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Abstract—Interference constitutes a major challenge to avail-
ability for communication networks operating over a shared
medium. This article proposes the medium access (MAC) protocol
ANTIJAM which achieves a high and fair throughput even in
harsh environments. Our protocol mitigates internal interference,
requiring no knowledge about the number of participants in the
network. It is also robust to intentional and unintentional external
interference, e.g., due to coexisting networks or jammers. We
model external interference using a powerful reactive adversary
who can jam a (1−ε)-portion of the time steps, where 0 < ε ≤ 1
is an arbitrary constant. The adversary uses carrier sensing
to make informed decisions on when it is most harmful to
disrupt communications. Moreover, we allow the adversary to
be adaptive and to have complete knowledge of the entire
protocol history. ANTIJAM makes efficient use of the non-jammed
time periods and achieves, if ε is constant, a Θ(1)-competitive
throughput. In addition, ANTIJAM features a low convergence
time and has excellent fairness properties, such that channel
access probabilities do not differ among nodes by more than a
small constant factor.

I. INTRODUCTION

Disruptions of communications over a shared medium due
to interference—intentional, or not—are a central challenge
to wireless computing. It is well-known that simple jamming
attacks—requiring no special hardware—constitute a threat
for the widely used IEEE 802.11 MAC protocol. Due to the
problem’s relevance, there has been a significant effort to
cope with such disruption problems, both from industry and
academia. Accordingly, much progress has been made over
the last years on how to deal with different jammer secnarios.

This article presents a very robust medium access (MAC)
protocol, ANTIJAM that makes effective use of the few and
arbitrarily distributed time periods whenever the wireless
medium is available. We model the external interference (due
to co-located networks, jamming, etc.) as an adversary, simply
called the jammer.1

In contrast to related protocols which are robust to simple
oblivious adversaries, this article makes an important step
forward and studies MAC protocols against “smart” adver-
saries, i.e., robust to more complex forms of interference.
In particular, our adversary may behave in an adaptive and

1Note, however, that our notion of adversary is intended (and limited
to) describe arbitrary and worst-case patterns of external interference. In
particular, our adversary does not try to capture any kind of malicious or
Byzantine behavior, and cannot perform, e.g., insider attacks with additional
information. The study of such malicious adversaries is complementary work,
beyond the scope of this article.

reactive manner: adaptive in the sense that the decisions on
whether to jam at a certain moment in time can depend on the
protocol history; and reactive in the sense that the adversary
can perform physical carrier sensing (which is also part of the
802.11 standard) to learn whether the channel is currently idle
or not, and jam the medium depending on these measurements.

Note, the study of reactive jamming is relevant beyond
purely adversarial contexts. Interactions between spatially co-
located networks may appear as a reactive “jamming” when
“interference” happens during idle time periods: the nodes
in co-located networks are likely to transmit if there are no
ongoing transmissions in the other networks. Furthermore,
transmissions from co-located networks during idle time peri-
ods constitute a non-trivial challenge to many MAC protocols
whose operation and states depend on the idle time periods.

A. Related Work

Many MAC layer strategies have been devised to resolve
unintentional and malicious interference in the literature, in-
cluding coding strategies (e.g., [5]), channel surfing and spatial
retreat (e.g., [1], [21]), or mechanisms to hide messages from a
jammer, evade its search, and reduce the impact of corrupted
messages (e.g., [20]). These methods however, do not help
against an adaptive jammer with full information about the
history of the protocol, which we consider in our work. An in-
teresting related approach is used in IdleSense [12], a variation
of the 802.11 Distributed Coordination Function: in IdleSense,
all nodes use similar values of the contention window to
achieve good short-term access fairness. The synchronization
is achieved via monitoring the number of idle slots between
transmission attempts to dynamically control the contention.
Although simulations indicate a high throughput, no formal
bounds are derived.

In the theory community, work on MAC protocols has
mostly focused on efficiency. Many of these protocols are
random backoff protocols (e.g., [4], [6], [7], [11], [16]) that
do not take jamming activity into account and are not robust
against it (see [2] for more details). Some theoretical work on
jamming is known, however (e.g., [8] for a short overview)
and there are two basic approaches in the literature. The first
assumes randomly corrupted messages (e.g. [15]), which is
much easier to handle than adaptive adversarial jamming [3].
The second line of work either bounds the number of messages
that the adversary can transmit or disrupt with a limited energy
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budget (e.g. [10], [13]), or bounds the number of channels the
adversary can jam (e.g. [9], [14]). The protocols in, e.g., [13]
can tackle adversarial jamming at both the MAC and network
layers, where the adversary may not only jam the channel
but also introduce malicious (fake) messages (possibly with
address spoofing). However, these solutions depend on the fact
that the adversarial jamming budget is finite, so it is not clear
whether the protocols would work under heavy continuous
jamming. (The result in Theorem 1 of [10] upper bounds
the adversary’s capability of disrupting communications with
a budget of β messages, and then shows that the proposed
protocol needs at least 2β rounds to terminate, which implies
a jamming rate below 0.5. The handshaking mechanism in [13]
requires an even lower jamming rate, because the faulty nodes
can cause nc collisions and ns rounds of address spoofing,
while the number of rounds needed to have a message suc-
cessfully broadcasted is at least 2nc + ns.)

Our work is motivated by the results in [3] and [2]. In [3] it
is shown that an adaptive jammer can dramatically reduce the
throughput of the standard MAC protocol used in IEEE 802.11
with only limited energy cost on the adversary side. Awerbuch
et al. [2] initiated the study of throughput-competitive MAC
protocols under continuously running, adaptive jammers, and
presented a protocol that achieves a high performance under
adaptive jamming.

In this article, we extend the model and result from [2] in
two crucial ways. (1) We allow the jammer to be reactive,
i.e., to listen to the current channel state in order to make
smarter jamming decisions. Note that a reactive model is not
only meaningful in the context of jamming: for example, in
many MAC protocols based on carrier sensing, nodes become
active during idle time periods and hence, a MAC protocol
in the reactive model also performs well in scenarios with
co-located networks. (2) We design a fair protocol in the
sense that channel access probabilities among nodes do not
differ by more than a small constant factor. The protocol
in [2] is inherently unfair, as confirmed by our theoretical
and simulation results. We believe that the reactive jammer
model is much more realistic and hence that our study is of
practical importance. For example, by sensing the channel,
the adversary may avoid wasting energy by not jamming idle
rounds. Note however that depending on the protocol, it may
still make sense for the adversary to jam idle rounds, e.g., to
influence the protocol execution.

