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Abstract—Decentralized monitoring and alarming
systems can be an attractive alternative to centralized
architectures. Distributed sensor nodes (e.g., in the
smart grid’s distribution network) are closer to an
observed event than a global and remote observer or
controller. This improves the visibility and response
time of the system. Moreover, in a distributed system,
local problems may also be handled locally and without
overloading the communication network.
This article studies alarming from a distributed com-

puting perspective and for two fundamentally different
scenarios: on-duty and off-duty. We model the alarming
system as a sensor network consisting of a set of dis-
tributed nodes performing local measurements to sense
events. In order to avoid false alarms, the sensor nodes
cooperate and only escalate an event (i.e., raise an
alarm) if the number of sensor nodes sensing an event
exceeds a certain threshold. In the on-duty scenario,
nodes not affected by the event can actively help in the
communication process, while in the off-duty scenario
non-event nodes are inactive.
This article presents and analyzes algorithms that

minimize the reaction time of the monitoring system
while avoiding unnecessary message transmissions. We
investigate time and message complexity tradeoffs in
different settings, and also shed light on the optimality
of our algorithms by deriving cost lower bounds for
distributed alarming systems.

I. Introduction
Distributed monitoring and alarming is an important

paradigm to detect harmful events early and robustly. In
contrast to centralized monitoring systems, distributed so-
lutions do not rely on the presence of (or even the presence
of a functioning path to) a global and possibly remote
controller. There are several interesting applications.
1) The Californian earthquake system Quake

Catcher [8], started in 2008 and still active in
2013, is a distributed monitoring network which
benefits from decentralization. The network consists
of normal Mac laptops that work as seismic monitors.
The laptops aggregate a wealth of information on
major quakes in order to alarm in a few seconds’
notice of a devastating quake.

2) While traditionally, electricity grids were relatively
static, there is a trend [23] towards the integration
of renewable energies. The “smart” operation of such
networks poses several new monitoring and control
challenges to prevent instabilities or blackouts due
to dynamical patterns in energy demand and supply.
Especially in the low-voltage distribution networks
consisting of many sensors and smart meters, com-
munication overhead should be kept low. If network
devices manage to detect and locally resolve such
problems (e.g., by powerline communications), faults
can be contained locally and with good response
times.

3) Distributed monitoring systems can also be used to
detect fast propagating Internet worms. [14]

This article attends to the distributed alarming problem
from an algorithmic point of view, and explores the possi-
bilities and limitations of distributed solutions. We model
the problem as a sensor network where (not necessarily
wireless) sensor nodes are distributed in space and perform
local measurements (e.g., of the temperature or humidity).
When these devices sense an event, an alarm must be
raised as soon as possible (e.g., to inform helpers in the
local community). However, as the measurement of a single
sensor may be unreliable and as a situation should only
be escalated if the event is of a certain magnitude, the
nodes must cooperate in order to avoid false alarms: nodes
sensing an event should make sure that there are other
nodes in their vicinity that have sensed the same event.
Moreover, in order to save energy and avoid interference
or congestion, the number of messages transmitted by
a distributed alarming protocol should be minimized.

A. The Model
The distributed alarming problem studied in this article

can be formalized as follows. We are given a sensor network
in the form of an arbitrary undirected, unweighted graph
G = (V,E) where the n nodes form a set V with unique
identifiers and are connected via m = |E| communication
edges E. We assume that at time t0, arbitrary subset
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of nodes S ⊆ V senses an event. The nodes in S are
called event nodes, and the nodes in V \S are called non-
event nodes. For ease of presentation, in this paper, we
will focus on a single connected component S. In this
case, we will often denote the subgraph induced by S
by G(S) and refer to this graph as the event component.
In Section V, we describe how our algorithms can be
modified to work for multiple event components (in most
cases the corresponding components can simply explored
in parallel).

We assume that after an event hits the subset of nodes
S at time t0, at least one node from S is required to
determine the size of S, which is denoted by nS throughout
the article. (In fact, all our algorithms can be easily
modified, without changing their asymptotic performance,
so that all nodes from S learn the value of nS.) For
convenience, we also define mS as the number of edges
in the component G(S) induced by S. This article studies
distributed algorithms that jointly minimize the message
and time complexities.

Our model divides time into two main phases. The time
before t0 is called the Preprocessing Phase: During this
phase, mechanisms can be set in place to be able to handle
events occurring at t0 more efficiently; the set of event
nodes is not known at this time. The time at and after t0 is
called the Runtime Phase: The set S is revealed and nodes
need to coordinate quickly to explore the component.

The preprocessing can be performed in a centralized
fashion, with a global knowledge of the network, and its
resulting structure can be reused for all future events.
Hence, in this article, the complexity of the preprocessing
phase plays a minor role; we are rather interested in a fast
and efficient reaction during runtime. The complexities
of all preprocessing phases proposed in this article are
moderate, though.

Definition I.1 (The Distributed Alarming Problem).
After preprocessing the network, when an event hits the
event component G(S) at time t0, how can the nodes
coordinate the exploration of G(S), so that the time and
message complexities are minimized? The time complexity
is measured until at least one event node learns the size of
S (and is aware of this fact), and the message complexity
is measured until no more new messages are sent.

We distinguish between two main scenarios:
• In the on-duty scenario, we allow non-event nodes to

participate in the runtime phase of the algorithm,
for example to serve as relay points for message
transmissions of the event nodes.

• In the off-duty scenario, only event nodes may partic-
ipate in the runtime phase.

The first scenario is suited for larger sensor nodes that
are attached to an energy supply, whereas the second
one addresses the situation of a (wireless) network where
(battery-powered) nodes are in a parsimonious sleeping
mode until woken up by the event.

This article assumes a synchronous environment, where
algorithms operate in communication rounds: we assume
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Fig. 1. After hitting the event component (shaded), the event nodes
S (dark) need to determine the component size (here: 6). In the on-
duty model, node u may reach node v in two hops (via a non-event
node); in the off-duty model, these two nodes are at distance four.

that events are sensed by all nodes simultaneously at time
t0 and there is an upper bound (known by all nodes) on the
time needed to transmit a message between two nodes. In
particular, the classic LOCAL model [25] is considered: in
each round, a node can send a message to each of its neigh-
bors, receive messages from its neighbors, and depending
on the received information, perform local computations.
No specific constraints on the allowed message size are
assumed.

While this model is simple and does not capture inter-
ference and congestion aspects, it allows us to focus on the
fundamental problem of distributed local event detection.

Figure 1 illustrates our model.

B. Preliminaries and Terminology
This article uses the following graph-theoretical con-

cepts. For any two nodes u, v from a connected component
G(S), we define distS(u, v) as the length of a shortest path
between u and v that uses only nodes from S as interme-
diate nodes. In these terms, dist(u, v) := distV (u, v) is the
standard distance between u and v in the graph. (As our
graph is unweighted, the distance is simply the number
of hops.) Furthermore, the t-neighborhood of a node v is
the set Nt(v) = {u |dist(u, v) ≤ t}. We also define two
different types of diameters of node sets: the weak and the
strong one.

Definition I.2 (Weak and Strong Diameters). For a set
S ⊆ V of nodes of a graph G = (V,E), the weak diameter
of G(S) is diam(S) := maxu,v∈S{dist(u, v)} and the strong
diameter is Diam(S) := maxu,v∈S{distS(u, v)}.

