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ISMAEL: Using Machine Learning To Predict
Acceptance of Virtual Clusters in Data Centers

Johannes Zerwas, Patrick Kalmbach, Stefan Schmid, and Andreas Blenk

Abstract—Existing virtual network admission control algo-
rithms targeting high utilization of data center infrastructure
are computationally expensive or provide poor performance.
In particular, existing algorithms have in common that they
are oblivious to the past, i.e., requests are handled in a fire-
and-forget manner, not taking into account information from
previously solved instances. This can be inefficient and misses
out on a basic optimization opportunity: as for any network
optimization algorithm that faces repeating problem instances,
it may be beneficial to learn from network states and the
outcome of acceptance decisions of the past. In this paper, we
propose ISMAEL, a Machine Learning framework for predicting
the acceptance of Virtual Clusters, one of the most common
virtual network abstractions in data centers. ISMAEL can be
configured with, and learn from, different existing algorithms by
combining fixed-size feature representations for graphs with a
Convolutional Neural Network or a Fully Connected Deep Neural
Network. We report on extensive simulations, which demonstrate
that it is possible to mimic existing, computationally-intensive
admission control algorithms with an accuracy of up to 94 %,
while significantly reducing runtime.

Index Terms—Data Center Resource Management, Virtual
Cluster, Admission Control, Machine Learning.

I. INTRODUCTION

The Objective: High Data Center Utilization. The ongoing
migration of service and application providers to the cloud
promises cost savings through resource sharing and economies
of scale. However, it introduces a risk of interference, es-
pecially regarding network resources, which can negatively
affect application performance [1]. Network virtualization al-
lows to remove this risk of unpredictable cloud application
performance by guaranteeing performance isolation: virtual
network abstractions provide resource reservations (on both
nodes and links). However, a predictable performance can
only be guaranteed to individual users of multi-tenant data
centers if the admitted requests do not exceed the amount of
available physical resources. In other words, a smart admission
control algorithm is needed. Indeed, deciding on which virtual
network requests to admit and embed is a difficult algorithmic
problem. Especially under high demands (the desired mode
of operation of expensive infrastructure), admission control is
crucial: a smart admission control algorithm can lead to signif-
icantly higher utilization than the common “accept-whenever-
it-fits” policy. Surprisingly, only little is known today on
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Fig. 1: The challenge of admission control: existing simulation-based algo-
rithms providing high-quality solutions (high utilization and hence, profit),
have a high decision delay. The shown values are averaged over 30k decisions
made by the admission control algorithms. Greedy is fast but has low
utilization. AHAB [2] has high utilization but suffers from large delay. ISMAEL
combines small decision delay with high resource utilization.

how to design efficient admission control for the network
virtualization scenario.
The Problem: High Computational Effort. Deciding which
virtual networks to accept and embed is computationally
challenging: as the embedding problem is generally hard [3],
it is already difficult to estimate the resulting resource cost.
Also recent approaches, which perform what-if analyses to
make predictions using simulations [2], while providing good
solutions, still come at a high runtime cost: an open problem
in prior work [2] (Fig. 1).
Our Idea: Learning From Algorithm Data. This paper
shows that high-quality admission control and low runtime are
not contradictory goals in practice. In particular, we argue that
Monte-Carlo Tree Search-based approaches such as AHAB [2]
can greatly benefit from Machine Learning (ML), speeding up
decisions without sacrificing quality. This is motivated by the
hypothesis that the behavior of such algorithms is likely to
have clear patterns when the scenario does not change much.
This facilitates prediction models, making expensive simu-
lations obsolete, and consequently speeds up the admission
control process.

Accordingly, we propose an ML approach, ISMAEL, which
is motivated by the key observation that while repeatedly
solving admission control and embedding problems, network
algorithms create a valuable source of knowledge: the prob-
lem and solution data generated over time [4]. Having seen
enough data and being well-trained, ISMAEL can even make
the original admission control algorithm obsolete. Although
gathering and training data might increase the computational
effort in the beginning, this pays off in the long run: we will
show that in the long run computation resources are saved.
The Challenges: Data Representation and Machine-
Learning Pipeline Design. Designing an ML-based system
such as ISMAEL is non-trivial and involves many challenges,
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regarding data gathering, data representation, learning model
selection and design, classification algorithm selection etc.
The available data for an ML algorithm comprises, e.g., the
current substrate (data center) state and the current virtual
network request. Generally, an ML algorithm needs to make
an acceptance decision for a request based on the current
utilization of the substrate’s resources and the given request.
Just a simple representation for a substrate can already contain
several thousands of servers (i.e., features) when considering
common sizes of today’s data center networks [5], [6]. Hence,
expressive representations are needed that make it possible
for an ML algorithm to carry out the best decision. Moreover,
algorithm selection, i.e., which classifier to choose, and con-
figuration problems are still inherent to ML pipeline designs.
Accordingly, human domain and expert knowledge is usually
needed to make design choices due to the complex task of fully
constructing end-to-end ML-based architectures for enhancing
(networking) algorithms.
Contributions in this paper are:
• The design of an ML framework, ISMAEL, to learn the

behavior of admission control algorithms, which includes
ML pipeline design like feature engineering and algo-
rithm selection. As a case study, we focus on Virtual
Clusters (VC) [7], a common virtual network abstraction.

• A comprehensive evaluation and comparison. In particu-
lar, we propose different representations of substrate and
VC states as inputs for ML classifiers. The representations
differ in size and complexity. We then report on extensive
simulations and provide guidelines for selecting the best
data representation and ML classifier. We also provide
an analysis of how the classifier behaves compared to the
original algorithm, and report on problems and challenges
when combining different ML concepts.

• A proof-of-concept implementation. We configure IS-
MAEL with a state-of-the-art algorithm [8] which derives
a fixed-size deep-learning representation from graphs and
report on our insights of this case study.

As a contribution to the community and in order to al-
low researchers to reproduce our results, we will make our
C++/Python-based simulator implementing our embedding
and admission control algorithms publicly available with the
acceptance of this paper.1

Structure of this paper. Section II puts our work into perspec-
tive and reviews related work from different areas. Section III
introduces VC abstraction and presents our model. Section IV
presents our ML-based decision pipeline for speeding up
admission control decisions for VCs. Section V reports on
the results of our simulations. Section VI draws conclusion
and sketches potential future work.

II. RELATED WORK

This section identifies and summarizes four different areas
of related work: admission control in general, ML for admis-
sion control, ML for combinatorial optimization problems, and
how ML helps or even solves completely network optimization
problems.

1https://github.com/tum-lkn/vc-simulator

A. Call Admission Control

Classicly, Call Admission Control (CAC) has been studied
in the context of wireless/cellular or ATM networks. In this
scenario, users request “lines” by making calls which must
be served by the network. There exist many heuristic algo-
rithms for this problem, and also ML has been applied, e.g.,
leveraging Supervised Learning (SL) methods [9]–[13] for
estimation of performance metrics or Reinforcement Learning
(RL) for admission policy optimization [14]–[16]. Bashar et
al. [12] give a concrete example for an SL approach. They
compare the performance of Neural Networks and Bayesian
Networks to estimate Quality of Service metrics, such as delay
or packet loss, that are used as input to the CAC algorithm.
Marbach et al. [14] implement an RL approach to solve the
CAC problem in a multi-service class network. The works
of this category differ from our work as they do not aim
at learning admission decisions from an existing algorithm,
but support admission control algorithms by predicting input
data. Furthermore, they differ in structure and complexity of
the requests which are single connections instead of more
complex structures such as VCs, and their allocation. The
request and the substrate have only a single resource dimension
(bandwidth). The multi-resource scenario in our work requires
a more thorough approach of data representation and learning
problem formulation.