The problem becomes significantly more challenging than
the nonreactive version, due to the large number of possible
strategies a jammer can pursue. First, the analysis is more
involved as the nodes’ aggregate sending probability varies in a
larger range depending on the adversarial strategy. Technically,
the reactive jamming renders it impossible to apply Chernoff
bounds over the non-jammed time periods as their patterns
are no longer random; rather, we have to argue over all
time periods. Second, modifications to the protocol in [2]
are needed. For instance, the ANTIJAM protocol seeks to
synchronize the nodes’ sending probabilities; this has the
desirable side effect of achieving fairness: all nodes are
basically granted the same channel access probabilities, which
greatly improves the unfair protocol of [2]. While our formal

analysis confirms our expectations that the overall throughput
under reactive jammers is lower than the throughput obtainable
against nonreactive jammers, we are still able to prove a
constant-competitive performance (for constant ε), which is
also confirmed by our simulation study. Finally, our first
insights indicate that ANTIJAM-like strategies can also be used
in multi-hop settings (see also the recent extension of [2] to
unit disk graphs [17]) and to devise robust applications such
as leader election protocols [18].

B. Model

We study a wireless network that consists of n cooperative
and reliable simple wireless devices (e.g., sensor nodes) that
are within the transmission range of each other and which
communicate over a single frequency (or a limited, narrow
frequency band). We assume a back-logged scenario where
the nodes continuously contend for sending a packet on the
wireless channel. A node may either transmit a message or
sense the channel at a time step, but it cannot do both, and
there is no immediate feedback mechanism telling a node
whether its transmission was successful. A node sensing the
channel may either (i) sense an idle channel (in case no other
node is transmitting at that time), (ii) sense a busy channel
(in case two or more nodes transmit at the time step), or (iii)
receive a packet (in case exactly one node transmits at the
time step).

n number of nodes
T time window of adversary
N N = max{T, n}
ε adversary leaves εT time steps non-jammed
γ common parameter to adapt nodes’ access probabilities
pv node v’s access probability
cv counter variable used to keep track of time steps
Tv node v’s estimation of T
p̂ maximum individual node access probability
p aggregate probabilities of the network
pt(v) node v’s probability at time step t
pt aggregate probabilities at time step t
I′ subframe used to analyze the protocol
f size of I′

I a time frame consisting of a polylogarithmic number of I′

F size of I
k number of useful time steps in I′

k0 number of idle time steps in I′

k1 number of time steps in I′ with a successful transmission
k′1 successful transmission with different sender
k2 number of times aggregate probability decreased
k3 number of times pass started at initial step
g number of non-jammed time steps

TABLE I
IMPORTANT VARIABLES

In addition to these nodes there is arbitrary external in-
terference which we model as an adversary. (Note that our
notion of adversary is mainly meant as a model to describe
external interference only. The adversary does not, e.g., read
and modify packet contents.)

We allow the adversary to know the protocol and its entire
history (in terms of idle, busy, and successful transmission
events) and to use this knowledge in order to jam the wireless
channel at will at any time (i.e., the adversary is adaptive).
Whenever it jams the channel, all nodes will notice a busy
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channel. However, the nodes cannot distinguish between the
adversarial jamming or a collision of two or more messages
that are sent at the same time.

Moreover, we allow the jammer to be reactive: it is allowed
to make a jamming decision based on the actions of the
nodes at the current step. In other words, reactive jammers
can determine (through physical carrier sensing) whether the
channel is currently idle or non-idle (the channel is non-idle
either because of a successful transmission, or because the
channel is busy) and can instantly make a jamming decision
based on that information. Those jammers arise in scenarios
where, for example, encryption is used for communication and
where the jammer cannot distinguish between an encrypted
package and noise in the channel. Note that robustness in the
reactive model is relevant beyond jamming, e.g., in situations
with co-located networks, as many MAC protocols based on
carrier sensing activate nodes during idle time periods.

We assume that the adversary is only allowed to jam a (1−
ε)-fraction of the time steps, for an arbitrary constant 0 <
ε ≤ 1. In addition, we allow the adversary to perform bursty
jamming. Formally, an adversary is called (T, 1− ε)-bounded
for some T ∈ N and 0 < ε ≤ 1 if for any time window of
size w ≥ T the adversary can jam at most (1 − ε)w of the
time steps in that window.2

This article studies competitive MAC protocols.

Definition I.1 (c-Competitive). A MAC protocol is called c-
competitive against some (T, 1− ε)-bounded adversary (with
high probability or on expectation) if, for any sufficiently large
number of time steps, the nodes manage to perform successful
message transmissions in at least a c-fraction of the time steps
not jammed by the adversary.

In other words, in a c-competitive protocol, there is a
successful transmission in the network every c-th non-jammed
round on average.

Our goal is to design a symmetric local-control MAC
protocol (i.e., there is no central authority controlling the
nodes, and the nodes have symmetric roles at any point in
time) that is fair and Θ(1)-competitive against any (T, 1− ε)-
bounded reactive adversary. The nodes do not know ε, but we
do allow them to have a very rough upper bound of the number
n and T . More specifically, we will assume that the nodes
have a common parameter γ = O(1/(log T + log logn)).
As log T and log log n are small for all reasonable values
of T and n, this is scalable and not a critical constraint,
as it leaves room for a super-polynomial change in n and

2In an adversarial context, this model can be motivated e.g., in sensor
networks. Sensor network consist of simple wireless nodes usually running
on a single frequency and which cannot benefit from more advanced anti-
jamming techniques such as spread spectrum. In such scenarios, a jammer
will also most probably run on power-constrained devices (e.g., solar-powered
batteries), and hence will not have enough power to continuously jam
over time. (The time window threshold T can be chosen large enough to
accommodate the respective jamming pattern.)

a polynomial change in T over time.3 Thus, all we need
for our formal performance result to hold is a very rough
upper bound on γ. As we will see in our theorems there is a
tradeoff between too low γ values (which causes the protocol
to react too slowly to changes) and too high γ values (with
which the aggregate probability may overshoot). In practice
we expect that choosing a constant, sufficiently small γ yields
a good performance for any practical network. Indeed, in our
simulations γ = 0.1 results in a good throughput for a wide
range of networks.

C. Our Contributions

This article presents a very simple and robust medium
access protocol called ANTIJAM, together with a rigorous
performance analysis. We are not aware of any other protocol
with provable competitive throughput guarantees in a similarly
harsh environment.

Concretely ANTIJAM is provably robust against adaptive
and reactive external interference, or equivalently, an adversary
(an outsider) that can jam the medium a constant fraction of
the time. Despite this harsh environment, we can show that the
ANTIJAM MAC protocol achieves a high throughput by ex-
ploiting any non-jammed time intervals effectively. The main
theoretical contribution is a formal and rigorous derivation of
the good throughput and fairness guarantees of our protocol.
We show that ANTIJAM is competitive in the sense that a
constant fraction of the non-jammed execution time is used for
successful transmissions, i.e., ANTIJAM is able to benefit from
the rare and hard-to-predict time intervals where the shared
medium is available.

Theorem I.2. Let N = max{T, n}. The ANTI-
JAM protocol is constant-competitive, namely e−Θ(1/ε2)-
competitive w.h.p.4 under any (T, 1 − ε)-bounded reac-
tive adversary if the protocol is executed for at least
Θ( 1ε logN max{T, (eδ/ε2/εγ2) log3 N}) many time steps,
where ε ∈ (0, 1] is a constant, γ = O(1/(log T + log log n)),
and where δ is a sufficiently large constant. Moreover, ANTI-
JAM achieves a high fairness: the channel access probabilities
among nodes do not differ by more than a factor of (1 + γ)
after the first message was sent successfully.