In other words, the strong diameter is a diameter of
a subgraph induced by a given subset of nodes. Clearly, for
any set S it holds that diam(S) ≤ Diam(S). Henceforth,
when the set S is clear from the context, we will just write
d for diam(S) and D for Diam(S).
In the preprocessing phase of our algorithms, we will

often use (k,t)-neighborhood covers [25]. In a nutshell, a
neighborhood cover covers all nodes by a collection of
possibly overlapping sets called clusters. In such a cover,
the diameter of each cluster is bounded by O(kt) and for
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each node there exists a cluster containing the entire t-
neighborhood of this node. It turns out that such covers
can be computed quite efficiently.

Definition I.3 (Neighborhood Cover [3]). A (k,t)-
neighborhood cover of a graph G = (V,E) is a collection of
clusters C1, ..., Cr ⊆ V with the following properties:
1) for each cluster Ci, diam(Ci) ∈ O(kt), and
2) for any node v, there exists a cluster Ci, such that

Nt(v) ⊆ Ci.
The node with the largest ID in a given cluster Ci is called
the cluster head h of Ci. A (k,t)-neighborhood cover is
sparse (and denoted (k,t)-NC) if each node is in at most
O(kn1/k) clusters.

The following lemma is due to [3].

Lemma I.4 ([3]). Given a graph G = (V,E) and integers
k, t ≥ 1, there exists a deterministic distributed algorithm
that constructs a (k, t)-NC.

In this paper, we show that the complexity of local event
detection sometimes depends on the graph arboricity [10],
[24], which is defined as follows.

Definition I.5 (Arboricity α(G)). The arboricity α(G) of
an arbitrary graph G is defined as the minimum number of
forests that are required to cover all edges in G.

For any graph G, it holds that 1 ≤ α(G) ≤ n.

C. Algorithmic Challenges
The distributed alarming problem considered in this

paper poses two main algorithmic challenges, and most of
our algorithms consist of two building blocks accordingly.

The first building block addresses an issue called neigh-
borhood problem: after a node has sensed an event, it does
not know which of its neighbors (if any) are also in S.
Distributed algorithms where event nodes simply ask all
their neighbors are costly: if G is a star network and the
only node in S is the star center, the message complexity
is Θ(n) while the size of the event component is one.
The standard trick to let nodes only ask the neighbors
of higher degree does not work either: while it would be a
solution for the star graph, it fails for dense graphs such
as the clique graph. In fact, at first glance it may seem
that Ω(n) is a lower bound for the message complexity
of any algorithm for the clique as an event node has no
information about its neighbors. We will show, however,
that this intuition is incorrect in the on-duty scenario.

The second building block deals with the coordination
of the nodes during the exploration of the component. In
a distributed algorithm where all nodes start exploring the
component independently, much redundant information is
collected, resulting in a high number of messages. Clearly,
the time required to compute the event component size is
at least linear in the diameter of G(S), and the number
of messages needed by any distributed algorithm is at
least linear in nS. We are hence striving for distributed
algorithms which are not very far from these lower bounds.

D. Contribution and Novelty
Despite the fundamental nature of the distributed

alarming problem, to the best of our knowledge, this is the
first paper to study local algorithms whose time and mes-
sage complexities depend on the actual event component
size, i.e., they are output-sensitive. Accordingly, we cover
the problem broadly, and investigate different settings
as well as different algorithms, both deterministic and
randomized ones, and shed light on inherent lower bounds:
what cannot be achieved efficiently in a distributed setting.

We introduce the on-duty and off-duty models and show
that they are very different, both with respect to the
applicable algorithmic techniques as well as the achievable
performance: while in the on-duty scenario, structures
(such as shortest paths to coordinators) computed during
the preprocessing phase are also useful when the event
occurs, the off-duty scenario can hardly rely on the exis-
tence of such structures and needs to coordinate almost
from scratch.

Our model is also novel in the explicit distinction be-
tween preprocessing and runtime phase. Classic algorithms
designed for ad-hoc and sensor networks typically need
to start exploring the topology from scratch. We argue
that in the context of event detection, we can often
distinguish between two very different time scales: (1)
setting up a communication infrastructure (before t0), and
(2) handling the actual event. The question of how to set
up such infrastructures has hardly been studied in the
literature so far. Moreover, it turns out that given the
preprocessing phase (1), the event detection (2) can often
be done much more efficiently.

Our technical contribution is twofold. First, we show
which existing algorithmic techniques can be used and
adapted for the distributed alarming problem. Second, we
also derive new algorithmic techniques; for instance, we
introduce a hierarchical sparse neighborhood algorithm
which may be of independent interest.

E. Overview of Results
This article presents deterministic and randomized al-

gorithms for different settings, both in the on-duty and
the off-duty models, studies their optimality, and derives
impossibility results.
1) Clique Bounds: On-Duty vs Off-Duty. We first show

that there is a gap between on-duty and off-duty
models, already in the simple complete network (the
clique). While in the on-duty model, the distributed
alarming problem can be solved in two rounds using
O(nS) messages, where nS is the event component size
(Theorem II.1), for any deterministic algorithm Alg
using Time rounds and Msg messages, it holds that
Time ·Msg = Ω(n · log logn), where n is the size of
the whole network. (Theorem II.4)

2) Clique Off-Duty Algorithms. We present a class
of deterministic algorithms Group that solves the
problem in the off-duty clique model. Group is
parametrized with a number k, and comes in two
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variants: Par and Seq. The Par variant of the al-
gorithm Group uses O(logk n) rounds and transmits
O(min{k, nS} · n · logk n) messages. The Seq variant
uses O(k · logk n) rounds and O(n · logk n) messages.
(Theorem II.5) We also present a randomized Las
Vegas algorithm Rand. The algorithm terminates in
log(n/nS) +O(1) rounds and uses O(n) messages on
expectation. (Theorem II.6)

3) General On-Duty Algorithms. We present the ran-
domized on-duty algorithm Decomp that solves the
alarming problem on general graph instances. It is
based on pre-computed sparse neighborhood covers
where information about the event is passed on via
independent sets, in order to reduce the message
complexity. The runtime of Decomp is O(d · log2 n)
rounds, using O(nS · log3 n · log d) messages; it com-
putes the correct solution with high probability. Here,
d is the weak diameter of the event node set S. (The-
orem IV.1) Decomp is optimal up to polylogarithmic
factors.

4) General Off-Duty Algorithms. We describe the deter-
ministic algorithm MinID that solves the alarming
problem on general graphs. For a graph G with ar-
boricity α, the MinID finishes in O(nS lognS) rounds
using O(mS lognS +α ·nS) messages, where mS is the
number of edges in the component G(S) induced by
S. (Theorem IV.3)

5) Search-based Algorithms. Finally, we present the
search-based algorithms ParDFS, ParBFS and on-
ParBFS. These algorithms solve the problem, respec-
tively, in time O(nS), O(D) (where D is the strong
diameter of the event component), and O(d) (the
weak diameter), using respectively O(nS · (α + nS)),
O(nS · (α+mS)), and O(nS ·m)) messages, where m
is the total number of edges. The first two algorithms
can be used in both scenarios, the third one in the
on-duty scenario only. (Theorem IV.6) We generalize
the search algorithms to perform a graded start of
the DFS procedures. Our algorithm k-nwDFS, for
any integer k ∈ {1, . . . , n}, solves the problem in
O(n2/k) rounds. In the off-duty scenario, it uses
O((α+min{k, nS})·nS) messages while in the on-duty
scenario it uses O((min{α, log2 n}+ min{k, nS}) · nS)
messages. (Theorem IV.8)

F. Related Work
Local algorithms have been explored for many years

already, especially in the context of ad-hoc and sensor
networks. Researchers in this field are particularly inter-
ested in the question of what can and what cannot be
computed locally [20], i.e., given the knowledge of only a
subset of the graph. For a good overview of the field in
general and the LOCAL in particular, we refer the reader
to the introductory book by Peleg [25] and the survey by
Suomela[28].