B. Admission Control for Virtual Network Embedding

Admission control has also been studied for virtual net-
works: Virtual Networks (VNs) are a generalization of the
VC abstraction that imposes less structural constraints on the
requests. Most of the existing works in this area consider the
online scenario where requests arrive over time and propose
heuristic [17], [18] or approximate solutions [19], [20]. Nejad
et al. [21] consider the scenario of batch arrivals. They
propose an admission control for chains of virtual network
functions that increases the network performance over time
by jointly optimizing admission control and embedding using
Mixed Integer Linear Programs. In [18], another VN admission
control scheme is proposed. The main objective is the number
of accepted high priority VN requests. Based on knowledge
about potential future arrivals the algorithm decides to drop
embedded low priority requests to free resources for future
high priority requests. In contrast to our work, both approaches
consider increasing the performance of the embedding, they
address different scenarios, e.g., the offline problem and re-
quests with different priorities and allow eviction, and do not
consider ML techniques to speed up the decision process.

AHAB [2] is an admission control algorithm that is evaluated
with VCs and serves as a baseline of our work. AHAB aims at
maximizing the utilization of the substrate over time. To do so,
it evaluates the impact of an arriving request on future arrivals
using a Monte-Carlo Tree Search approach. Upon arrival of
a VC, AHAB generates potential future VCs and using sim-
ulations, evaluates if acceptance of the arrived VC increases
resource utilization. It yields good performance in terms of
resource utilization but suffers from high computational effort
to make admission decisions.
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A first admission control system for VNs that leverages
ML techniques is proposed in [22]. Since Virtual Network
Embedding (VNE) in general is an NP-hard problem [3], the
goal is to reduce the computational effort in cases where the
VN is infeasible. The system uses a Recurrent Neural Network
to learn from past runs of VN embedding algorithms and
to predict if a VN request is feasible on the current state
of the substrate. Requests that are predicted to be feasible
are forwarded to the embedding algorithm, the others are
rejected. However, the admission control here does not aim at
maximizing the revenue or resource utilization of the substrate
over time.

Beside ML for admission control in the context of VNE, we
also see ML for (network) optimization problems as related
to our work: the problems might rely on, e.g., deep graph
representations. Hence, we also comprehensively summarize
work which might potentially integrate similar mechanisms as
we do for admission control.

C. Machine Learning for Optimization Problems

The technological evolution of computing hardware and the
ability to make use of large-scale cloud resources enabled
numerous breakthroughs in ML, like deep learning. This also
advanced the application areas of ML, e.g., to combinatorial
optimization problems. Bello et al. [23] propose a framework
that uses neural networks and RL to solve combinatorial
optimization problems like the traveling salesman and the
knapsack problem. In particular, they show for the traveling
salesman problem how a Recurrent Neural Network can pre-
dict a distribution over cities, i.e., finding the most likely route.

Dai et al. [24] ask whether it is possible to automate the
challenging task of designing good heuristics or approximation
algorithms for hard-to-be-solved optimization problems. They
argue that in the real-world, similar optimization problems are
repeatedly solved creating valuable amount of data which can
be exploited by RL. The learned greedy algorithm can solve
a wide range of problems: minimum vertex cover, maximum
cut, and traveling salesman problem.

Li et al. [25] perform combinatorial optimization using
Graph Convolutional Network (GCN) and guided tree search.
The basic idea is to estimate the likelihood that a node is
part of the solution using the GCN which then guides the
tree search towards the solution. The authors show that their
approach is applicable to different canonical NP-hard problems
and outperforms state-of-the-art solvers.

While the previous papers [23]–[25] are examples on how
ML can directly solve optimization problems, Hutter et al. [26]
address the configuration of solvers for mathematical problems
with an ML framework. The framework auto-tunes the param-
eters of solvers to speed-up the execution time when solving
exact algorithms. Rachelson et al. [27] predict the outcomes
of binary variables of a Mixed Integer Program based on past
outcomes to reduce the runtime of the solver.

All these examples demonstrate that ML can either solve
optimization problems entirely or help speeding up existing
algorithms. Nevertheless, there are still many shortcomings:
e.g., many solved problems were either small scale or they
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Fig. 2: Illustration of substrate and VC. The numbers on the links represent
either the available uplink bandwidth of the entity in case of the substrate or
the requested bandwidth in case of the VC. The number of the boxes illustrate
the computational capacities, four in case of the substrate (a) hosts, and the
requested capacity, two for each of the six VMs of the VC (b).

were not addressing details of real system models, i.e., the
problem models were rather abstract. In order to deepen
the modeling level when applying the ideas and concepts to
networking, expert knowledge is still needed.

D. Machine Learning for Network Optimization Problems

Applying ML to networked and distributed systems is
generally not new. To name a few exemplary studies, Gao and
Jamidar [28] deployed a Neural Network that learned from
operational data to predict plant performance, which helped
improving the energy consumption of Google’s data centers.

Winstein et al. [29] initiated the study of data-driven design
for developing RemyCC, a TCP congestion control algorithm.
Recent publications extended this idea. The authors of [30],
[31] demonstrated the feasibility of online learning-based and
pure data-driven TCP (or more abstract congestion control
in general) design. In the context of resource management
of cloud networks, DeepRM [32] is a system that learns to
schedule data center tasks from experience.

To the best of our knowledge, ISMAEL, is the first proposal
to leverage ML on algorithm generated data to improve
both the performance and efficiency of admission control
algorithms.

III. MODEL AND PRELIMINARIES

This section presents our setting and the necessary prelim-
inaries. We introduce the VC admission control problem.

A. Virtual Cluster and Substrate

We consider the problem of admitting and embedding vir-
tual networks (i.e., VCs) on a given physical network (i.e., the
substrate). We define the substrate and virtual networks in turn.
The mathematical names and conventions are summarized in
Table I for the substrate and in Table II for the VCs.
Substrate. We consider tree-like substrates C hosting VCs,
e.g., a Fat-Tree [33], a common data center architecture today
(cf. Fig. 2). A set of pods P is connected via core switches.
A set of racks R is distributed among the pods P, i.e., each
pod contains a subset of racks R ′ ∈ R. The racks connect via
their Top-of-Rack (ToR) switches to the aggregation switches
of the pods. The set of hosts H is distributed among the racks
R, i.e., each rack contains a subset of hosts H ′ ∈ H which
are connected via the ToR.
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TABLE I: Notation and abbreviations for substrate.

Symbol Description

C Substrate with a tree-like topology
H Set of hosts of substrate C
R Set of racks of substrate C
P Set of pods of substrate C
E Set of all edges interconnecting the hosts with the

ToR switches, the ToR switches with the aggregation
switches, and the aggregation switches with the core
switches

π A subset of links constituting a path connecting hosts
in the substrate C

CU Compute unit: Abstract unit to measure computation
requirements or capacity

BU Bandwidth unit: Abstract unit to measure bandwidth
requirements or capacity

CU/BUfree(x) Free resources BU/CU of x ∈ H, x ∈ R or x ∈ P
in the substrate C

CU/BUtotal(x) Total resources BU/CU of x ∈ H, x ∈ R or x ∈ P
in the substrate C

UplinkBUfree(x) Free resources BU on up-link of x ∈ H, x ∈ R or
x ∈ P in the substrate C. = 0 if x ∈ H.