Our theoretical results are complemented by extensive sim-
ulations.

II. THE ANTIJAM MAC PROTOCOL

The basic idea of the ANTIJAM MAC protocol is simple. In
an ANTIJAM network, each node v maintains a medium access
value pv which describes the probability that v transmits a

3On the other hand, note that the assumption that the nodes know constant
factor approximations of n or T directly renders the problem simple: if the
set of n nodes is static, nodes can simply access the medium with probability
1/n. This yields a high and fair throughput: If T is known, a time period
of length T without idle and successful periods implies that the aggregate
probability is too high. This information can be exploited by the algorithm.
However, such assumptions are unrealistic and do not scale.

4With high probability, or short w.h.p., denotes a probability of a least
1− 1/nc for some constant c.
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message in a communication round. The nodes adapt and syn-
chronize their pv values over time (which as a side-effect also
improves fairness) in a multiplicative-increase multiplicative-
decrease manner in order to ensure maximum throughput. The
pv values tend to be lowered in times of high interference, and
increased during times where the channel is idling. (This is
similar to classic random backoff mechanisms where the next
transmission time t is chosen uniformly at random from an
interval of size 1/pv .) More precisely, the sending probabilities
are changed by a factor of (1 + γ). However, we impose an
upper bound of p̂ on pv , for some constant 0 < p̂ < 1.5 As we
will see, unlike in most classic backoff protocols, our adaption
rules for pv ensure that the adversary cannot influence the pv
values much by jamming.

In addition, each node maintains two variables, a threshold
variable Tv and a counter variable cv . The threshold variable
Tv is used to estimate the adversary’s time window T : a good
estimation of T can help the nodes recover from a situation
where they experience high interference in the network. In
times of high interference, Tv will be increased and the
sending probability pv will be decreased.

Initially, every node v may set Tv := 1, cv := 1 and
pv := p̂. However, as we will see, ANTIJAM converges
quickly and hence works for arbitrary initial variable values.
Afterwards, the protocol works in synchronized time steps. We
assume synchronized time steps for the analysis, but a non-
synchronized execution of the protocol would also work as
long as all nodes operate at roughly the same speed.

ANTIJAM is based on the following ideas and concepts.
Suppose that each node v decides to send a message at
the current time step with probability pv with pv ≤ p̂. Let
p =

∑
v pv , q0 be the probability that the channel is idle

and q1 be the probability that exactly one node is sending
a message. The following claim originally appeared in [2].
It states that if q0 = Θ(q1), then the aggregate sending
probability p, i.e., the sum of all the nodes’ individual sending
probabilities pv (which can be larger than one), is constant.
This in turn implies that at any non-jammed time step we
have constant probability of having a successful transmission.
Hence our protocol aims at adjusting the sending probabilities
pv of the nodes such that q0 = Θ(q1), in spite of the reactive
adversarial jamming activity. This will be achieved by using a
multiplicative increase/decrease game for the probabilities pv
and by synchronizing all the nodes, both in terms of sending
probabilities and their own estimates on the time window
threshold estimate Tv’s, at every successful transmission.

Claim II.1. q0 · p ≤ q1 ≤ q0
1−p̂ · p.

With these definitions and insights, we can now formally
describe the ANTIJAM protocol, see Algorithm 1.

A summary of all our variables (including the ones from
the analysis) is provided in Table I.

5While our formal result is valid for any choice of constant p̂, p̂ should not
be chosen too low in small networks. See also our discussion in the simulation
section.

Algorithm 1: ANTIJAM: for each node v

roundcounter = 0
while true do

v decides with probability pv to send a message
if v decides to send a message then

v sends a message along with a triple: (pv, cv, Tv)

else
v senses the channel
if v senses an idle channel then

pv := min{(1 + γ)pv, p̂}
Tv := max{Tv − 1, 1}

else
if v successfully receives a message along
with the triple of (pnew, cnew, Tnew) then

pv := (1 + γ)−1pnew
cv := cnew
Tv := Tnew

cv := cv + 1
if cv > Tv then

if there was no idle step among the past Tv time
steps then

pv := (1 + γ)−1pv
Tv := Tv + 2

roundcounter := roundcounter + 1

III. ANALYSIS

Our analysis of Theorem I.2 unfolds in a number of lemmas.
We show that given a certain sufficiently large initial aggregate
probability pt in a subframe, the aggregate probability cannot
be smaller at the end of the subframe (Lemma III.6). We
proceed to show that ANTIJAM performs well in time periods
in which pt is upper bounded by δ/ε2 for some constant
δ (Lemma III.10). Finally, we show that for any jamming
strategy, ANTIJAM has an aggregate probability of pt ≤ δ/ε2

for most of the time (Lemma III.13).
The analysis makes repeated use of the following well-

known relation and the Chernoff bounds derived from [19].

Lemma III.1. For all 0 < x < 1 it holds that

e−x/(1−x) ≤ 1− x ≤ e−x

Lemma III.2 (Chernoff Bounds [19]). Consider any set of
binary random variables X1, . . . , Xn. Suppose that there are
values p1, . . . , pn ∈ [0, 1] with E[

∏
i∈S Xi] ≤

∏
i∈S pi for

every set S ⊆ {1, . . . , n}. Then it holds for X =
∑n

i=1 Xi

and µ =
∑n

i=1 pi and any δ > 0 that

P[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

≤ e−
δ2µ

2(1+δ/3) .

If, on the other hand, it holds that E[
∏

i∈S Xi] ≥
∏

i∈S pi for
every set S ⊆ {1, . . . , n}, then it holds for any 0 < δ < 1
that

P[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ

≤ e−δ2µ/2.
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Let V be the set of all nodes. Let pt(v) be node v’s
access probability pv at the beginning of the t-th time
step. Furthermore, let pt =

∑
v∈V pt(v). Let I be a time

frame consisting of α
ε logN subframes I ′ of size f =

max{T, αβ2

εγ2 e
δ/ε2 log3 N}, where α, β and δ are sufficiently

large constants. Let F = α
ε logN · f denote the size of I .

We start with some simple facts which also provide some
intuition for ANTIJAM. Fact III.3 states that the protocol
synchronizes the sending probabilities of the nodes (up to a
factor of (1 + γ)) as well as the values cv and Tv .

Fact III.3. Right after a successful transmission of the triple
(p′, c′, T ′), (pv, cv, Tv) = ((1+γ)−1p′, c′, T ′) for all receiving
nodes v and (pu, cu, Tu) = (p′, c′, T ′) for the sending node u.
In particular, for any time step t after a successful transmission
by node u, (cv, Tv) = (cw, Tw) for all nodes v, w ∈ V .

Fact III.3 also implies the following corollary.

Corollary III.4. After a successful transmission, the access
probabilities pv of the nodes v ∈ V will never differ by more
than a factor (1 + γ) in the future.

The following facts study how the aggregate sending prob-
ability varies over time depending on the different events.