Pre-Processing and Output Sensitive Local Algorithms.
However, the distributed alarming model considered in

this paper is different from the classic ad-hoc network
problems, in that it distinguishes between two very dif-
ferent time scales: (1) the network and infrastructure con-
struction (in this paper referred to as the pre-processing
phase), and (2) the actual distributed event exploration
(referred to as the runtime phase). As we will see, pre-
computations can often help to significantly speed up the
execution of a local algorithm during runtime, determining
the event component at lower time and message complex-
ity. In this sense, our article also assumes an interesting
new position between local and global distributed compu-
tations, as our algorithms aim at being as local as possible
and as global as necessary.
In our model, we require that the time and message com-

plexities depend on the actual problem instance size: the
algorithms should be output-sensitive. There already exist
some local solutions for other problems whose runtime
depends on the concrete problem input, for example [5],
[9]: rather than considering the worst-case over all possible
inputs, if in a special instance of a problem the input has
certain properties, a solution can be computed quickly. In
this respect, our work is also related to local algorithms
which rely on proof labeling schemes [12], [16], [17] and
allow to locally and efficiently verify global properties.
“Output-sensitive” algorithms have also been studied

outside the field of distributed computing, e.g., for sorting
algorithms [15] (where the complexity of insertion sort
or bubble sort depends on the number of inversions).
Our article is a new incarnation of this philosophy as
performance mostly depends on nS, the event component
size instead of n, the size of the whole network.
Finally, we note that a new LOCAL model which

explicitly distinguishes between pre-processing and run-
time has recently also been introduced in the context
of Software-Defined Networks (SDNs) with distributed
control planes. [27]

Algorithmic Techniques. In general, distributed alarm-
ing algorithms can be built on the basis of several classic
distributed coordination primitives such as clustering [1]
or spanning trees [11] for aggregation [19].
In this paper, we show that maximal independent set

algorithms [22] can be used for the efficient graph explo-
ration, and also build upon sparse neighborhood covers [4],
[13] to solve the neighborhood problem in the on-duty
model. For our off-duty algorithms, the arboricity of the
network plays a central role, and there exist several results
on the usefulness of Nash-Williams decompositions, e.g.,
for computing distributed minimal dominating sets [21],
matchings [7], or coloring [18].
However, we not only adapt existing concepts to the new

problem, but also introduce new algorithmic techniques.
In particular, we introduce a hierarchical sparse neighbor-
hood cover to achieve the desired output-sensitive time
and message complexities.

Bibliographic Note. This article is based on two confer-
ence papers which appeared as “Distributed Disaster Dis-
closure” (SWAT 2008) and as “Event Extent Estimation”
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(SIROCCO 2010). This journal version extends the con-
ference papers, gives full proofs as well as pseudocodes and
examples, and also introduces a new Decomp algorithm.
Finally, we also correct some mistakes.

G. Organization
The article is organized as follows. We first present

algorithms for the simple case of complete graphs (Sec-
tion II). We discuss on-duty and off-duty approaches as
well as lower bounds, and find that the distributed alarm-
ing problem already exhibits some interesting time and
message complexity tradeoffs on the clique. Subsequently,
we attend to the fundamental problem of neighborhood
discovery (Section III). Section IV then tackles general
graphs. We show how to extend our algorithms to sce-
narios with multiple components in Section V, and finally
conclude our work in Section VI.

II. Algorithms for Cliques
To acquaint the reader with the problem definition and

— more importantly — to show the fundamental differ-
ences between the on-duty and the off-duty scenarios, we
consider one of the simplest classes of graphs, namely
cliques, i.e., complete graphs of n nodes.

A. On-Duty: The Optimal Solution
First, observe that solving the problem in the on-duty

scenario on cliques is quite trivial. We need just one co-
ordinating node v, chosen arbitrarily in the preprocessing
phase. Then, when the event occurs, each event node sends
a message to the coordinator v and v may reply with
the number of event nodes. This immediately yields the
following result.

Theorem II.1. For the on-duty scenario the distributed
alarming problem on a clique can be solved in two rounds
using O(nS) messages.

Clearly, the message and time complexities are asymp-
totically optimal. In contrast to this result, in the follow-
ing section, we will show that for the off-duty scenario,
the necessary number of messages in a clique is Ω(n).
Furthermore, we show a tradeoff between the time and
message complexity proving that their product is always
Ω(n log logn) in the off-duty model.

B. Off-Duty: Lower Bounds
We observe that if there is a set S of nS event nodes,

the necessary condition for termination is that at least
one event node sends a message to any other event node.
Therefore, we show that for any deterministic algorithm,
we may choose the set of event nodes, so that before there
is any contact between a pair of event nodes, the number
of messages sent (to non-event nodes) is Ω(n).
To this end, we introduce a concept of primary sched-

ules. We fix any deterministic algorithm Alg, and assume
for a while that only node i belongs to S. Then, node i

transmits messages in some particular order, which we call
a primary schedule for i. Note that for any starting set of
event nodes, Alg uses the primary schedule for i as long
as i does not receive a message from another node. For
succinctness, we say that Alg p-sends a message in round
`, meaning that the primary schedule of Alg assumes
sending a message in round `. Note that the choice of Alg
determines the choices of primary schedules of all nodes.

We say that two nodes p-contact each other if one of
them p-sends a message to the other. Using a counting
argument, we can find a pair of nodes that p-contact after
transmitting many messages.

Lemma II.2. For any deterministic algorithm for the
clique and for any subset of k nodes A, there exists a pair of
nodes v, v′ ∈ A that contact only after one of them p-sends
at least k/2− 1 messages.

Proof: First, we observe that the total number of mes-
sages in all primary schedules is at least

(
k
2
)
. Otherwise,

there would exist a pair of nodes that never p-contact.
In effect, if the algorithm is run on an instance where
only these two nodes belong to event component, it cannot
solve the problem, as neither of these nodes can distinguish
between instances where the second node is in S or not.
For simplicity of the description, we assume that mes-

sages are p-sent sequentially. The j-th message of node i
receives label j. An edge between node i and i′ receives
the label which is the minimum of the labels of messages
sent from i to i′ and from i′ to i. To show the lemma, it
is sufficient to show the existence of an edge whose label
is at least k/2. Assume the contrary, i.e., all edges have
labels k/2− 1 or smaller. Then, the label of any message
would be at most k/2 − 1, which would imply that the
total number of p-sent messages is k · (k2 − 1) <

(
k
2
)
.

Corollary II.3. The number of messages sent by any
deterministic algorithm in a clique is at least Ω(n).

Proof: We apply Lemma II.2 with set A containing
all n nodes of the clique and we choose the two nodes
returned by Lemma II.2 to be in S. Before they contact,
they together transmit Ω(n) messages.