We differentiate between two types of abstract resources:
bandwidth units BU ∈ N and compute units CU ∈ N. For
BU and CU, each network entity x (either host, rack or pod)
has a total capacity determined by BU/CUtotal(x) and a re-
maining capacity determined by BU/CUfree(x). The bandwidths
of the links of the aggregation levels equal the accumulated
bandwidths of the corresponding child nodes: for instance, for
each rack R ∈ R, the total capacity BUtotal(R) of the uplink
of rack R is equal to the sum of capacities of the uplinks of
the hosts BUtotal(h), with h ∈ R. UplinkBUfree(x) returns the
free resources on the uplink of a network entity (H,R,P). For
x ∈ H , it returns 0 as for this entity the resources on the uplink
are already described by BUfree(x). Similarly to [7], [34], we
approximate the Fat-Tree by a simple tree. The simplified Fat-
Tree depicted in Fig. 2(a) consists of two pods, containing two
racks each; there are two hosts per rack. A host has a capacity
of 4 CUs and the hosts’ link capacities are 6 BUs. The links
on aggregation and core level have capacities of 12 BUs and
24 BUs respectively.
Virtual Cluster. Using the VC abstraction [7] customers
are able to specify their computation and communica-
tion requirements separately. A VC is a quadruple VC =
(VMVC,EVC,CUVM(VC),BUVM(VC)), where VMVC and EVC

describe the set of Virtual Machines (VM) and edges, respec-
tively, and CU/BUVM(VC) yield the demanded capacities. Note
that we assume symmetric capacity demands. All VMs are of
the same computational size CUVM(VC), and are connected
to a virtual switch at bandwidth BUVM(VC). For instance, the
VC in Fig. 2(b) requests 6 VMs with a size of 2 CUs and a
bandwidth of 2 BUs between the VMs and the virtual switch.

B. Virtual Cluster Embedding Problem

The VC embedding problem describes the situation where
an operator has to embed a VC to its infrastructure. According
to the preceding definitions, the physical resources of the

TABLE II: Notation and abbreviations for virtual cluster request.

Symbol Description

VC A virtual cluster request defined as a tuple, i.e., VC =
(VMVC, EVC, CUVM(VC), BUVM(VC)).

VMVC Set of VMs of a VC request VC ∈ VC
EVC Set of virtual edges interconnecting all virtual ma-

chines with the virtual switch of a VC
#VM(VC) Number of VMs that a request has, i.e., #VM(VC) =

|VMVC |

CU/BUVM(VC) BU/CU demand per VM of a VC request VC ∈ VC

TABLE III: Notation and abbreviations of metrics and sets used within the
VC problem.

Symbol Description

VC Set of all VC requests arrived over time, containing both
accepted (i.e., also embedded) and rejected requests

VCAcc Set of all VC requests accepted and embedded over time
VCRej Set of all rejected VC requests
VCFea Set of all feasible requests, independent of whether a request

was accepted or rejected
VCInf Set of all infeasible requests, independent of whether a request

was accepted or rejected

environment are constrained; similar, the VC request might
constitute resource demands. Under these conditions, the op-
erator is faced with the problem to find a valid embedding
where all requested VMs are placed on physical machines
with enough available computational capacities. Moreover, all
VMs need to be interconnected with enough link bandwidth
to make a valid embedding of a VC request. To accomplish a
valid embedding for a VC, the task is to find a valid mapping
for VMs and the interconnecting links:

mapVM : VMVC →H (1)

mapEVC : EVC → π(E) (2)

Moreover, computational and bandwidth resource constraints
need to be satisfied, i.e.,

CUfree(h) ≥
∑

v∈VMVC ∧ mapVM(v)=h

CUVM(VC), ∀h ∈ H (3)

BUfree(e) ≥
∑

e′∈EVC ∧ e∈mapEVC (e
′)

BUVM(VC), ∀e ∈ E, (4)

where a host must provide enough computational resources to
embed one up to many (maximal #VM(VC)) VMs of a request;
simultaneously, all links need to provide enough residual
capacities to host the bandwidth of the virtual links. Note that
multiple VMs can be hosted on one host; vice versa multiple
virtual links can share the same physical edge. The equations
(1)-(4) must be fulfilled for a valid embedding; otherwise a
request cannot be embedded.

C. Virtual Cluster Embedding with Admission Control

In the online version of the VC embedding problem, op-
erators face requests arriving and leaving the infrastructure
over time. In order to define the admission control procedure
precisely, we need additional definitions to classify the set



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2927291, IEEE
Transactions on Network and Service Management

5

Problem
Instance

Expensive
Admission Control

Admission
Decision

Graph
Representationcollect collect

Problem
Instance

Graph
Representation

Machine
Learning

Admission
Decision

Learn from solutions

Fig. 3: The proposed ML architecture as presented in [4] is extended by the
graph representations and applied to the admission control problem within
VCs. The ML components now use graph representations for learning as
input: either to make a decision or when learning from the problem solutions.

of virtual clusters VC that arrived over time (additionally
summarized in Table III).
Greedy-acceptance: A first naive solution is to perform
greedy admission control: in a greedy acceptance strategy,
every request will be embedded if feasible: VCAcc = VC and
VCRej = ∅. Note again that requests that cannot be embedded
are classified as VCInf and the accepted and embedded
requests are defined by VCAcc ∩ VCFea. However, such a
strategy might lead to a sub-optimal substrate utilization over
time: for instance, a larger virtual request being embedded
with high resource consumption (the VM instances are not
colocated in the same racks or pods), might potentially block
many subsequently arriving smaller requests. Accordingly, the
greedy decision to accept a request with high-footprint results
in an overall low substrate utilization over time.
Non-greedy-acceptance: The VC embedding problem with
admission control is, thus, defined as the problem to find a
strategy that accepts or rejects VC requests in a clever way,
e.g., to increase the overall substrate utilization which is given
by the sum of CUs of the accepted and feasible VCs:

max
VCAcc

1
CUtotal(C)

∑
VC∈VCAcc∩VCFea

CUVM(VC) · #VM(VC). (5)

Accordingly, a potentially more sophisticated admission con-
trol strategy also rejects requests leading to |VCRej | ≥ 0.
For comprehensiveness, the offline variant of this problem
describes a situation with n requests given, out of which
potentially a subset of requests has to be chosen to maximize
the substrate utilization over time. As a consequence, a non-
greedy strategy leads to a set of rejected requests contain-
ing actually both feasible and infeasible requests: VCRej ⊆
(VCFea ∪VCInf). An optimal admission control strategy will
produce a set of accepted requests that (1) only contain feasible
requests, i.e., VCAcc ⊂ VCFea which (2) additionally lead,
e.g., to the highest possible substrate utilization over time.

IV. ISMAEL: A MACHINE-LEARNING PIPELINE FOR
SPEEDING UP ADMISSION CONTROL ALGORITHMS

We now present our solution, ISMAEL: a framework for
admission control which achieves both high utilization and
low runtime. ISMAEL is based on a ML pipeline that aims
to speed up admission control algorithms. First, the general

Substrate

VC Request

System

RAWSUBSTRATEVC

RAWVC

HISTOGRAM

PATCHY-SAN

Data Rep-
resentation

FCN

CNN

ETC

LR

Classifier

Accept

Reject

Control
Decision

Fig. 4: Overview of ISMAEL’s ML-based admission control framework. The
system can be split into two components: substrate and VC request. Four ML-
readable inputs are available: RAWSUBSTRATEVC, RAWVC, HISTOGRAM,
and PATCHY-SAN. Four different classifiers are implemented to work with
the different data representations: Fully Connected Deep Neural Network
(FCN), Convolutional Neural Network (CNN), Extra Trees Classifier (ETC)
and Logistic Regression (LR). ISMAEL makes predictions about the control
decisions to accept or reject a VC request.

approach of ISMAEL is elaborated. Detailed explanations of
data representation and classification follow.

A. Key Idea: Learning from the Past

With each decision of the admission control (whether to
admit or not), data is generated and can be collected over
time resulting in a large amount of data for further use (upper
part of Fig. 3). Examples of such data are the state of the
substrate network, which contains the usage of the resources
and the currently embedded VCs with their embeddings, the
attributes of the arriving VC, the values of the embedding
performance metrics that the admission control obtained so
far and the decision made by admission control algorithm.