Fact III.5. For any time step t after a successful trans-
mission or a well-initialized state of the protocol (in which
(pv, cv, Tv) = (p̂, 1, 1) for all nodes v) it holds:
1. If the channel is idle at time t then (i) if pv = p̂ for all
v, then pt+1 = pt; (ii) if pu = p̂ and pv = (1 + γ)−1p̂ for
all nodes v ̸= u, then pt+1 = (1 + γ − O(1/n))pt (because
all nodes except for u increase their sending probability by a
factor (1+γ) from p̂/(1+γ)); or (iii) if pv < p̂ for all nodes
v, then pt+1 = (1 + γ)pt.
2. If there is a successful transmission at time t, and if cv ≤ Tv

or there was an idle time step in the previous Tv rounds, then
(i) if the sender is the same as the last successful sender, then
pt+1 = pt (because for the sender u, pu(t+ 1) = pu(t), and
the other nodes remain at pu(t+1)/(1+γ) = pu(t)/(1+γ));
if (ii) the sender w is different from the last successful sender
u and pv = p̂ for all nodes v (including u and w), then
pt+1 = (1 + γ − O(1/n))−1pt (all nodes except w reduce
their sending probability); or (iii) if the sender w is different
from the last successful sender u and pv < p̂ for at least
one node v (including u and w), then pt+1 = (1 + γ)−1pt
(because at time t, for all nodes v ̸= u: pv(t) = pu(t)/(1+γ);
subsequently, pw(t + 1) = pw(t) and for all nodes v ̸= w:
pv(t+ 1) = pw(t+ 1)/(1 + γ)).
3. If the channel is busy at time t, then pt+1 = pt when
ignoring the case that cv > Tv .

Whenever cv > Tv and there has not been an idle time
step during the past Tv steps, then pt+1 is, in addition to the
actions specified in the two cases above, reduced by a factor
of (1 + γ).

We can now prove the following crucial lemma lower
bounding the aggregate sending probability.

Lemma III.6. For any subframe I ′ in which initially pt0 ≥
1/(f2(1 + γ)

√
2f ), the last time step t of I ′ again satisfies

pt ≥ 1/(f2(1 + γ)
√
2f ), w.h.p.

Proof: We start with the following claim about the max-
imum number of times the nodes decrease their probabilities
in I ′ due to cv > Tv .

Claim III.7. If in subframe I ′ the number of idle time steps
is at most k0, then every node v increases Tv by 2 at most
k0/2 +

√
f many times.

Proof: Only idle time steps reduce Tv . If there is no idle
time step during the last Tv many steps, Tv is increased by
2. Suppose that k0 = 0. Then the number of times a node v
increases Tv by 2 is upper bounded by the largest possible ℓ
so that

∑ℓ
i=0 T

0
v + 2i ≤ f , where T 0

v is the initial size of Tv .
For any T 0

v ≥ 1, ℓ ≤
√
f , so the claim is true for k0 = 0.

At best, each additional idle time step allows us to reduce all
thresholds for v by 1, so we are searching for the maximum
ℓ so that

∑ℓ
i=0 max{T 0

v + 2i − k0, 1} ≤ f . This ℓ is upper
bounded by k0/2 +

√
f , which proves our claim.

This allows us to prove that p exceeds a certain minimal
threshold in a subframe.

Claim III.8. Suppose that for the first time step t0 in I ′,
pt0 ∈ [1/(f2(1+γ)

√
2f ), 1/f2]. Then there is a time step t in

I ′ with pt ≥ 1/f2, w.h.p.

Proof: Suppose that there are g non-jammed time steps
in I ′. Let k0 be the number of these steps with an idle
channel and k1 be the number of these steps with a successful
message transmission. Furthermore, let k2 be the maximum
number of times a node v increases Tv by 2 in I ′. If all
time steps t in I ′ satisfy pt < 1/f2, then it must hold that
k0−log1+γ(1/pt0) ≤ k1+k2. This is because no v has reached
a point with pt(v) = p̂ in this case, so Fact III.5 implies that
for each time step t with an idle channel, pt+1 = (1 + γ)pt.
Thus, at most log1+γ(1/pt0) time steps with an idle channel
would be needed to get pt to 1/f2, and then there would have
to be a balance between further increases (that are guaranteed
to be caused by an idle channel) and decreases (that might be
caused by a successful transmission or the case cv > Tv) of
pt in order to avoid the case pt ≥ 1/f2. The number of times
we can allow an idle channel is maximized if all successful
transmissions and cases where cv > Tv cause a reduction of
pt. So we need k0− log1+γ(1/pt0) ≤ k1+k2 to hold to avoid
the case pt ≥ 1/f2 somewhere in I ′.

We know from Claim III.7 that k2 ≤ k0/2 +
√
f . Hence,

k0 ≤ 2 log1+γ f +
√

f + k1 + k0/2 +
√

f

⇒ k0 ≤ 4 log1+γ f + 2k1 + 4
√

f

Suppose that 4 log1+γ f + 4
√
f ≤ εf/4, which is true

if f = Ω(1/ε2) is sufficiently large (which is true for
ε = Ω(1/ log3 N)). Since g ≥ εf due to our adversarial
model, it follows that we must satisfy k0 ≤ 2k1 + g/4.

Certainly, for any time step t with pt ≤ 1/f2,

P[≥ 1 message transmitted at t] ≤ 1/f2.

Suppose for the moment that no time step is jammed in I ′.
Then E[k1] ≤ (1/f2)f = 1/f . In order to prove a bound on
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k1 that holds w.h.p., we can use the general Chernoff bounds
stated above. For any step t, let the binary random variable
Xt be 1 if and only if at least one message is transmitted at
time t and pt ≤ 1/f2. Then

P[Xt = 1] = P[pt ≤ 1/f2] · P[≥ 1 msg sent | pt ≤ 1/f2]

≤ 1/f2.

and it particularly holds that for any set S of time steps
prior to some time step t that, if there are multiple message
transmissions and since pt ≤ 1/f2,

P[Xt = 1 |
∏
s∈S

Xs = 1] ≤ 1/f2.

Then, we have

P[
∏
s∈S

Xs = 1] = P[X1 = 1] · P[X2 = 1|X1 = 1]

· P[X3 = 1|
∏

s=1,2

Xs = 1]

·...·
· P[X|S| = 1|

∏
s=1,2,...,|S|−1

Xs = 1]

≤ (1/f2)|S|

and

E[
∏
s∈S

Xs = 1] = P[
∏
s∈S

Xs = 1] ≤ (1/f2)|S|.

Thus, the Chernoff bounds and our choice of f imply that
either

∑
t∈I′ Xt < εf/4 and pt ≤ 1/f2 throughout I ′ w.h.p.,

or there must be a time step t in I ′ with pt > 1/f2 which
would finish the proof. Therefore, unless pt > 1/f2 at some
point in I ′, k1 < εf/4 and k0 > (1 − ε/4)f w.h.p. As the
reactive adversary can now reduce k0 by at most f − g when
leaving g non-jammed steps, it follows that for any adversary,
k0 > (1−ε/4)f−(f−g) = g−(ε/4)f . That, however, would
violate our condition above that k0 ≤ 2k1 + g/4 as that can
only hold given the bounds on g and k1 if k0 ≤ g − (ε/4)f .