Theorem II.4. Fix any deterministic algorithm Alg that
solves the distributed alarming problem in a clique using
Time rounds and Msg messages. Then Time · Msg =
Ω(n · log logn).

Proof: We assume that log logn ≥ 4. We consider the
first t rounds of the nodes’ primary schedules, where t =
log(logn/ log log logn) = Ω(log logn).

First, assume that there exists a subset A of n/2 nodes,
each p-sending fewer than n/4 messages in the first t steps.
By Lemma II.2, there exists a pair of nodes v, v′ ∈ A that
first p-contact after one of them p-sends at least |A|/2 −
1 = n/4 − 1 messages. Thus, if we start Alg on a graph
where only v and v′ belong to S, it takes at least time t
and uses at least n/4 messages, implying the lemma.
Hence, in the remaining part of the proof, we assume

that there exists a set B0 containing at least n/2 nodes,
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each p-sending at least n/4 messages within the first
t steps. We create a sequence of sets {Bi}ti=0, where Bi is
a maximum subset of Bi−1 with the property that no two
nodes of Bi p-send a message to each other in round i. By
induction, no node from Bi p-sends a message to another
node from Bi within the first i steps. Let h = 1

2 · log logn.
We consider two cases.
(a) There exists a round i ≤ t, in which nodes of Bi p-

send in total at least hn/4 messages. We run Alg
on a graph where only nodes of Bi are event nodes.
The event nodes do not contact each other in the first
i − 1 rounds and in round i they transmit hn/4 =
Ω(n log logn) messages, implying the theorem.

(b) In each round i ≤ t, nodes of Bi p-send in total at most
hn/4 messages. In this case, we show that Bt contains
at least 2 nodes. Thus, if we run Alg on a graph where
only nodes of Bt are event nodes, they do not contact
in the first t−1 rounds and, as Bt ⊆ B0, they transmit
at least n/4 messages in the first t rounds, which would
imply the theorem. To prove the bound |Bt| ≥ 2, it is
sufficient to show that for any i ≤ t, it holds that

|Bi| ≥
n

2 · (2h)2i−1 .

We show this relation inductively. The initial case of
i = 0 holds trivially. Assume that the bound holds for
i−1; we show it for i. Consider a graph on nodes from
Bi−1 with an edge connecting a pair of nodes if they
p-contact in round i−1; the number of edges in such a
graph is at most hn/4. By Turán’s theorem [2], there
exists an independent set Bi ⊆ Bi−1 of size

|Bi| ≥
|Bi−1|

1 + h·n
2·|Bi−1|

≥ |Bi−1|2

h · n

≥ n2

4 · (2h)2i−2 · h · n
= n

2 · (2h)2i−1

In our context, independence means that the nodes of
Bi do not p-contact each other in round i.

C. Off-Duty: A Deterministic Algorithm
Let us now investigate deterministic algorithms for the

clique problem in the off-duty scenario. Clearly, a broad-
cast performed by all event nodes would be time-optimal,
but it requires nS · (n−1) messages. We therefore propose
a natural class of algorithms called Group where nodes
organize themselves recursively into groups.

The algorithm Group uses an integer parameter k ∈
{2, . . . , n}. For simplicity of description, we assume that
logk n is an integer as well. We further assume that node
identifiers are written as (logk n)-digit strings, where each
digit is an integer between 0 and k−1. This implicitly cre-
ates the following hierarchical partitioning of all nodes into
clusters. The topmost cluster (on level logk n) contains all
nodes and is divided into k clusters, each consisting of n/k
nodes, where cluster i contains all the nodes whose first
digit is equal to i. Each of these clusters is also partitioned

into k clusters on the basis of the second digit of identifiers.
This partitioning proceeds to leaves, which are 0th level
clusters, each containing a single node. We call a cluster
active if it contains at least one event node.

Group works in logk n epochs; we assume that there
is an empty 0th epoch before the algorithm starts. We
inductively require that at the end of the ith epoch, there
is a leader in each ith level active cluster, the leader knows
all the event nodes within its cluster and all these nodes
know the leader. Note that this property holds trivially
at the end of epoch 0. Furthermore, this property implies
that at the end of epoch logk n, all nodes constitute a single
cluster and its leader knows the set of all event nodes.

To study what happens in the ith epoch, we concentrate
on a single ith level cluster A. (The procedure is performed
in all such clusters independently in parallel.) A consists of
k (i− 1)th level clusters, denoted A1, A2, . . . , Ak that will
be merged in this epoch. The leader of A will be chosen as
the node with the smallest ID amongst leaders of active
clusters Ai. The merging procedure comes in two flavors:
parallel (Par) and sequential (Seq).

In the Par variant, an epoch lasts two rounds. In the
first round, the leaders of clusters Aj broadcast a hello
message to all nodes from these clusters. All the event
nodes among them answer with a message to a leader with
the smallest identifier, and this node becomes a leader of
the ith level cluster A.

In the Seq variant, the epoch lasts for k + 1 rounds.
For j ≤ k, in the jth round, the leader of cluster Aj
broadcasts a hello message to all nodes from A, provided
such a message was not sent already. The nodes that hear
the message answer in the next round, and the leader that
transmitted the broadcast becomes a leader of A.

Theorem II.5. The Par variant of the algorithm Group
uses O(logk n) rounds and transmits O(min{k, nS} · n ·
logk n) messages. The Seq variant uses O(k·logk n) rounds
and O(n · logk n) messages.

Proof: The time complexities for both variants are
straightforward, and thus we concentrate on bounding
the number of messages. In a single epoch of the Par
variant, each node receives a hello message from at most
min{k, nS} leaders and sends a single reply. This implies
the total number of 2 ·min{k, nS} ·n · logk n messages. In a
single epoch of the Seq variant, each node gets at most one
hello message and answers at most once. Thus, the total
number of transmitted messages is at most 2 ·n · logk n.

We observe that the best time-message product is
achieved for k = 2, in which case both variants of Group
solve the problem in time O(logn) using O(n logn) mes-
sages. Note that Group can be regarded as a general-
ization of two graph search techniques: the extreme cases
require either one round or n messages and correspond to
the parallel or sequential flooding of the graph by event
nodes.
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D. Off-Duty: A Las Vegas Algorithm
In this section, we extend our discussion to randomized

approaches. The idea behind our algorithm Rand is to
approximately “guess” the number of event nodes. For suc-
cinctness of the description, we assume that n is a power
of 2. Rand proceeds in logn+1 epochs, numbered from 0
to logn, each consisting of two rounds. In the first round
of the ith epoch, each node — with probability pi = 2i/n
— broadcasts a hello message to all other nodes. In the
second round event nodes reply. After an epoch with a
broadcast, the algorithm terminates. The algorithm Rand
eventually always solves the problem, as in epoch logn
each node performs a broadcast with probability 1, i.e.,
Rand is a Las Vegas type of an algorithm.

Theorem II.6. In expectation, Rand terminates in
log(n/nS) +O(1) rounds and uses O(n) messages.

Proof: Let k = dlog(n/nS)e, i.e., 2k−1 < n/nS ≤ 2k.
Then, epoch k is the first epoch in which the broad-
cast probability of each node reaches 1/nS, i.e., pk ∈
[1/nS, 2/nS). It is sufficient to show that the algorithm
makes its first broadcast around epoch k and, in expecta-
tion, it makes a constant number of broadcasts.