Following the data-driven paradigm and similar to recent
work [4], [22], ISMAEL uses collected tuples of substrate state,
arriving VC and corresponding decision in order to mimic
the strategy of AHAB by training a binary classifier. The
specific classification task that ISMAEL tackles, is whether
a new VC should be accepted given the current state of
the substrate. Eventually, ISMAEL can replace AHAB in an
online scenario, offering less computational effort at runtime
and faster decision times (lower part of Fig. 3). AHAB is an
example here for a computation intensive algorithm. However,
ISMAEL can replace other admission control algorithms as
well. ISMAEL has a modular structure as Fig. 4 illustrates.
Its components are explained in the following.

B. Data Representation Strategy

One of the major challenges for learning the behavior of
AHAB is to adopt a meaningful representation of the system’s
state and the arriving VC. There are a plethora of possible
representations that need to be selected and parameterized. Not
wisely selecting an efficient representation can result in the
curse of dimensionality [35]. In ML research, many represen-
tations for graphs have been proposed [36], [37], out of which
we select PATCHY-SAN [8] due to its efficiency. Moreover, we
develop three other domain specific representations of different
complexity that leverage observations from the performance
analysis of AHAB [2] (RAWVC, RAWSUBSTRATEVC, HIS-
TOGRAM). Since AHAB is agnostic to requests’ lifetimes
and temporal patterns, none of the proposed representations
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Fig. 5: Comparison between data representations: RAWVC, RAWSUBSTRAT-
EVC, HISTOGRAM and PATCHY-SAN.

Algorithm 1 Data Representation: RAWSUBSTRATEVC

Input: Substrate C, Arriving VC VC
1: Initialize S ∈ R3·( |H |+ |R |+ |P |)+3

2: idx = 0
3: for n ∈ H ∪ R ∪ P do
4: S [idx] = CUfree(n), S [idx + 1] = BUfree(n), S [idx +

2] = UplinkBUfree(n)
5: idx+ = 3
6: S [idx] = #VM(VC), S [idx+1] = CUVM(VC), S [idx+2] =
BUVM(VC)

7: return S

considers the lifetime of the requests or the temporal utilization
of physical resources. We leave this to future work.

1) RAWVC: As the simplest approach, we consider a
data representation which captures only the arriving VC.
With this representation, we want to answer the question
whether VC attributes are enough for an admission control to
make good decisions. The RAWVC representation (Fig. 5(a))
only consists of the three attributes of the arriving VC
#VM(VC),CUVM(VC),BUVM(VC). This results in the feature
vector

S = [#VM(VC),CUVM(VC),BUVM(VC)] ∈ R
3 (6)

with a fixed size of |S| = 3.
2) RAWSUBSTRATEVC: A more complex approach to

represent the system is to collect all resource utilizations
in the substrate C. The feature vector S consists of three
parts that represent the hosts, racks and pods (Fig. 5(b)).

Algorithm 2 Data Representation: HISTOGRAM

Input: Substrate C, Arriving VC VC, N :=bins for #VM,
S :=bins for CUVM(VC), B :=bins for BUVM(VC)

1: Initialize SC ∈ R |N |× |S |× |B |

2: for vc ∈ VCemb(C) do
3: Get bin iN , iS, iB for #VM(vc),CUVM(vc),BUVM(vc)
4: S [iN , iS, iB]+ = 1

|VCemb (C) |

5: Initialize SVC ∈ R
|N |× |S |× |B |

6: Get bin iN , iS, iB for #VM(VC),CUVM(VC),BUVM(VC)
7: SVC [iN , iS, iB]+ = 1
8: return S = [SC, SVC]

Algorithm 1 shows the procedure for the RAWSUBSTRATEVC
representation. After initializing the feature vector S (line 1),
the algorithm iterates over every node in the substrate and
collects three values that describe the resource utilization of
a node (lines 3-5). The first value is the number of available
CUs in the entity the node represents (CUfree(n)). For a host,
this simply means the number of available CUs. For racks and
pods, the number of available CUs are accumulated over the
hosts contained in this entity. The representation employs an
analogous approach for the second value (BUfree(n)), the num-
ber of available BUs per node, i.e., host, rack or pod. The third
value (UplinkBUfree(n)) describes the number of available
BUs on the up-link (the link to the parent node) of the entity.
For hosts, this value is already considered by the previous
value and therefore UplinkBUfree(n) = 0,∀n ∈ H . As this
information is not yet present for racks and pods, it is added to
the feature vector. Finally, the arriving VC is added with plain
numbers of the attributes, i.e., #VM(VC),CUVM(VC),BUVM(VC)
(line 6). The size of this representation depends only on the
size of the substrate and is calculated as

|S| =

(
k3

4
+

k2

2
+ k

)
· 3 + 3 (7)

where k is the Fat-Tree construction number.
3) HISTOGRAM: The evaluation in [2] points out that

AHAB favors requests with certain characteristics - with large
CUVM(VC) compared to bandwidth requirement (BUVM(VC)) -
and identifies a distinct pattern. This motivates the use of the
VC attributes #VM(VC), CUVM(VC), BUVM(VC) to categorize
the currently embedded VCs and in addition to the arriving
request as in case of RAWVC. The HISTOGRAM representation
implements this idea. The result is a tensor that contains two
3D-histograms: one for the set of embedded VCs and one
for the arriving VC as Fig. 5(c) illustrates. Algorithm 2 lists
the procedure to create these histograms. It iterates over all
allocated VCs and increments the values of the corresponding
bins (lines 2-4). Note that the histogram for the arriving request
contains only zeros but is one for the bin that corresponds to
the attributes of the arriving VC (lines 6f).

Parameters of this representation are the number and size
of the bins for each of the VC’s attributes. They determine the
size of the feature vector as

|S| = 2 · (Total number of bins) . (8)
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Algorithm 3 Data Representation: PATCHY-SAN

Input: Substrate C, Arriving VC VC, num. receptive fields w,
size of receptive fields k, stride s

1: Initialize S ∈ R3·k ·w+3

2: N = {R,H,P} where each subset R,H,P is sorted by
CUfree(n)

3: i = 1, j = 1, idx = 0
4: while j < w do
5: V ← neighborhood of size k for node N[i] sorted by

CUfree(n)
6: for n ∈ V do
7: S [idx] = CUfree(n), S [idx+1] = BUfree(n), S [idx+

2] = UplinkBUfree(n)
8: idx = idx + 3
9: i = i + s, j = j + 1

10: S [idx] = #VM(VC), S [idx+1] = CUVM(VC), S [idx+2] =
BUVM(VC)

11: return S

4) PATCHY-SAN-based: This representation implements
the approach of Niepert et al. called PATCHY-SAN [8].
PATCHY-SAN is a powerful framework to create fixed size
representations of attributed graphs that are suited for the use
with Convolutional Neural Networks (CNN). CNNs exploit
spatial locality of features by connecting only a subset of the
input to a successive layer. By stacking multiple such layers a
CNN first learns local features that become more global with
depth. In our scenario, local features can correspond to the
resource utilization of racks or pods.

CNNs were originally designed for images and cannot
directly be applied to arbitrary graphs [8]. PATCHY-SAN
addresses this issue by transforming the graph into a fixed-size
structure that can be consumed by a CNN. To fill the requested
number of receptive fields w with the corresponding size k, the
algorithm samples a sequence of w nodes from the graph using
a labeling (and ranking) procedure. For each of the w nodes
in the sequence, a neighborhood containing k nodes is created
using the same labeling procedure. The features of each of
these nodes serve as the values of the different channels c of
the pixels of the receptive fields. For graphs with less than
k nodes, the receptive fields are padded with zeros to obtain
again k · w · c values.