Note that the choice of g is not oblivious as the adversary
may adaptively decide to set g based on the history of events.
Thus, we cannot assume that g is a fixed value, and the
worst adaptive adversarial path is hard to assess. Therefore,
we apply a union bound argument and sum up over all
adversarial choices for g, showing that our claim holds for
all g simultaneously. In order to show that none of them
succeeds, observe that there are only f many possible values
for g, and for each the claimed property holds w.h.p. (for all
possible distributions of the g events); therefore, the claim
holds simultaneously for the polynomially many options of g
as well.

Similarly, we can also prove that once the aggregate proba-
bility exceeds a certain threshold, it cannot become too small
again.

Claim III.9. Suppose that for the first time step t0 in I ′, pt0 ≥
1/f2. Then there is no time step t in I ′ with pt <

1
f2(1+γ)

√
2f ,

w.h.p.

Proof: Consider some fixed time step t in I ′ and let
I ′′ = (t0, t]. Suppose that there are g non-jammed time steps
in I ′′. If g ≤ β logN for a (sufficiently large) constant β,
then it follows for the probability pt at the end of I ′′ due to
Claim III.7 that

pt ≥
1

f2
· (1 + γ)−(2β logN+

√
f) ≥ 1

f2(1 + γ)
√
2f

given that ε = Ω(1/ log3 N), because in order to compute a
pessimistic lower bound on pt, assume that all g non-jammed
steps are successful so at most β logN decreases of pt can
happen, or similarly, assume that all g non-jammed steps are
idle, so at most β logN/2 +

√
f decreases of pt can happen

due to exceeding Tv; the total number of decreases is smaller
than β logN + β logN/2 +

√
f < 2β logN +

√
f .

So suppose that g > β logN . Let k0 be the number of these
steps with an idle channel and k1 be the number of these steps
with a successful message transmission. Furthermore, let k2
be the maximum number of times a node v increases Tv in I ′′.
If pt <

1
f2(1+γ)

√
2f then it must hold (deterministically) that

k0 ≤ k1 + k2 because of our assumption that pt0 ≥ 1/f2

(more idle rounds would yield higher pt values).
Since k2 ≤ k0/2+

√
f , this implies that k0 ≤ 2k1+2

√
f ≤

2k1 + g/4. Thus, we are back to the case in the proof of
Claim III.8, which shows that k0 ≤ 2k1 + g/4 does not hold
w.h.p., given that g > β logN and we never have the case in
I ′′ that pt > 1/f2.

If there is a step t′ in I ′′ with pt′ > 1/f2, we prune I ′′

to the interval (t′, t] and repeat the case distinction above. As
there are at most f time steps in I ′′, the claim follows.

Combining Claims III.8 and III.9 completes the proof of
Lemma III.6.

Lemma III.10 establishes an important relationship between
aggregate sending probability and throughput.

Lemma III.10. Consider any subframe I ′, and let δ > 1 be
a sufficiently large constant. Suppose that at the beginning of
I ′, pt0 ≥ 1/(f2(1 + γ)

√
2f ) and Tv ≤

√
F/2 for every node

v. If pt ≤ δ/ε2 for at least half of the non-jammed time steps
in I ′, then ANTIJAM is at least δ

8ε2 e
−δ/(1−p̂)ε2-competitive in

I ′.

Proof: A time step t in I is called useful if we either
have an idle channel or a successful transmission at time t
(i.e., the time step is not jammed and there are no collisions)
and pt ≤ δ/ε2. Let k be the number of useful time steps in
I ′. Furthermore, let k0 be the number of useful time steps in
I ′ with an idle channel, k1 be the number of useful time steps
in I ′ with a successful transmission and k2 be the maximum
number of times a node v reduces pv in I ′ because of cv > Tv .
Recall that k = k0+k1. Moreover, the following claim holds:

Claim III.11. If n ≥ (1 + γ)δ/(ε2p̂), then

k0 − log1+γ(δ/(ε
2 · pt0)) ≤ k′1 + k2

where k′1 is the number of useful time steps with a successful
transmission in which the sender is different from the previ-
ously successful sender.
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Proof: According to Corollary III.4, if pt ≤ δ/ε2 and
n ≥ (1 + γ)δ/(ε2p̂), then pv(t) ≤ p̂/(1 + γ). This implies
that whenever there is a useful time step t ∈ I with an
idle channel, then pt+1 = (1 + γ)pt. Thus, it takes at most
log1+γ(δ/(ε

2 · pt0)) many useful time steps with an idle
channel to get from pt0 to an aggregate probability of at
least δ/ε2. On the other hand, each of the k′1 successful
transmissions reduces the aggregate probability by a factor of
(1 + γ). Therefore, once the aggregate probability is at δ/ε2,
we must have k0 ≤ k′1 + k2 since otherwise there must be at
least one useful time step where the aggregate probability is
more than δ/ε2, which contradicts the definition of a useful
time step.

Since pt0 ≥ 1/(f2(1 + γ)
√
2f ) it holds that

log1+γ(δ/(ε
2 · pt0)) ≤ log1+γ(δf

2/ε2) +
√
2f.

From Lemma III.7 we also know that k2 ≤ k0/2+
√
f . Hence,

k0 ≤ 2k′1 + 2 · log1+γ(δf
2/ε2) + 2 · (

√
f +

√
2f)

≤ 2k′1 + 6
√

f

if f is sufficiently large. Also, k0 = k − k1 and k′1 ≤ k1.
Therefore, k − k1 ≤ 2k1 + 6

√
f or equivalently,

k1 ≥ k/3− 2
√

f

Thus, we have a lower bound for k1 that depends on k, and
it remains to find a lower bound for k.

Claim III.12. Let g be the number of non-jammed time steps
t in I ′ with pt ≤ δ/ε2. If g ≥ εf/2 then

k ≥ δ

2ε2
e−δ/(1−p̂)ε2 · g

w.h.p.

Proof: Consider any (T, 1 − ε)-bounded jammer for I ′.
Suppose that of the non-jammed time steps t with pt ≤ δ/ε2,
s0 have an idle channel and s1 have a non-idle channel. It
holds that s0 + s1 = g ≥ εf/2. The probability that an
idle channel is useful is one, which is the maximum possible;
for any one of the non-jammed time steps with a non-idle
channel, the probability that it is useful (in this case, that it
has a successful transmission) is at least

∑
v

pv
∏
w ̸=v

(1− pw) ≥
∑
v

pv
∏
w

(1− pw)

≥
∑
v

pv
∏
w

e−pw/(1−p̂)

=
∑
v

pve
−p/(1−p̂)

= e−p/(1−p̂)

where p is the aggregate probability at the step. Since we only
need to lower bound the number of useful time steps k, and
pt ≤ δ/ε2, it follows that the probability of a non-idle time
step to be useful (note that we are considering non-jammed
time steps here) is at least

δ

ε2
e−δ/(1−p̂)ε2 .