Let Ei denote an event that Rand does not finish till
epoch i (inclusive), i.e., there was no broadcast in epochs
1, 2, . . . , i. Let τ be a random variable denoting the number
of epochs of Rand. Then, E[τ ] =

∑logn
i=1 Pr[τ ≥ i] =∑logn−1

i=0 Pr[Ei] ≤
∑k−1
i=0 1 +

∑logn−k−1
j=0 Pr[Ek+j ].

To bound the last term, we first observe that the
necessary condition for Ei is that no node transmits in
epoch i. Hence, Pr[Ei] ≤ (1− pi)nS , and thus for 0 ≤ j ≤
logn− k − 1,

Pr[Ek+j ] =
(

1− 2k+j

n

)nS

≤
(

1
e

) 2k+j

n ·nS

≤ e−2j

.

Therefore, E[τ ] ≤ k +O(1).
Now, we upper-bound the number of transmitted mes-

sages. Let Xi be a random variable denoting the number
of nodes transmitting in epoch i. Clearly, E[X0] = nS · p0
and for i ≥ 1 it holds that E[Xi|Ei−1] = nS · pi and
E[Xi|¬Ei−1] = 0. The expected total number of broadcasts
is then

E
[ logn∑
i=0

Xi

]
= E[X0] +

logn∑
i=1

E[Xi|Ei−1] · Pr[Ei−1]

= nS · p0 +
k∑
i=1

nS · pi · Pr[Ei−1]

+
logn∑
i=k+1

nS · pi · Pr[Ei−1]

≤
k∑
i=0

nS · pi +
logn−k−1∑

j=0
nS · pk+j+1 · Pr[Ek+j ]

≤ 2 · nS · pk +
logn−k−1∑

j=0
nS · pk · 2j+1 · e−2j

= O(nS · pk) = O(1) .

As the expected number of broadcasts is constant, the
expected number of messages is O(n).

III. The Neighborhood Problem
Most of our algorithms for general graphs solve the

neighborhood problem in their first few rounds. In these
rounds, each node learns which of its immediate neighbors
are event nodes.

While for special classes of graphs, e.g., trees, there
are straightforward approaches, the situation for arbitrary
graphs is less obvious. In this section, we present two
approaches for the neighborhood problem. The first one,
a network decomposition approach [3] requires the coop-
eration of non-event nodes, and hence works only in the
on-duty scenario. The second one, employing the concept
of arboricity [10], [24] does not have such a requirement,
and thus can be used in both scenarios.

A. Sparse Neighborhood Covers
The first possible solution for the neighborhood prob-

lem is based on network decomposition approach, con-
cretely on the (k,t)-neighborhood cover [25]. For solving
the neighborhood problem, in the preprocessing phase, we
compute a (logn,1)-NC. Additionally, each node computes
and stores the shortest paths to all corresponding cluster
heads.

Lemma III.1. Given the precomputed (logn, 1)-NC, it
is possible to solve the neighborhood problem in the on-
duty scenario, in time O(logn) and using O(nS · log2 n)
messages.

Proof: In the runtime phase, the cluster heads serve
as local coordination points, where event nodes can learn
which of their neighbors sensed the event. This is executed
in two stages. In the first one, each event node v sends a
message to all cluster heads of the clusters it belongs to.
All these cluster heads reply in the second stage with the
set of v’s neighbors that contacted them.

The time complexity is due to the fact that messages
have to be routed to the cluster heads and back, and the
diameter of any cluster is at most O(logn).

For bounding the message complexity, observe that by
Definition I.3, each of the nS nodes in the event component
belongs to at most O(logn · n1/ logn) = O(logn) clusters,
and hence contacts this number of cluster heads. This
entails O(logn) messages (the replies from cluster heads
double this amount) and each message is forwarded for
O(logn) hops (as the diameter of each cluster is at most
O(logn)). Hence, the total number of message transmis-
sions is O(nS · log2 n).
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B. Arboricity Based Discovery
In this section we show a neighborhood discovery algo-

rithm that works even in the restricted off-duty scenario.
We show how nodes can pre-compute a list of neighbors
they will contact if they get activated by the event.

During the preprocessing phase, we compute re-
spective rooted spanning forests F = {F1, F2, .., Fα}.
Such a decomposition can be computed in polynomial
time [10], [24]. For any node v, we define a set Pv =
{w |w is a parent of v in some Fj}.

Lemma III.2. Given the precomputed set F of α forests
covering G, it is possible to solve the neighborhood problem
in the off-duty scenario, in 2 rounds using O(nS · α)
messages.

Proof: In the first round, each event node v sends
a hello message to all its neighbors from Pv. At the same
time it receives similar messages from some of its event
neighbors. Those event nodes that receive hello messages
reply in the second round. We observe that each event
node receives a hello message or a reply from all neighbors
that are event nodes, and thus may effectively learn its
neighborhood. As each event node v sends |Pv| ≤ α mes-
sages in the first round and they are followed by the same
number of replies, the total communication complexity is
O(nS · α).

IV. Algorithms for Arbitrary Graphs
For general graphs, we present two solutions, one for

the on-duty and one for the off-duty scenario; both try
to strike a balance between the time and message com-
plexities. Further, we study algorithms that are based on
the breadth/depth first search routines; these algorithms
are useful primarily when we want to optimize time or
communication complexity alone.

A. On-Duty: Algorithm Decomp
We start with a description of a randomized distributed

algorithm Decomp that requires on-duty scenario capa-
bilities. Its running time is linear in the weak diameter
of the event component S, and the message complexity is
linear in the component’s size, both up to polylogarithmic
factors. This is asymptotically optimal up to polylogarith-
mic factors since the exploration of a graph requires at
least time d = diam(S) and nS messages.
Algorithm Decomp builds on the knowledge passing

paradigm. Its execution consists of epochs in which only
some event nodes are in active state and the knowledge
about event components is stored only on them. In the
beginning of this process, all nodes are active and each of
them is aware only of itself, and in the end a single event
node remains active and it knows the entire subgraph
G(S).
We emphasize that in our construction, even when

executed on a single event component, it can happen that
the set of the nodes active in epoch i + 1 is not a subset
of nodes active in epoch i. Not even the cardinalities of

active sets are required to monotonically decrease during
consecutive epochs.

The challenge is to organize the knowledge passing
process so that — on the one hand — no knowledge about
S is lost (i.e., the active nodes altogether always know
all event nodes) and — on the other hand — the number
of active nodes drops quickly (so that the number of
transmitted messages is minimized). In the following, we
will first present the preprocessing phase and subsequently
discuss the runtime phase of Decomp.

Decomp Preprocessing Phase. To use the neighborhood
discovery routines described in Section III-A, Decomp
has to compute sparse covers (logn, 1)-NC in the prepro-
cessing phase. In addition, it also computes a hierarchy
of sparse neighborhood covers for exponentially increasing
cover diameters, i.e., the decompositions Di := (logn, 2i)-
NC for i ∈ {0, . . . , dlog (diam(V ))e + 1}. Each node also
computes the shortest paths to the cluster heads of all
clusters it belongs to (e.g., using Dijkstra’s single-source
shortest path algorithm [6]). These paths may contain
nodes outside the clusters. Additionally, each node stores
shortest path distances between all pairs of nodes.
Maximal Independent Sets. Besides pre-computed sparse

neighborhood covers, Decomp relies on the concept of
Maximal Independent Sets (MIS). Decomp computes mul-
tiple MIS during the runtime phase in a distributed
manner. In our application, we will compute maximal
independent sets for the subgraph induced by event nodes.
Furthermore, we generalize this notion: a k-MIS is a sub-
set L of event nodes, such that for each node v ∈ L its
k-neighborhood does not contain any other node from L.
We require maximality: each event node belongs to a k-
neighborhood of some node from L. In these terms, 0-MIS
is the set of all event nodes, whereas 1-MIS is a regular
MIS.