Algorithm 3 sketches how we match the PATCHY-SAN
approach to the VC admission control scenario (for more
details on PATCHY-SAN see [8]). As for the RAWSUBSTRAT-
EVC representation we consider every host, rack and pod
as one node of our graph. PATCHY-SAN selects a sub-set
of these nodes and also rearranges the values in the feature
vector making the representation more suitable for CNNs and
reducing the symmetries that are introduced by the regular
structure of the substrate’s topology. To cover as many levels
as possible from our tree topology, we sort these nodes in a
way such that the racks occur first, followed by hosts and pods
(line 2). The intuition behind the racks first approach is that
constructing a one hop neighborhood from the racks adds hosts
and pods to the single receptive fields. Among nodes of the
same type, i.e., hosts, racks and pods, they are sorted according

to the number of available CUs (CUfree(n)). This ensures that
mainly those nodes are added to the feature vector that have
a high number of available resources.

As stated before, for every node that is chosen from the
sorted list, a neighborhood of size k is constructed starting
with the hosts that are immediate neighbors (line 5). For
every node in this neighborhood, the amount of available
resources extracted and added to the feature vector similar
to the procedure for the RAWSUBSTRATEVC representation,
i.e., the number of available CUs within the node (CUfree(n)),
the available BUs within the node (BUfree(n)) and the available
BUs on the uplink (UplinkBUfree(n)) (lines 6-8). The stride
parameter s determines how many nodes in N are skipped
before creating the next neighborhood.

Fig. 5(d) illustrates an example of one receptive field of
size 4 and one resource dimension (channel). The rightmost
node (green) is the rack that is selected and the remaining
three nodes constitute the neighborhood. The next two pixels
(pink) denote the two hosts of the rack while the last pixel
(blue) represents the pod of the rack. Increasing the number
of receptive fields results in concatenating multiple of these
groups of pixels for different racks.

As for the RAWSUBSTRATEVC representation, the arriv-
ing request is represented by the three attributes #VM(VC),
CUVM(VC), BUVM(VC) (line 10). The size of the modified
PATCHY-SAN depends on the parameters k,w:

|S| = 3 · k · w + 3. (9)

Although PATCHY-SAN is specifically tailored for use with
CNNs, we also apply other classifiers to this representations.

C. Classifiers and Decision

The ISMAEL framework can work with several types of
classifiers. We compare four classifiers: a Fully Connected
Deep Neural Network (FCN), a CNN, an ExtraTrees Classifier
(ETC) [38] and Logistic Regression (LR). All of them can be
fed with the different data representations. The outputs of the
classifiers are the probabilities of accepting and rejecting the
request. The request is rejected if the probability of rejecting
preject is larger than the probability of accepting paccept , i.e.,

re ject =

{
1, preject ≥ paccept

0, else.
(10)

When using FCN, ETC and LR, all elements of the data
representation are directly fed to the classifier. In case of the
CNN and PATCHY-SAN or RAWSUBSTRATEVC, the feature
vector is split into the part that represents the substrate and
the part that represents the arriving VC (Fig. 6). The substrate
is encoded by convolutional layers of the network, while the
VC part skips these layers and is directly connected to the
dense layers of the CNN (cf. [39]).

V. EVALUATION

In the following, we report on our simulation setup (Sec-
tion V-A) and our main results. We start with an assessment
of the accuracy of different classifiers and data representation
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Substrate

VC Request

PATCHY
SAN

Convolutional Layers

Fully Connected
Layer

Softmax
Layer

paccept

pre ject

Convolutional Neural Network

Fig. 6: Example for a complete pipeline realization within ISMAEL: The
substrate is put into PATCHY-SAN, which forwards the transformed data to
the input of the convolutional neural network. The VC request bypasses the
convolutional layers and is directly fed into the fully connected layer of the
CNN architecture. The fully connected layer is connected to the softmax
output layer providing the two probabilities: one for accept and one for reject.

types (Section V-B). Afterwards, we compare the online per-
formance of ISMAEL with a greedy admission control strategy
and AHAB (Section V-C1). Finally, we vary the scenario
to evaluate whether ISMAEL’s performance generalizes to
scenarios it has not been trained for (Section V-C2 and V-C3).

A. Training & Evaluation Setup

Substrate. The substrate C is a three-layer Fat-Tree with
parameter k = 12, resulting in 432 hosts in total. A host has a
compute capacity of 8 CUs and 8 BUs on the connecting link
which leads to a total of 3 456 CUs available in the substrate.
The links between the ToR switches and the aggregation
switches and the links between the aggregation switches and
the core are not oversubscribed, i.e., the links from ToR to
aggregation switches have 48BUs and those from aggregation
to core switches have 288BUs.
Virtual Cluster Requests. The VCs arrive according to a
Poisson process with an arrival rate λ and discrete arrival
times with a fixed spacing of 1 time unit, i.e., we use the
Poisson process to determine the number of requests that
arrive per time instance. Although multiple requests arrive at
the same time, they are handled one-by-one by the admission
control. The requests have geometrically distributed durations
(µ = 15), such that they induce a system load level of 200%
(λ = 4). This load creates the possibility for the admission
control to actually perform a selection of requests that are most
valuable and also results in ≈ 50% of the VCs being accepted
by AHAB, i.e., does not require balancing the data [4]. If
not stated otherwise, the attributes of the VCs are uniformly
distributed. #VM(VC) is sampled from the interval [3,60] while
CUVM(VC) and BUVM(VC) are from {1,2,4,8}. All outcomes
are sampled independently. To collect samples for training the
classifiers, we perform 200 runs with 1000 arriving VCs and
use AHAB with 20 sequences of 15 requests to perform the
admission control. For evaluation, the values are aggregated
over 30 runs different from those that provide the samples.
Data Representations. The HISTOGRAM uses the following
bin configuration: For CUVM(VC) and BUVM(VC), there is
one bin per potential value, i.e., the bins’ boundaries are
{0.5,1.5,2.5,4.5,8.5}. For #VM(VC), ten bins with the bound-

aries {3,9,15,21,27,33,39,45,51,57,63} are used to cover
the whole range of potential values and provide sufficient
granularity. PATCHY-SAN is configured to create w = 12
receptive fields of size k = 4 such that 48 nodes in total are
selected, a decrease in state size by a factor of ≈ 10 compared
to RAWSUBSTRATEVC. As we grow the neighborhoods from
racks, the selected nodes contain at least 12 racks, which,
in empty state, provide enough resources to allocate the
largest possible requests from the generation process. The
stride is set to s = 2. The RAWSUBSTRATEVC and RAWVC
representations do not have any parameters.
Classifier. We compare the four classifiers LR, ETC, FCN and
CNN. The LR is fitted using the L2-norm for regularization
and a regularization strength of C = 10. For the ETC [38], 500
trees are generated. The impurity within a node is measured by
the GINI index based on at most 20 features that are selected
to perform the split calculations.

FCN and CNN are both trained using the ADAM [40]
optimizer with its default parametrization (β1 = 0.9, β2 =
0.999, ε = 10−8). The learning rate is 0.001 and we execute
100 epochs with mini-batch size of 128 over the samples.
The FCN consists of two hidden layers with 160 and 40
neurons respectively and rectified linear units (ReLU) as
activation functions. The outputs are obtained using a two
neuron softmax layer. We experienced that the usage of two
output neurons results in a better performance. An intuition is,
that the neural network has to learn to maximize the one output
and minimize the other, as opposed to maximizing only one
output. This can provide additional training signals that lead
to a better performance. A detailed evaluation of the network
architecture is omitted due to space constraints. To make the
training more robust and reduce overfitting, we use a dropout
probability of pdropout = 0.3. The structure of the CNN is
based on [41]. The first convolutional layer has 16 filters of
size 8 and applies a stride of 4. The second convolutional layer
consists of 32 filters of size 4 and uses stride 2. The third layer
is fully connected (256 neurons) and again the output is given
by a two neuron softmax layer.