Thus,

E[k] ≥ s0 +
δ

ε2
e−δ/(1−p̂)ε2s1 ≥

δ

ε2
e−δ/(1−p̂)ε2 · g

since k is minimized for s0 = 0 and s1 = g.
Since our lower bound for the probability of a non-idle step

to be useful holds independently for all non-jammed non-idle
steps t with pt ≤ δ/ε2 and E[k] ≥ α logN for our choice of
g, it follows from the Chernoff bounds that k ≥ E[k]/2 w.h.p.

From Claim III.12 it follows that

k1 ≥ (
δ

2ε2
e−δ/(1−p̂)ε2 · g)/3− 2

√
f

w.h.p., which completes the proof of Lemma III.10: if we
divide the lower bound on k1 by the number of non-jammed
time steps εf (as g ≥ εf/2, k1 ≥ k/3− 2

√
f and as −2

√
f

is negligible).
Finally, it remains to consider the case that for less than half

of the non-jammed time steps t in I ′, pt ≤ δ/ε2. Fortunately,
this does not happen w.h.p.

Lemma III.13. Suppose that at the beginning of I ′, Tv ≤√
F/2 for every node v. Then at most half of the non-jammed

time steps t can have the property that pt > δ/ε2 w.h.p.

Proof: Recall from Fact III.5 that as long as the access
probabilities of the nodes do not hit p̂, the aggregate probabil-
ity only changes by a (1+γ)-factor in both directions. Suppose
that δ is selected so that δ/ε2 represents one of these values.
Let H be the set of time steps t ∈ I ′ with the property that
either pt = δ/ε2 and the channel is idle or pt ≥ (1 + γ)δ/ε2.
Now, we define a step t to be useful if t ∈ H and there is
either an idle channel or a successful transmission at t. Let k
be the number of useful time steps in H . Furthermore, let k0
be the number of useful time steps with an idle channel, k1 be
the number of useful time steps with a successful transmission
and k2 be the maximum number of times a node v reduces
pv in H because of cv > Tv . It holds that k = k0 + k1.

Let us cut the time steps in H into passes where each pass
(t, p, S) starting at time t consists of a sequence of all (not
necessarily consecutive) non-idle time steps t′ > t with pt′ =
(1 + γ)p following t until a time step t′′ is reached in which
pt′′ = p, or the end of I ′ is reached if there is no such step,
where t′′ is either due to cv > Tv or a successful transmission.
The time step t is such that either pt = p and there is an idle
channel at t, or t is the beginning of I ′ if there is no such
idle channel to mark the beginning of S in I ′. (Note that
for two different passes (t, p, S) and (t′, p′, S′) and p ̸= p′,
S ∩ S′ = ∅.)

Although passes defined like this could be nested, we
additionally require that for any pair of passes (t, p, S) and
(t′, p′, S′) with p′ = p and final time step t′′ in S, (t′ ∪ S′)∩
[t, t′′] = ∅, but passes with p ̸= p′ are allowed to violate
this (by one being nested into the other). It is not difficult
to see that for any distribution of aggregate probabilities over
the time steps of I ′ one can organize the time steps in H into
passes as demanded above. Based on that, the following claim
can be easily shown, where k′1 ≤ k1 is the number of useful
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time steps with a successful transmission by a node different
from the previously successful node.

Let P be any collection of passes in H , and ∆ be the
number of distinct possible values of the aggregate probability
p in P . We have the following claim.

Claim III.14. For any collection P of passes, w.h.p., k0 ≥
k1 −∆−Θ(1) where k0 and k1 are the number of idle time
steps and the number of successful transmissions in P .

Proof: We first show that k0 ≥ k′1 −∆. Recall that k′1 is
the number of successful transmissions in which the sender is
different from the previously successful sender. Moreover, we
define k2 as the number of times that the aggregate probability
decreased due to cv > Tv; we define k3 as the number of times
a pass started at the initial step of I ′ (i.e., the pass started at
a non-idle time step). Clearly, we have k2 ≥ 0, and k3 ≤ ∆.
Since P is any collection of passes in H , it implies that the
aggregate probability p ≥ δ/ε2 throughout P . Hence, we have
the following inequality:

k0 + k3 ≥ k′1 + k2

Together with the fact that k2 ≥ 0, and k3 ≤ ∆, we have

k0 ≥ k′1 −∆

Then, let Ei = 1 denote the event that the sender of the
i-th successful transmission is the same as the sender of the
previous successful transmission. We show that the probability
that

∑
i Ei ≥ c (c is a constant) given k1 is extremely small.

According to Corollary III.4, the nodes’ access probabilities
do not differ by more than a (1 + γ)-factor after the first
successful transmission. Hence, each node has almost the same
probability of transmitting a message at any given time step,
which implies that P[Ei = 1] ≤ (1 + γ)/n.

P[
∑
i

Ei ≥ c | k1] ≤
(k1
c

)
· (

1 + γ

n
)c ≤

(f
c

)
· (

1 + γ

n
)c

Since f is polynomially smaller than n, P[
∑

i Ei ≥ c | k1]
becomes very small even for small c, which implies that Ei =
1 happens at most a constant number of times during P w.h.p.
Hence, the claim holds.

We have the following upper bound on the number of such
steps in H .

Claim III.15.

|H| ≤ (k + log1+γ max{p0/(δ/ε2), 1})
√
F

where k is the number of useful steps in H .

Proof: If at the beginning of I ′, Tv ≤
√
F/2 for every

node v, then according to Claim III.7, Tv ≤
√
F for every

node v at any time during I ′. Hence, after at most 2
√
F

nonuseful steps we run into the situation that cv > Tv for every
node v, which reduces the aggregate probability by a factor
of (1 + γ). Given that we only have k useful steps and we
may initially start with a probability p0 > δ/ε2, there can be
at most (k+log1+γ max{p0/(δ/ε2), 1})

√
F time steps in H;

k are the useful ones, and the nonuseful ones are the non-idle

and non-successful steps in which the aggregate probability is
reduced: every

√
F nonuseful steps give one reduction of p).

This proves the claim.
For the calculations below recall the definition of f with the

constants α and β that are assumed to be sufficiently large. If
k ≤ α logN , then it follows from Claim III.15 that, for large
enough δ,

|H| ≤ (α logN + log1+γ N)
√
F ≤ εf/β

where N = max{n, T}. Thus, the number of non-jammed
time steps in H is also at most εf/β, and since β can be
arbitrarily large, Lemma III.13 follows, as the steps in H fulfill
this property (β ≥ 2 yields half of the steps).

It remains to consider the case that k > α logN . Let us
assume that H contains at least εf/2 non-jammed time steps,
otherwise the claim certainly holds. Our goal is to contradict
that statement in order to show that the lemma is true. For this
we will show that Claim III.14 is violated w.h.p.