Alternatively, one could define k-MIS in the following
way. Fix an unweighted graph G. Let G≤k be a graph on
the same set of vertices, where two nodes are connected
if there is a path between them of length at most k in G.
Then L is a k-MIS of a given node set in graph G if and
only if it is a MIS of this set in graph G≤k.

For any set A, we define Γ(A) = {w′ /∈ A : w ∈
A ∧ (w,w′) ∈ E} as the set of A’s neighbors not in A.
Furthermore, we define δ(A) = (A,Γ(A)), i.e., δ(A) con-
tains information about A and its immediate neighbors.

Decomp Runtime Phase: High-Level Description. The
execution of the algorithm Decomp is split into epochs,
numbered from 1. With high probability, we will maintain
the following invariant at the end of each epoch i: the set
of active event nodes, denoted Li, constitutes a ti-MIS of
event nodes, where ti = 2i − 1. More precisely, at the end
of epoch i, each event node v will know its responsibility
area Ri(v) (a subset of event nodes), such that all areas
are disjoint, their union is the set of event nodes, for an
inactive node v, Ri(v) = ∅, and for an active node v, {v} ⊆
Ri(v) ⊆ Nti(v). Furthermore, any active node v knows
which of the immediate neighbors of Ri(v) are event nodes.
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Algorithm 1 Runtime phase of Decomp
1: perform neighborhood discovery
2: for all v ∈ S do
3: v.active := true
4: R0(v) = {v}
5: i← 1
6: while ∃ active v s.t. Γ(Ri−1(v)) contains an event

node
7: each active v computes δ(Ri(w)) for all w ∈ Ri−1(v)
8: (by simulating of Luby’s MIS algorithm)
9: for all active v in parallel
10: v sends δ(Ri(w)) to each w ∈ Ri−1(v)
11: for all v ∈ S
12: v.active ← (Ri(v) 6= ∅)
13: i← i+ 1

Algorithm 1 shows how this invariant can be preserved
over the consecutive epochs. At the beginning, we define
L0 as the set of all event nodes, all nodes are active,
and R0(v) = {v} for each event node v. Such an L0 is
clearly (the unique) 0-MIS, and thus the invariant holds
just before the first epoch.

In epoch i, for each node w, its new responsibility area
Ri(w) is computed along with its neighborhood Γ(Ri(w)).
These computations are however not performed by a
node w itself, but by the active node v responsible for
w, i.e., the node v such that w ∈ Ri−1(v). The details of
the corresponding lines 7–8 of Algorithm 1 are postponed
to the next subsection. Afterwards the knowledge about
δ(Ri(w)) is propagated from v to w. Thus, when this
process ends, each node w learns its new responsibility area
Ri(w) and w is active if and only if this area is nonempty.

We end this process when one active node recognizes
that it knows the entire event component (i.e., its imme-
diate neighborhood does not contain other event nodes).

Computing MIS in a single epoch. Now we explain in detail
what happens in the lines 7–8 of Algorithm 1. What we
want to compute is a ti-MIS of set S in graph G or,
alternatively speaking, a MIS of S in graph G≤ti . To this
end, we will simulate the standard, randomized Luby’s
algorithm [22] for finding a MIS in G≤ti . By the analysis
of [22], there exists a constant γ, such that after executing
c ·γ · logn rounds of the algorithm, the algorithm correctly
computes a maximal independent set with probability at
least 1−n−c (for any integer c). We emphasize that in each
epoch a new MIS is computed from scratch not taking into
account the current MIS, Li−1.
It remains to show how to simulate a single step of

the Luby’s algorithm. In such step, nodes perform local
computations and communicate with their neighbors (note
that these are neighbors in G≤ti , i.e., nodes whose distance
in G is at most ti). Note that each node knows these
neighbors, as all-pairs distances were computed in the
preprocessing phase. Furthermore, in each round of the
Luby’s algorithm, some nodes may become selected to be
in MIS, and their neighbors (in G≤ti) become selected to

Event node w ∈ Ri−1(v) Node v ∈ Li−1 simulating w
w performs local computa-
tion (e.g., chooses random vari-
ables)

v performs this local computa-
tion on behalf of w.

w sends message to w′ ∈ Ri(v′) v sends a message to all cluster
heads from Di+1; each cluster
head forwards this message to
all nodes from Li contained in
its cluster.

w becomes selected to be in
ti-MIS and each of its G≤ti -
neighbors (say, constituting set
W ′) become selected not to be
in ti-MIS.

v sets Ri(w) = W ′. For any
node w′ ∈ W ′, the node v′ re-
sponsible for w′ sets Ri(w′) =
∅.

TABLE I
Epoch i of Decomp: Nodes from Li−1 simulate the execution
of Luby’s algorithm run on all event nodes for computing

their ti-MIS.

be outside of MIS.
All these actions that in Luby’s algorithm are performed

by a node w can be simulated by an active node v ∈ Li−1
responsible for w (the one for which it holds w ∈ Ri−1(v)),
as demonstrated in Table I. The only non-trivial part of
the simulation is the transmission of messages sent by
w to its G≤ti-neighbor w′. To simulate this, each node
v ∈ Li−1 sends gathered messages of all nodes from its
responsibility area Ri−1(v) to all the cluster heads from
Di+1 it belongs to. If there is no message transmission to
be simulated, v sends an empty message. In either case,
each cluster head learns all the active nodes belonging
to its cluster. Afterwards all cluster heads transmit all
the received messages to all nodes from Li−1 they are
responsible for. If a node v′ ∈ Li−1 receives a message
and the intended recipient is not in its rensposibility area,
it simply discards that message.

Thus, it remains to show that if a node w transmits
message to a node w′ and d(w,w′) ≤ ti, then this message
is successfully delivered. Let v and v′ be the nodes from
Li−1 responsible for w and w′, respectively. Observe that
d(v, v′) ≤ d(v, w)+d(w,w′)+d(w′, v′) ≤ ti−1 + ti+ ti−1 ≤
2i+1 − 3. Then, by the property of neighborhood covers,
there exists a cluster C ∈ Di+1, such that both v and v′

belong to C, and thus the message is successfully delivered
to v′.
It is straightforward to guarantee that all nodes simulate

the same round of Luby’s algorithm, as there is an upper
bound on the number of rounds necessary for communicat-
ing with cluster heads from Di+1. In the presented scheme,
the simulating nodes correctly compute the set Ri(w) for
each simulated node w. To additionally compute Γ(Ri(w))
it is sufficient to always include the neighborhood of a
transmitting node in the transmitted message. Figure 2
illustrates the algorithm.

Theorem IV.1. Decomp terminates with a correct solu-
tion with high probability, and requires O(d · log2 n) rounds
and O(nS · log3 n · log d) messages; d = diam(S) is the weak
diameter of the event set S.
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Fig. 2. Decomp constructs independent sets of larger and larger
range (left) with fewer active nodes (dark). Knowledge is transferred
via the neighborhood covers (right).