All activation functions are ReLUs and dropout of
pdropout = 0.3 is applied during training. Note that for the
RAWVC representation, the CNN only consists of a fully
connected layer due to the skip layer architecture. As this is
basically the structure of the FCN classifier, we train only the
FCN, ETC and LR with RAWVC.
Metrics. Various works [42], [43] have used the acceptance
ratio of VC embeddings in order to measure its performance.
This metric, however, can be biased towards algorithms that
accept a large number of small requests instead of few big
ones. This, however, might not result in an efficient cluster
utilization. Therefore, the first objective of this analysis is the
maximization of the used CUs in the substrate (CU utilization,
cf. Eq. (5)). We calculate this in every time-step of a simu-
lation run. One sample in our evaluation corresponds to one
simulation run and is computed by averaging over all samples
of a run after removing transient phases.

In order to also investigate the efficiency in terms of network
footprint, the minimization of the footprint of the embedded
VCs F(VC) is evaluated. The footprint of a VC is the amount
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TABLE IV: Training duration in seconds for different classifiers, data
representations and amount of samples. RAWSUBSTRATEVC consumes most
time for all classifiers and CNN takes longest for all representations.

LR ETC FCN CNN
Num. samples 200k 26k 200k 26k 200k 26k 200k 26k

RAWSUBSTRATEVC 185 25 380 34 766 93 2332 275
HISTOGRAM 2.76 0.2 909 111 227 37 1458 175
PATCHY-SAN 9 1.2 166 16 172 23 471 63

of bandwidth that is reserved on the physical links for this VC
(see Fuerst et al. [34]). For instance, the VC in Fig. 2 occupies
three empty hosts. The optimal embedding fills up one rack
and uses one host of another rack. Bandwidth reservations are
made on 5 physical links and F(VC) = 20.
Baseline Algorithms. The online performance evaluation
compares ISMAEL to the greedy admission control (GRD) and
AHAB. AHAB runs 20 sequences of 15 requests to collect
data for the decision. All VC embeddings are performed
using KRAKEN [34] which renders embeddings with minimal
footprint given the state of the substrate. KRAKEN builds
on the fact that given the location of the virtual switch, the
VMs can be allocated greedily. It iterates over all potential
locations of the virtual switch and selects that allocation with
the minimal footprint. This results in a runtime which is
roughly linear with the size of the substrate. For more detailed
information and proofs the reader is referred to [34].

B. Classifier Performance and Learning Data Analysis

First we want to assess, how the classifiers and data repre-
sentations perform and how much learning data is required to
obtain good prediction qualities. As the dataset is balanced and
both mis-classifications, falsely accepting and falsely rejecting
a request, can harm the overall objective in a similar way, we
focus on the accuracy as main performance indicator.

Generally, the training times for all classifiers and configu-
rations were below one hour as Table IV shows. Most time was
consumed when using the RAWSUBSTRATEVC representation.
Using less samples reduces the training duration but must
be traded-off against the performance of the classifiers and
representation that is evaluated in the following. Fig. 7 shows
the impact of the number of samples used during the training
process on the prediction accuracy on the test set for RAWVC,
RAWSUBSTRATEVC, HISTOGRAM and PATCHY-SAN. The
accuracy of the classifiers with RAWVC is not affected by
the number of samples and is almost constant at ≈ 0.81 for
FCN and ETC and 0.72 for LR. For RAWSUBSTRATEVC
(Fig. 7(b)), the obtained accuracy values range from 0.65 to
0.92 and we observe an improvement for FCN, CNN and
LR. ETC however, stagnates around 0.65. The performance
using the HISTOGRAM representation (Fig. 7(c)) is only little
affected by the number of samples. Already with 6k samples,
an accuracy > 0.65 is achieved by all classifiers, and they all
perform similarly. For PATCHY-SAN (Fig. 7(d)), LR achieves
≈ 78% accuracy and is insensitive to the number of samples
in the shown range. The other three classifiers benefit from
more samples and improve their performance to an accuracy
of 0.94 for CNN and FCN with 200k samples. ETC achieves
slightly lower performance around 0.9. RAWSUBSTRATEVC

and PATCHY-SAN obtain similar accuracy with FCN and CNN
around 0.94.

Comparing the number of required training samples to
obtain such a high accuracy shows that PATCHY-SAN achieves
an accuracy > 0.9 using only a fraction of the samples that
RAWSUBSTRATEVC requires. More specifically, training the
FCN with PATCHY-SAN and 6k samples already provides
an accuracy > 0.9 while training with RAWSUBSTRATEVC
requires > 100k samples to reach this value. Thus, PATCHY-
SAN significantly decreases the computational effort for learn-
ing compared to the RAWSUBSTRATEVC and additionally,
obtains slightly higher classification performance. An expla-
nation for this improvement is found in the sizes of the
data representations. With the given substrate configuration,
RAWSUBSTRATEVC has a size of 1551 hence has a larger
state space than PATCHY-SAN which has a size of 147.
Consequently, RAWSUBSTRATEVC requires a larger number
of samples to sufficiently cover the state space. Furthermore,
in comparison to PATCHY-SAN, RAWSUBSTRATEVC does not
sort the nodes and by this does not reduce symmetries of the
states. The reduction of symmetry however, would shrink the
state space and thereby further reduce the amount of samples
required for sufficient coverage.

For the impact of the data representation on the performance
of a classifier, we observe that FCN and CNN obtain the best
performance with RAWSUBSTRATEVC and PATCHY-SAN.
ETC performs best with PATCHY-SAN. Only LR performs
best when using HISTOGRAM but achieves only an accuracy
of about 0.81. The RAWVC representation leads to the worst
results for all classifiers except for ETC which is worst with
RAWSUBSTRATEVC. This indicates, that information about
substrate state is generally leveraged by the classifiers and
hence useful for better performance.

To understand why the behavior is different in the case
of ETC, we consider the feature importance derived from it.
Fig. 8 shows the mean values of obtained feature importances
over all trees in the ETC of the 20 most important features
for RAWSUBSTRATEVC, HISTOGRAM and PATCHY-SAN. The
values on the abscissa represent the position of the feature
in the feature vector. The results for HISTOGRAM on one
hand and RAWSUBSTRATEVC and PATCHY-SAN on the other
hand differ significantly. For the former one, the importance
of the features slowly decreases. This illustrates that many
features are evenly important. In contrast to this, there is
a significant dominance of three features in the case of
RAWSUBSTRATEVC and PATCHY-SAN. The feature numbers
indicate that these features represent the attributes of the arriv-
ing VC request. The worse performance of ETC for RAWSUB-
STRATEVC is thus counter-intuitive, since conceptually more
information is available in RAWSUBSTRATEVC compared
to PATCHY-SAN. The ETC cannot easily use this additional
information, since it does not learn a data transformation that
could allow it to capture the necessary information, in contrast
to the other approaches. The ETC has to separate between
accept and reject solely by combining the presented features.
Since the size of RAWSUBSTRATEVC is very large, the ETC
cannot extract rules that are predictive for the outcome of
a specific request. The variance in the substrate features is
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Fig. 7: Offline comparison of accuracy for different classifier configurations against the number of samples. Sub-figures compare the data representation types.
Training with > 150k samples obtains best results.
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Fig. 8: Feature importance of ETC. Figures show the top 20 features by their index in the feature vector. Bars indicate mean values and standard deviation
over all trees in the ETC. For RAWSUBSTRATEVC and PATCHY-SAN, the features with the highest indices, i.e., at the end of the vector, represent the arriving
VC (1548 − 1550 for RAWSUBSTRATEVC, 144 − 146 for PATCHY-SAN). In both cases, these features show a strong dominance over the substrate related
features.

too large, since there are too many possibilities in which a
request could be accepted or rejected. The substrate features
in RAWSUBSTRATEVC thus act as noise variables, which have
a detrimental effect on model performance [44].