Let Tp be the number of all time steps covered by passes
(t′, p′, S′) with p′ = p. Certainly,

∑
p≥δ/ε2 Tp = |H|. Let

ϕ = δ/ε2, and Φ = (1− p̂) ln(f/ logN).
For an aggregate probability p ≥ Φ, P[idle | p] ≤ e−Φ =

( logN
f )1−p̂ and P[success | p] ≤ Φ

1−p̂ · e−Φ ≤ ln(f/ logN) ·
( logN

f )1−p̂. Hence, by multiplying these probabilities by the
|H| ≤ f steps, we get that k ≤ f p̂ · ln f · log1−p̂ N on
expectation, and from the Chernoff bounds it follows that
k ≤ 2f p̂·ln f ·log1−p̂ N w.h.p., so Claim III.15 implies that the
number of time steps in I ′ with aggregate probability p ≥ Φ
is at most

(2f p̂ · ln f · log1−p̂ N + log1+γ N)
√
F ≤ εf/β,w.h.p.

Since β can be arbitrarily large, we can only focus on the time
steps when ϕ ≤ p < Φ.

Let J̄p be the number of non-jammed time steps in Tp.
We consider the case where J̄p < 2

P[idle|p] . Let k1,p be the
number of successful time steps associated with p-passes (i.e.,
at aggregate probability (1+γ)p). Then, E[k1,p] = P[success |
p] · J̄p < 2. If we sum up over all possible probabilities p with
ϕ ≤ p < Φ, the number of non-jammed time steps covered by
all J̄p such that J̄p < 2

P[idle|p] is at most

log1+γ Φ∑
i=0

2/e−(1+γ)i ≤ 4 · f/ logN = o(f)

many time steps, since the p values always differ by factors
(1 + γ) (recall that e−(1+γ)i is the corresponding probability
of an idle step).

Hence, we can ignore all the passes where J̄p < 2

P[idle|p] .
We denote the time steps that are ignored by H ′. Since we as-
sumed |H| ≥ εf/2, we have that f ≥ |H \H ′| ≥ εf

2η = Θ(f),
where η is a constant. Let Np be the number of time steps
in H \H ′ with aggregate probability p. Let Xt be a random
variable, where Xt = 1 iff there is a successful transmission
at time step t. This implies that k1 =

∑
t∈H\H′ Xt, then:
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E[k1] =
Φ∑

p=δ/ε2

Np · P[success | p]

≥
Φ∑

p=δ/ε2

Np · p · e−
p

1−p̂ ≥
εf

2η
· Φ · e−

Φ
1−p̂

= (1− p̂) ·
εf

2η
· (ln f − ln logN) ·

logN

f

= Ω(logN)

Applying Chernoff bounds, we have w.h.p., k1 ≥ (1 −
c1)E[k1] where 0 < c1 ≤ 1.

Similarly, let Yt be a random variable, where Yt = 1 iff the
channel is idle at t. Then, k0 =

∑
t∈H\H′ Yt.

E[k0] =
Φ∑

p=δ/ε2

Np · P[idle | p] ≥
Φ∑

p=δ/ε2

Np · e−
p

1−p̂

≥
εf

2η
· e−

Φ
1−p̂ =

ε

2η
· logN = Ω(logN)

Applying Chernoff bounds, we have w.h.p., k0 ≤ c2 ·E[k0]
where c2 ≥ 0 is a large enough constant.

It implies that w.h.p.,

k1 − k0 ≥ (1− c1)E[k1]− c2 · E[k0]

≥
Φ∑

p=δ/ε2

Np((1− c1) · p · e−
p

1−p̂ − c2 · e−p)

≥
εf

2η
· ((1− c1) · Φ ·

logN

f
− c2 · e−ϕ)

≥
εf

2η
· ((1− c1) · Φ ·

logN

f
− c2 · e−δ/ε2 )

=
ε

2η
· logN((1− c1) · Φ−

c3

logN
)

> log1+γ Φ

> ∆+Ω(1)

Note that c3 = c2 · e−δ/ε2 is a constant, since both δ
and ε are constants. Moreover, the number of different p
values in [ϕ,Φ) associated with a pass is at most ∆ =
log1+γ Φ − log1+γ ϕ. Hence, log1+γ Φ > ∆ + Ω(1). This
inequality holds w.h.p. when the constant c1 is small enough,
and N is sufficiently large.

This is a contradiction to Claim III.14, and hence completes
the proof of Lemma III.13.

In order to proceed, we need the following claim.

Claim III.16. For any collection P of passes it holds that

E[k′1] ≥ (1− (1 + γ)/n)k1

where k1 and k′1 are defined w.r.t. P .

Proof: Because of Fact III.5, the probability that a suc-
cessful transmission is done by a node different from the node
of the last successful transmission is equal to

1− (1 + γ)p

(n+ γ)p
≥ 1− 1 + γ

n
.

To see this, observe that among the aggregate probability p,
if the last sender u has a share pu(t) = x, all other nodes v
have a share x/(1 + γ), and

pu(t)∑
v∈V pv(t)

=
x

(n− 1) · x
1+γ + x

=
1 + γ

n+ γ
.

Hence, E[k′1] ≥ (1− (1 + γ)/n)k1.
Notice that by the choice of f and F , Tv never exceeds√
F/2 for any v when initially Tv = 1 for all v. Hence, the

prerequisites of the lemmas are satisfied. We can also show
the following lemma, which shows that Tv remains bounded
over time.

Lemma III.17. For any time frame I in which initially Tv ≤√
F/2 for all v, also Tv ≤

√
F/2 for all v at the end of I

w.h.p.

Proof: We already know that in each subframe I ′ in I ,
at least εf/2 of the non-jammed time steps t in I ′ satisfy
pt ≤ δ/ε2 w.h.p. Hence, for all (T, 1 − ε)-bounded jamming
strategies, there are at least

(δ/ε2) · e−δ/ε2 · εf/2

useful time steps in I ′ w.h.p. Due to the lower bound of pt ≥
1/(f2(1 + γ)

√
f ) for all time steps in I w.h.p. we can also

conclude that

k0 ≥ k′1 + k2 − log1+γ((δ/ε
2) · f2(1 + γ)

√
f ).

Because of Claims III.7 and III.16 it follows that

k0 ≥ k1/3

w.h.p. Since k0 + k1 = k and k ≥ (δ/ε2) · e−δ/ε2 · εf/2 it
follows that k0 = Ω(f). Therefore, there must be at least one
time point in I ′ with Tv = 1 for all v ∈ V . This in turn
ensures that Tv ≤

√
F/2 for all v at the end of I w.h.p.

With Lemma III.17, we show that Lemma III.13 is true
for a polynomial number of subframes. Then, Lemma III.13
and Lemma III.17 together imply that Lemma III.10 holds
for a polynomial number of subframes. Hence, our main
Theorem I.2 follows. Along the same line as in [2], we can
show that ANTIJAM is self-stabilizing, so the throughput result
can be extended to an arbitrary sequence of time frames.

