 𝑦𝑖−1 and 𝑆𝑅,𝑖 = 𝑆𝑅,𝑖−1 + 𝑜𝑖 − 𝑦𝑖−1. We change the 
signs of variables for the other cases. Finally, we add 

∑
𝑖 𝐶(𝑓𝑜𝑖 +

𝑜𝑖

𝑀
𝑚) to the objective in Eq. (1).

We divide the algorithm into epochs. We sum all 𝑜𝑖 in the current epoch. If the sum is above 1
1+

√
3
𝑀 we perform cyclic distribution 

if needed and start a new epoch. Note that in the current epoch, the optimal algorithm already paid at least 𝐶𝑓 𝑀+𝑚
1+

√
3
, so, we can 

move 𝑀 capacity, incurring a cost at most 1 +
√
3 times bigger than the optimal algorithm for cyclic redistribution.

To deal with capacity changes inside each epoch, we increase 𝑅𝐿 and 𝑅𝑅. We initialise them in a way that they absorb changes of 
capacity in the first epoch of our algorithm. After an epoch, we reset them by cyclic redistribution such that they absorb changes of 
capacity in the next. The increase in 𝑅𝐿 and 𝑅𝑅 is at most 1

1+
√
3
𝑀 . These changes increase the approximation ratio of our algorithm 

from 1 +
√
3 to 1 +

√
3 + 1

1+
√
3
, which is 1+3

√
3

2 .

6.2. Going from a link to a general network

Here we show how to extend the weighted packet selection problem from a single link to a general network. We begin by 
describing the problem for a general network.

Weighted packet selection for general graph The input to the problem is a general graph 𝐺 = (𝑉 , 𝐸) where each link in the graph is 
rechargeable, and an ordered sequence of packet requests 𝑋𝑡 = ((𝑥1, 𝑝1), … (𝑥𝑡, 𝑝𝑡)). 𝑥𝑖 ∈ℝ+ denotes the weight of the 𝑖th packet and 
𝑝𝑖 represents the directed path through the graph that the 𝑖th packet needs to be routed though. The actions and costs per node are 
the same as described in Section 1 for the weighted packet selection for a link problem. As in the case of the problem confined to a 
single link, the goal in this setting is also to optimise over the entire graph. That is, the goal is for involved nodes to collaboratively 
decide on the initial capacity and distribution for all involved links as well as which packets to accept or to reject, so as to minimise 
the total rejection and capacity costs.

Solution where there are few long paths We now present a simple solution in the case where the input only contains a few packets that 
have to be routed over multiple links. We first observe that if a packet has to be routed through a path with length > 1, the packet 
has to be accepted or rejected by all the links in its routing path. Let us call a packet long if it needs to pass through more than one 
link.

Thus far, we showed an approximation algorithm that solves the problem if all packets only go through a single link. Suppose we 
are given the situation where we can bound the number of long packets, say by 𝓁. Given a network and packet sequence for which 
we know only 𝓁 are long, we can approximate the extended problem with approximation ratio (1 + 𝜀)(1 +

√
3) in time 2𝓁 times the 

time needed for the problem confined to a single link by simply trying to accept all subsets of paths of long packets. If the packet is 
accepted or rejected, we can reflect it in the linear program by requiring 𝑦𝑖 = 𝑥𝑖. Then Algorithm 2 surely accepts this packet and the 
condition that the packet needs to be accepted by all links it passes through is satisfied.

Heuristic for general graphs We now describe a heuristic for the general case where the input sequence may contain many packets 
that have to be routed over multiple links. In particular, some links can be used in more than 1 routing path.

The idea of the algorithm for the general case is as follows:

– We create and solve a linear program similar to the one defined in Section 3.2. Compared to the linear program on a single link, 
this new linear program returns how much a packet should be accepted (the fractional solution, output of the linear program) 
10

on the whole path.
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– Having the linear program solution for the whole graph, we look only at decisions inside a single (arbitrary) link 𝓁 and use 
Algorithm 2. This gives us decisions for packets going through 𝓁.

– Respecting the decisions on 𝓁, we solve the problem recursively (link 𝓁 is removed).

Our approach does not give any theoretical guarantees, only that the decisions on a link 𝓁 are a (1 +
√
3)- approximation while 

respecting the previous decisions. We believe this opens an exciting avenue for future work.

7. Conclusion

We initiated the study of weighted packet selection over a rechargable capacitated link, a natural algorithmic problem e.g., 
describing the routing of financial transactions in cryptocurrency networks. We showed that this problem is NP-hard and provided a 
constant factor approximation algorithm.

We understand our work is a first step, and believe that it opens several interesting avenues for future research. In particular, 
it remains to find a matching lower bound for the achievable approximation ratio, and to study the performance of our algorithm 
in practice. More generally, it would be interesting to deepen the study of the relationship between the current weighted packet 
selection problem, and the online version of the problem, a direction proposed by [6], and also and explore competitive algorithms. 
This version of the problem, when extended to a network, can be seen as a novel version of the classic online call admission 
problem [3].
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