In summary, the number of training samples has an impact
on the performance of the classifiers. The strength of this im-
pact varies depending on the data representation and the classi-
fier. This allows to choose a combination of classifier and data
representation that trades off performance of ISMAEL against
the computational effort for training. In the evaluated scenario,
the best classification performance is achieved with PATCHY-
SAN and FCN. Moreover, the previous analysis demonstrates
that adding substrate state information is beneficial to the
classifiers performance. Therefore, we omit the analysis of the
RAWVC representation in the following.

C. Online Performance Analysis

Analysis of the classifiers’ performance gives already first
insights on the potential of ISMAEL. As we expect that
decisions have an immediate impact on the states the system
transitions into and wrong decisions may lead to degradation
of the CU utilization over time, we evaluate now the perfor-
mance of ISMAEL in an online setting. The analysis focuses on
three aspects. First, we compare the performance of ISMAEL
to that of GRD and AHAB using the same scenario as for
the training data generation. Later, ISMAEL is stressed with
different scenarios to check how it generalizes to scenarios
with larger substrates and different request distributions.

1) Can ISMAEL keep up with resource-intensive simulation-
based approaches?: Fig. 9 visualizes the VC embedding
performance metrics for GRD, AHAB and ISMAEL with all

classifiers and data representations. The bars indicate the mean
value with the corresponding 95% confidence interval.

Fig. 9(a) shows CU utilization. AHAB obtains a mean value
of 0.87. For ISMAEL, the mean CU utilization varies with the
used data representation. All combinations of data represen-
tation and classifier outperform GRD except RAWSUBSTRAT-
EVC in combination with ETC as already observed in the
offline analysis. This combination achieves by far the lowest
performance at the level of GRD. The difference between
other classifiers with RAWSUBSTRATEVC, HISTOGRAM and
PATCHY-SAN and is smaller. For FCN, CNN and LR, RAW-
SUBSTRATEVC and PATCHY-SAN obtain the same substrate
utilization. Moreover, PATCHY-SAN reaches the performance
of AHAB with FCN, ETC and CNN while HISTOGRAM misses
0.02− 0.05 to reach AHAB. These observations coincide with
those from Sec. V-B, i.e., CNN and FCN with PATCHY-SAN
have the most accurate adoption of AHAB’s behavior.

To shed light into why the combinations with LR and ETC
with RAWSUBSTRATEVC perform worse, we consider the ob-
tained acceptance ratios (Fig. 9(b)) and the number of concur-
rently embedded requests (Fig. 9(d)). In particular for RAW-
SUBSTRATEVC with ETC and LR, ISMAEL accepts slightly
more VCs than AHAB and attains acceptance ratios around
0.58 compared to 0.5. Also for the number of concurrently
embedded VCs, we observe higher that RAWSUBSTRATEVC
results in higher average values around 29 compared to 25
for AHAB and ISMAEL with the other data representations.
This means that ISMAEL, favors small requests more than
AHAB, as both use KRAKEN as embedding algorithm and
yield embeddings with minimal footprints.

Fig. 10 shows heatmaps of the acceptance ratios separated
by the attributes of the arriving VC for AHAB and ISMAEL
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Fig. 9: Online performance comparison between GRD, AHAB and ISMAEL for all classifiers. The sub-figures show results for CU utilization, acceptance ratio,
the average weighted footprint of a VC and the number of concurrently allocated VCs. The bars show the mean values with the 95% confidence intervals.
ISMAEL with neural network and PATCHY-SAN achieves CU utilization close to AHAB.
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Fig. 10: Comparison of online acceptance ratio separated by VC attributes. The pixel of a heatmaps shows the value for the corresponding group of VCs.
Sub-figures compare AHAB to ISMAEL with RAWSUBSTRATEVC, HISTOGRAM and PATCHY-SAN as data representations. Classifier is FCN. In all cases, the
major acceptance pattern of AHAB is adopted.

with the different data representations. The results are obtained
using FCN. AHAB demonstrates a strong preference for VCs
with CUVM(VC)

BUVM(VC)
> 1 as almost all VCs where the number

of requested CUs is smaller than the number of requested
BUs per VM are rejected (Fig. 10(a), white-dashed rectangle).
For ISMAEL, all data representations employ a very similar
acceptance behavior (Fig. 10(b,c,d)) but show generally higher
acceptance ratios for requests with BUVM(VC) < 2 and
CUVM(VC) < 2, for instance in the regions indicated by the
red-dashed rectangles. Thus, ISMAEL with FCN filters bad
requests and obtains similar performance as AHAB.

To visualize how ISMAEL reduces the computational effort,
Fig. 11 shows the average fractions of requests in a simulation
run split by the result of classification and embedding. The
lower part of a bar (blue) indicates how many requests are
rejected by ISMAEL, i.e., where the expensive embedding
algorithm is never called (VCRej). The middle part (green)
shows the requests that ISMAEL accepts but are not feasible
(VCAcc ∩VCInf). These are requests which are misclassified
and lead to unnecessary calculation of an embedding. Lastly,
the upper part (brown) are the admitted and successfully
allocated requests (VCAcc ∩ VCFea). Here, the call of the
embedding algorithm is necessary and beneficial. As already
seen by the acceptance ratio (Fig. 9(b)), this part makes
approximately 50% of the requests. The potential for saving
computations compared to GRD and AHAB is limited to the
remaining part involving the infeasible and rejected requests.

For all combinations of classifiers and data representations,
we observe that ISMAEL rejects more than 15% of the re-
quests (lowest value from Fig. 11(a), RAWSUBSTRATEVC
with ETC). Consequently for our settings, simulation runs
of 1000 requests, ISMAEL determines in the worst case 850

embeddings while already GRD determines one embedding
per arriving request, i.e., 1000 embeddings per run. AHAB
determines with the used configuration up to 600k embeddings
per simulation run.2 Thus, even with the worst combination
of classifier and data representation the online computational
effort of admission control can be significantly reduced. Com-
paring the data representation and classifiers more in detail
reveals that choosing ISMAEL’s configuration more wisely
reduces the computational effort even further. Again RAW-
SUBSTRATEVC with ETC yields the worst results. But RAW-
SUBSTRATEVC with FCN reduces the calculated embeddings
per run to 500 for 1000 arriving requests. HISTOGRAM reduces
this number for combinations by at least 40% and PATCHY-
SAN in combination with CNN, FCN or ETC reduces the
number of falsely accepted requests to almost 0. In these cases,
embeddings are only determined for VCs that are allocated,
i.e., the computational effort is reduced to a minimum which
pays off the initial training effort in the long run. In addition
to reducing the overall computational effort, ISMAEL also
provides smaller decision delays which in turn enables a more
agile operation of the system. Fig. 12 shows the cumulative
distribution function of the decision delay comparing AHAB
and ISMAEL with FCN and PATCHY-SAN. ISMAEL provides
delays two magnitudes smaller than AHAB. Moreover, for the
latter one, the decision delay varies with the runtime of the
embedding algorithm while ISMAEL’s delay is independent
of that. The decision delay with ISMAEL varies only little
for ≥ 99% of the arriving requests while we observe strong
variations in case of AHAB.