Proof: First, we bound the number of nodes in Li.
Nodes from Li form a ti-MIS, and the responsibility area
for any node contains at least bti/2c event nodes. Thus,
the number of nodes in Li is O(nS/ti) = O(nS/2i).
Termination and runtime: At latest after epoch dlog de,

we get a 1-node active set. Its only node recognizes this sit-
uation and terminates. Epoch i takes O(logn) simulation
steps, where each step requires sending messages to cluster
heads (at the distance of at most O(2i·logn)) and receiving
responses. Knowledge passing at the end of an epoch
requires an additional time of O(2i). Altogether, the total
number of rounds is O(

∑dlog de
i=1 2i · log2 n) = O(d · log2 n).

Correctness: The correctness of the algorithm follows
directly from the information passing mechanism: no in-
formation about event nodes is lost at any epoch. Given
that maximal independent sets are computed in each
epoch, Decomp finds the entire event component. Set Li
is computed in epoch i with probability 1− n−c provided
that set Li−1 was computed correctly in epoch i − 1. As
the algorithm terminates after dlog de ≤ n many rounds,
it manages to compute a correct maximal independent set
in all epochs (and thus compute a correct solution) with
probability at least 1− n−c+1.
Message complexity: For a single round of the MIS sim-

ulation, each node from Li−1 communicates with O(logn)
cluster heads, each at distance O(2i · logn). The responses
from cluster heads can be bounded analogously. The
knowledge passing complexity (at the end of an epoch)
requires sending |Li| messages along at most ti−1 hops.
Thus, the whole communication in epoch i, which has
O(logn) rounds, takes O(logn · (nS/2i) · 2i · logn · logn) =
O(nS · log3 n) messages. As there are at most dlog de
epochs, the total number of messages is O(nS ·log3 n·log d).

Note that in the unlikely event that Decomp does
not compute a correct solution, at least one node can
locally detect that the independent set is not maximal, and
raise an alarm to trigger a recomputation. Using fast and
slow transmissions, the algorithm can hence guarantee the
correctness with probability 1 at the expense of increased

runtime, which is then bound with high probability.

B. The Off-Duty Scenario
Let us now turn our attention to the off-duty scenario

where only event nodes can participate in the distributed
alarming. In the remaining part of this section we use the
neighborhood discovery technique from Section III in an
algorithm MinID. This algorithm’s performance depends,
besides nS, only on the arboricity of the graph.

In the preprocessing phase of MinID, the algorithm
computes α trees {Fj}αj=1 covering the whole graph as
described in Section III-B. Then, at the beginning of the
runtime phase, MinID runs an arboricity-based neighbor-
hood discovery (cf Section III-B).

First, we present the algorithm under the assumption
that nS is known; later we show that this assumption is
not critical for our analysis.

The discovery of the connected set of event nodes is
performed by leader election, where the node with the
smallest index distributes its index to everyone else in
the event set. The algorithm proceeds in 2 lognS epochs.
Initially, each event node v constitutes its own cluster
Cv = {v}, with v acting as the leader. In the course of
an epoch, the number of clusters is reduced, so that after
at most 2 lognS epochs a single cluster containing all event
nodes in the set is formed. At any time two clusters Ci and
Cj are neighbors if there exists an edge (v, w) connecting
two event nodes v ∈ Ci and w ∈ Cj .
We also assume that before entering a new epoch each

cluster is supported by a spanning tree rooted at the
leader. Note that all nodes in the cluster can be visited
in time at most 2nS, e.g., by a DFS routine emulated with
the help of a token released by the leader. Each cluster Ci
is visited by the token three times. During the first visit
at each node v ∈ Ci, the token distributes the index of
Ci’s leader to the entire Ci and to all event neighbors of
Ci in different clusters. During the second visit, the token
collects information about indices of neighboring clusters
and it picks the Cj with the smallest index j. If j < i,
during the third consecutive visit, the token distributes
j to all nodes in Ci to inform them that they are now
destined for Cj .
Let GC be a digraph in which the set of nodes is formed

of clusters Ci and where there is an arc from Cj to Ci iff
nodes of Ci are destined for Cj . A node Cw with in-degree
0 in GC corresponds to a cluster that during this epoch
spreads its index to all other clusters reachable from Cw
according to the directed connections in GC . Note also
that since the maximum in-degree of nodes in GC is 1,
each cluster with in-degree 1 will receive a new index from
exactly one cluster. The process of reindexing is performed
by a DFS procedure initiated by the leader in each cluster
Cw with in-degree 0 in GC and it is extended to the nodes
of all (not only directly neighboring) clusters reachable
from Cw (according to the connections in GC).

Recall that the procedure presented above works under
the assumption that the value of nS is known in advance.
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Fig. 3. An illustration of algorithm MinID. An example graph with
node IDs is shown in (a). In (b), it is shown how nodes choose to
which neighbors they want to be destined, and we can also see what
clusters are formed after one loop if ñs is sufficiently large. In (c), we
see that only node 3 succeeds to spread its ID in the whole cluster,
and the situation until ñs increases is depicted. In (d), we see how
the situation develops from (b) for ñs = 4: nodes 0, 1, 3 manage
to spread their IDs. Afterwards, the whole cluster 3 is destined for
cluster 1, and cluster 4 is destined for cluster 0 which is shown in (e),
however, only node 0 manages to spread its ID. The final situation for
this value of ñs is shown in (f ). In (g), we can see the situation after
(e) for ñs = 8, finishing the execution. In (h), we can see how the
situation develops if ñs = 16, i.e., for the first value that is actually
larger than the number of nodes.

Since this is not the case, we take an exponentially increas-
ing sequence of upper bounds 2, 4, .., 2i, .., 2dlogne on nS,
and run our algorithm assuming these consecutive powers
of two, until the correct bound on nS is found. Note that
when the algorithm runs with a wrong assumption on the
size of the event set, the nodes eventually learn that the
set is larger than expected. The nodes in clusters that are
about to expand too much are informed by their leaders,
and the nodes destined for other clusters, if not contacted
by the new leader on time, also conclude that the bound on
nS is inappropriate. Thus, the process continues until the
appropriate bound on nS is found and then it is stopped.
An example execution of the algorithm MinID is given

in Figure 3.
If we could show for a single epoch that each cluster

either delegates its index to at least one other cluster, or
assumes the index of another cluster, this would prove that
the number of clusters is reduced to at most half of their
number from the previous epoch.

However, there may exist clusters whose indices are
local minima, i.e., they have the smallest index in their
neighborhood in GC , but each of their neighbors has
another neighbor with yet a smaller index and chooses to
accept that neighbor’s index. Each such local minimum
will have a neighbor with a smaller index in the next

epoch, as all its neighbors will accept smaller indices. Thus
within two epochs each cluster either grows or is removed,
from which follows the following lemma:

Lemma IV.2. During two consecutive epochs of MinID
the number of clusters is reduced by half as long as it is
larger than 1.

Theorem IV.3. In a graph G with arboricity α, the
deterministic algorithm MinID finishes in O(nS lognS)
rounds using O(mS lognS + α · nS) messages.

Proof: For an assumed bound nS on the size of the
component and for a single epoch, the three visits along
an Euler tour followed by reindexing take time O(nS)
and incur total communication complexity of O(mS), since
each edge is traversed a constant number of times. Accord-
ing to Lemma IV.2, after at most 2 lognS epochs there is
exactly one cluster. Hence, if the bound nS is correct, the
total time is O(nS lognS) and the total communication
O(mS lognS).