IV. SIMULATION

We have implemented a simulator to study additional
properties of our protocol and to complement our worst-
case bounds. Our focus here is on the qualitative nature of
the performance of ANTIJAM, and we did not optimize the
parameters to obtain the best constants. We consider three
different jamming strategies for a reactive jammer that is
(T, 1−ε)-bounded, for different ε values and where T = 100:
(1) one that jams non-idle steps with probability (1− ε); (2)
one that jams non-idle steps deterministically (as long the
jamming budget is not used up); (3) one that jams idle steps
deterministically (as long as the jamming budget is not used
up). Intuitively, it seems that jamming non-idle steps is more
harmful than jamming idle steps. However, note that jamming
idle steps may be an effective strategy to steer the protocol into
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Fig. 1. Top: Throughput under three different jamming strategies as a function of the network size (large) and ε, where p̂ = 1/24 (averaged over 10 runs)
(top left: ε = 0.5, top right: ε = 0.3). Bottom: Throughput under three different jamming strategies as a function of the network size (small) and of ε, where
p̂ = 1/2 (averaged over 10 runs) (bottom left: ε = 0.5, bottom right: ε = 0.3)

bad states. Moreover, it may capture scenarios where nodes in
co-located networks start sending in quiet times.

We define throughput as the number of successful transmis-
sions over the number of non-jammed time steps. For networks
larger than 100, we choose p̂ = 1/24, whereas for smaller
networks we choose p̂ = 1/2. As a general guideline, it is
always better to choose larger p̂ values, as this avoids capping
the throughput in small networks artificially. A smaller p̂ can
make sense for bootstrapping large networks, but due to the
fast convergence times of the protocol (see Section IV-B), this
is unproblematic.

A. Throughput

In a first set of experiments we study the throughput as a
function of the network size and ε. We evaluate the throughput
performance for each type of adversary introduced above,
see Figure 1 (top). For all three strategies, the throughput is
basically constant, independently of the network size. This is
in accordance with our theoretical insight of Theorem I.2. We
can see that given our conditions on ε and T , the strategy that
jams non-idle channels deterministically results in the lowest
throughput. Hence, in the remaining experiments described
in this section, we will focus on this particular strategy. As
expected, jamming idle channels does not affect the protocol
behavior much. In our simulations, ANTIJAM makes effective
use of the non-jammed time periods, yielding 20% − 40%
successful transmissions even without optimizing the protocol
parameters. Having shown the protocol scales well for large
network size, we also study the throughput results when the
network size is small, see Figure 1 (bottom). We observe that
the results for small and large scale networks are compara-
ble, but the throughput in the small scale networks can be
slightly lower under an adversary that jams non-idle channels
deterministically or with probability (1− ε).
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Fig. 3. Top: Evolution of aggregate probability over time (network size is
1000 nodes, and ε = 0.5). Note the logarithmic scale. Bottom: Boxplot of
ANTIJAM runtime as a function of network size for p̂ = 1/24, and ε = 0.5.

In additional experiments we also studied the throughput
as a function of γ, see Figure 2. As expected, the throughput
declines slightly for large γ, but this effect is small. (Note
that for very small γ, the convergence time becomes large and
hence the simulations expensive if one wants to avoid wrong
results of the real throughput.)

B. Convergence Time

Besides a high throughput, fast convergence is the most
important performance criterion of a MAC protocol. The traces
in Figure 3 (top) show the evolution of the aggregate prob-
ability over time. It can be seen that the protocol converges
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Fig. 2. Throughput as a function of γ under three different jamming strategies, when n = 1000, and results are averaged over 10 runs
(left: ε = 0.5, right: ε = 0.3).
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Fig. 4. Top: Convergence in a network of 1000 nodes where ε = 0.5.
Bottom: Fairness in a network of 1000 nodes, where ε = 0.5, and p̂ = 1/24
(averaged over 10 runs).

quickly to constant access probabilities. (Note the logarithmic
scale.) If the initial probability for each node is high, the
protocol needs more time to bring down the low-constant
aggregate probability. Moreover, the fraction of time in which
the aggregate probability is in the range of [ 1

2ε ,
2
ε ] is 92.98%

when p̂ = 1/24, and 89.52% when p̂ = 1/2. This implies that
for a sufficiently large time period, the aggregate probability
is well bounded most of the time, which corresponds to our
theoretical insights (cf Lemmas III.6 and III.13). Figure 3 (bot-
tom) studies the convergence time for different network sizes.
We performed 50 repetitions of each run, and assume that
the execution has converged when the aggregate probability
p satisfies p ∈ [1, 5], for at least 5 consecutive rounds. The
simulation result qualitatively confirms Theorem I.2, as the
number of rounds needed to converge the execution is bounded
by Θ( 1ε logN max{T, 1

εγ2 log
3 N}). (Of course, the concrete

convergence time can depend on the scenario, and may be
faster than expected in the general case.)

Figure 4 (top) indicates that independently of the initial
values p̂ and Tv , the throughput rises quickly (up above 20%)
and stays there afterwards.
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Fig. 5. Throughput as a function of ε ∈ [0.05, 0.95], compared to the MAC
protocol in [2] and 802.11, averaged over 10 runs, where p̂ = 1/24.

C. Fairness

As the nodes in the ANTIJAM network synchronize their cv ,
Tv , and pv values upon message reception, they are expected to
transmit roughly the same amount of messages. In other words,
our protocol is fair. Figure 5 presents a histogram showing how
the successful transmissions are distributed among the nodes.
More specifically, we partition the number of successful trans-
missions into intervals of size 4. Then, all the transmissions
are grouped according to those intervals in the histogram.

D. Comparison

Finally, to put ANTIJAM into perspective, as a comparison,
we implemented the MAC protocol proposed in [2], as well as
a simplified version of the widely used 802.11 MAC protocol
(with a focus on 802.11a).

The configurations for the simulation are the following:
(1) The jammer is reactive and (T, 1 − ε)-bounded. (2) The
unit slot time for 802.11 is set to 50µs; for simplicity, we
define one time step for ANTIJAM to be 50µs also. (3)
We run ANTIJAM, the MAC protocol in [2], and 802.11
for 4 min, which is equal to 4.8 · 10M time steps in our
simulation. (4) The backoff timer of the 802.11 MAC protocol
implemented here uses units of 50µs. (5) We omit SIFS, DIFS,
and RTS/CTS/ACK.

A comparison is summarized in Figure 4 (bottom). The
throughput achieved by ANTIJAM and the MAC protocol
in [2] are significantly higher than the one by the 802.11
MAC protocol, specially for lower values of ε, when the
802.11 MAC protocol basically fails to deliver any successful
message. Note that the throughput results between ANTIJAM
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and the MAC protocol in [2] are similar in the simulations,
but ANTIJAM is slightly better for the most ε.

V. CONCLUSION

This article presents a simple, fair, and self-stabilizing
distributed MAC protocol called ANTIJAM that is able to
make efficient use of a shared communication medium whose
availability quickly and unpredictably changes over time. In
particular, we prove that our protocol achieves a constant
competitive throughput if ε is constant.

We are not aware of any other protocol achieving a
competitive throughput in similarly harsh environments. We
regard our work as an important step forward towards the
design and formal analysis of MAC protocols with provable
performance guarantees in more general environments with
arbitrary reactive (but power-constrained) interference.
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