2For every request, AHAB runs 2 · 20 sequences with each 15 arriving
requests, i.e., embeddings
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Fig. 11: Actions performed by GRD, AHAB and ISMAEL(CNN,FCN,ETC,LR) on arriving requests.
The bars show the average fraction of requests per simulation that are rejected by the classifier (blue),
forwarded to the embedding algorithm but infeasible (green) and successfully allocated (brown). CNN
and FCN in combination with PATCHY-SAN minimize the number of determined embeddings most.
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Fig. 12: Empirical CDF of the decision delay of
AHAB and ISMAEL(FCN, PATCHY-SAN) on arriving
requests. ISMAEL provides more stable and signifi-
cantly smaller decision delays than AHAB.

The results show that ISMAEL can outperform the VC
embedding solutions without admission control, and is able
to obtain the performance of AHAB. It reduces the online
computational effort and delay of decision making in com-
parison to AHAB. On the other hand, the ISMAEL requires
some effort to train the classifiers. So it might be beneficial
to re-use classifiers for multiple scenarios.

2) Does ISMAEL generalize to larger substrates?: Next,
we assess the question whether the previously trained and
evaluated classifiers perform well in a larger scenario, i.e.,
whether ISMAEL generalizes to scenarios with substrate sizes
it has not been trained for. The data representations HIS-
TOGRAM and PATCHY-SAN provide feature vector sizes that
are independent of the size of the substrate while the size
of RAWSUBSTRATEVC depends on the size of the substrate.
Thus, with the latter one, classifiers cannot be reused to derive
decisions on substrates with different sizes. Therefore, we
evaluate how classifiers that were trained using HISTOGRAM
and PATCHY-SAN on samples from a substrate with 432 hosts
perform on a larger substrate with 1024 hosts (Fat-Tree with
k = 16). The resources per host remain constant (8CUs, 8BUs).
Further, we fix the VC generation process but increase the
arrival rate to maintain the offered system load at ≈ 200%.

Fig. 13 shows mean values and 95% confidence intervals
of the performance metrics. In contrast to Fig. 9, there is
a significant difference when comparing HISTOGRAM and
PATCHY-SAN. PATCHY-SAN obtains for all classifiers but LR
a performance similar to that of AHAB while HISTOGRAM
only reaches the utilization of GRD when using LR. Ad-
ditionally with HISTOGRAM, the size of the confidence in-
tervals increases. The HISTOGRAM representation does not
cover the actual resource utilization of the substrate. With the
larger substrate, in total more requests can be allocated. With
HISTOGRAM however, the classifiers mimics the pattern of
acceptance ratios for the case of the smaller substrate. Thus,
in this case, ISMAEL rejects VCs although a sufficient amount
of resources is available. In contrast, PATCHY-SAN encodes the
actual substrate resources. Furthermore, PATCHY-SAN always
returns the nodes with most remaining resources and thereby
pre-filters the state space for the classifier rendering it invariant
to varying substrate sizes. It adapts to situations where more
resources are available. As a consequence, ISMAEL with
PATCHY-SAN uses the additional resources and obtains the
same substrate utilization as AHAB. Thus, using PATCHY-SAN,

ISMAEL can generalize to scenarios with larger substrates.
3) Does ISMAEL generalize to other request distributions?:

Another dimension of generalization are the distributions of
the attributes of the VCs. Up to now, the evaluation considers
uniform distributions within each of the VC attributes. This is
not a realistic setting as shown by analyses of traces from
Google [45] and Microsoft [46]. Accordingly, we evaluate
now whether ISMAEL can use the classifiers trained with the
uniform distribution set to infer decisions when the requests
are generated using a more skewed distribution set similar to
those mentioned in [45] and [46]. The number of requested
VMs #VM(VC) is exponentially distributed with mean 20 in
the interval [3,60]. CUVM(VC) and BUVM(VC) both follow a
discrete distribution with P(1) = 0.45,P(2) = 0.3,P(4) =
0.2,P(8) = 0.05. Consequently, more small requests arrive
while the probability for a very large request is low.

Fig. 14 visualizes the comparison of all classifiers and data
representations to GRD and AHAB for acceptance ratio and
CU utilization. Regarding the CU utilization, all combinations
achieve values at least as good as GRD. RAWSUBSTRATEVC
and PATCHY-SAN match the performance of AHAB with FCN
and CNN. For HISTOGRAM, the performance with ETC and
LR is better than with CNN and FCN, achieving utilizations
of 0.96 which is higher than AHAB with 0.94. Analyzing the
acceptance patterns in this scenario however, explains why this
situation occurs and uncovers a weakness of AHAB (Fig. 15).

The main difference in the behavior of AHAB and ISMAEL
is the rejection of requests with CUVM(VC)

BUVM(VC)
< 1. Focusing on the

requests with BUVM(VC) = 8, ISMAEL with HISTOGRAM and
ETC rejects all requests with CUVM(VC) < 8 and #VM > 9
while AHAB accepts some of them. This group of requests
is generally not beneficial for the substrate utilization as it
imposes high costs in terms of occupied bandwidth. However,
depending on the specific request sequences that AHAB eval-
uates they might be accepted in some cases (Fig. 15(a)). Since
it is trained on uniform request distributions (cf. Fig. 10),
ISMAEL rejects these requests more rigidly (Fig. 15, white-
dashed rectangles) and as a consequence, can accept more
small requests, e.g., with BUVM(VC) = 1, that are more
beneficial and fill the cluster more tightly. The result is a
higher overall substrate utilization. Similar observations hold
for ISMAEL with PATCHY-SAN and FCN.

In conclusion, ISMAEL is able to generalize from uniform
request distributions towards skewed ones as they appear
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Fig. 13: Online performance comparison between GRD, AHAB and ISMAEL for all classifiers and data representations on scenarios with a larger substrate.
The sub-figures show results for CU utilization, acceptance ratio, the average weighted footprint of a VC and the number of concurrently allocated VCs. The
bars show the mean values with the 95% confidence intervals. PATCHY-SAN enables the classifiers to perform well also in scenarios with larger substrates.
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Fig. 14: Online performance comparison between GRD, AHAB and ISMAEL
for all classifiers and data representations on scenarios with skewed request
generation. The sub-figures show results for CU utilization and acceptance
ratio. The bars show the mean values with the 95% confidence intervals.
ISMAEL can reach and even outperform AHAB also in scenarios with different
request distributions.
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Fig. 15: Comparison of online acceptance ratio separated by VC attributes.
The pixel of a heatmaps shows the value for the corresponding group of
VCs. Sub-figures compare AHAB to ISMAEL with HISTOGRAM and ETC.
HISTOGRAM with ETC rejects large requests more strictly which results in
higher acceptance of small requests compared to AHAB.

in data center traces. Furthermore, the evaluation of this
scenario shows that although it significantly improves upon
greedy admission control, AHAB still leaves room for further
improvement, i.e., increase of the physical resource utilization.

VI. FUTURE WORK

Admission control is an essential component in any sce-
nario where infrastructure is shared and where a predictable
performance is required. While optimized admission control
decisions are important to ensure a high profit and utilization,
the underlying algorithmic problems are hard. Hence, fast
solutions are likely to result in suboptimal decisions. Our work
opens a new perspective on this seemingly inherent quality-
efficiency trade-off, by leveraging the experience from past
admission decisions using ML techniques like deep learning.

We believe that this also reveals several interesting direc-
tions for future research. While our proof-of-concept already
shows promising results, optimizations can be performed along
several dimensions. For example, it will be interesting to
build on the data representations that ISMAEL provides to
integrate Reinforcement Learning and develop more tailored
admission policies. More generally, we believe that the ideas
underlying ISMAEL are of more general interest, not only for
other fundamental admission control problems, but also for
other network algorithms solving hard problems repeatedly.
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