Therefore in total the time complexity for an event
set of size nS is bounded by

∑dlognSe
i=1 O(2i · log 2i) =

O(nS lognS). Similarly, the total communication is
O(mS lognS). By adding the complexity of neighborhood
discovery (cf. Lemma III.2), the claim follows.
Note that arboricity of a planar graph is 3 [24]. Thus,

MinID runs in time O(nS lognS) using O(nS lognS) mes-
sages in planar graphs as shown in Figure 6.

C. Search-Based Algorithms
To complement the results on general graphs from

Section IV-A and Section IV-B, we study algorithms
for arbitrary graphs based on depth/breadth first search
routines. They are inferior to the already presented results
if we consider the product of number of rounds and the
number of messages as the performance metric, but can
be useful if one wants to optimize the time or message
complexity alone. We provide a qualitative comparison in
Figure 4 and Figure 5.

First, we note that it is possible to implement the
DFS and BFS routines in a distributed fashion in our
environment.

Lemma IV.4. In both off-duty and on-duty scenarios,
a distributed DFS procedure initiated at a single event node
finishes in time O(nS) using O(n) messages. If each event
node knows its event neighbors, the message complexity can
be reduced to O(nS).

Proof: First, we assume that nodes do not know their
event neighborhoods. We fix any starting event node. We
say that this node holds the “token”: the token indicates
the node that would be processed in the centralized DFS.
This token represents the current knowledge about all
nodes: nodes are either known to be event nodes, known to
be non-event ones, or of unknown state; this knowledge is
passed on with the token. During our procedure, the token
node tries to forward the token to the neighbor that would
be next in the DFS tree. This is done as follows. First,



12

time
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(min{α, log2 n}+ nS)nS m · nS · log d

onParBFS

impossible possible unknown

Fig. 4. Overview of formal results and comparison of different
algorithms for arbitrary graphs in the on-duty scenario. All the values
are asymptotic ones. The complexities of algorithm Decomp are
deterministic, but the algorithm may err with some small, inversely
polynomial probability.

the token node “pings” all its neighbors with unknown
state and event neighbors respond immediately. Then, as
in the centralized DFS algorithm the token is passed to
any unvisited event node, and if there is none, the token
is sent back to the node it came from. As DFS proceeds
along the DFS tree spanning all event nodes in a single
component, it takes time O(nS). In the process of gaining
knowledge each node changes its state just once, so the
number of messages is O(n).

Second, we observe that in case of a known neighbor-
hood, the part with pinging all neighbors can be omitted,
and the token can be passed to a non-visited event neigh-
bor. This reduces the number of messages to O(nS).

Lemma IV.5. In both off-duty and on-duty scenarios,
a distributed BFS procedure uses O(D) rounds and O(m)
messages. If each event node knows its event neighbors,
the messages complexity can be reduced to O(mS). Fur-
thermore, the time complexity can be reduced to O(d) in
the on-duty scenario, but the number of messages remains
O(m) (even if each node knows its event neighborhood); the
resulting procedure is called onBFS.

Proof: A BFS procedure is just a simple flooding
operation and its time and message complexities are im-
mediate. Algorithm onBFS floods also non-event nodes.

The DFS, BFS and onBFS procedures are useful if
there is a predefined leader. In our setting, there is no
such distinguished node, and hence we have to start this
procedure at multiple event nodes, in parallel, sequentially,
or a mixture of the two. If our primary goal is to optimize
the runtime, we should parallelize as many procedures as
possible: in fact, we may run independent DFS, BFS or
onBFS routines from each event node. The resulting algo-
rithms will be called ParDFS, ParBFS, and onParBFS,
respectively.

If we run these algorithms without neighborhood discov-
ery, the total number of used messages for any of them will
be Ω(n·nS). Thus, we can run any neighborhood discovery
beforehand without increasing their asymptotic message
complexity. We choose arboricity based discovery as it is
available in both on-duty and off-duty scenarios and has

time

messages

n2

nS

D

n n · nS

(α +mS) · nS

ParBFS

impossible possible unknown

nS log nS

n

n2/nS

ParDFS

MinID

mS log nS + α · nS

k-wDFS

(α + nS)nSα · nS

k-nwDFS

k-nwDFSk-wDFS

Fig. 5. Overview of results and comparison of different algorithms for
arbitrary graphs in the off-duty scenario. All the values are asymp-
totic ones. The lower bound of Ω(n) on the number of messages holds,
e.g., for cliques, by Corollary II.3. The lower bound of Ω(n log logn)
on the time-message product in cliques (cf Theorem II.4) is not
depicted in this figure.

a lower runtime.

Theorem IV.6. The algorithms ParDFS, ParBFS and
onParBFS solve the problem in time O(nS), O(D), and
O(d), respectively, using O(nS ·(α+nS)), O(nS ·(α+mS)),
and O(nS ·m)) messages. The first two algorithms can be
used in both the on-duty and the off-duty scenario, the third
is for the on-duty scenario only.

Proof: For all algorithms, we start with an arboricity
based neighborhood discovery as described in Section III-B
which takes two rounds and O(α ·nS) messages. The time
complexity is simply the worst-case complexities of a single
DFS, BFS, or onBFS procedure, respectively. On the
other hand, the total number of messages is the number
of messages used by these procedures, times the number
of event nodes nS. For the performance of the onParBFS
algorithm we observe that O(nS · (α+m)) = O(nS ·m) as
α ≤ n ≤ m.
One way to reduce the number of messages is to have

a graded start of the DFS procedures. Of course, as we
do not know which nodes are event ones, we may need
to wait for potentially non-event nodes. Concretely, in our
algorithm k-wDFS (where k ∈ {1, . . . , n}), we divide time
into dn/ke epochs of length Θ(n). This length is chosen in
such a way that for any choice of event nodes, the worst-
case execution of a DFS initiated at any event node ends
within one epoch. In epoch i, we call event nodes with
identifiers between k · (i − 1) + 1 and min{k · i, n} busy.
All busy nodes start their DFS procedures. The algorithm
terminates in the first epoch, in which there was any busy
node.

Theorem IV.7. For any integer k ∈ {1, . . . , n}, the
algorithm k-wDFS solves the problem in O(n2/k) rounds
using O(min{k, nS} · n) messages.

Proof: The algorithm terminates in the first epoch,
in which there was any busy node. In the worst-case, the
algorithm finishes after dn/ke epochs, i.e., after O(n2/k)
rounds. In this epoch, all busy nodes (at most min{k, nS}
of them) start their DFS procedure, transmitting in total
O(min{k, nS} · n) messages.
Again, the message complexity can be reduced to

O(min{k, nS} · nS) if the algorithm is preceded by the
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neighborhood discovery routine. As the runtime of the k-
wDFS is already Ω(n) for any k, we may choose either
of the two routines of Section III without increasing its
asymptotic runtime. Note that their message complexities
are O(nS · log2 n) and O(nS · α) and hence in the on-duty
scenario, we may choose the more efficient one, while in
the off-duty scenario, we have to use the latter one. We call
the resulting algorithm k-nwDFS, immediately obtaining
the following result.

Theorem IV.8. For any integer k ∈ {1, . . . , n}, the algo-
rithm k-nwDFS solves the problem in O(n2/k) rounds.
In the off-duty scenario, it uses O((α + min{k, nS}) ·
nS) messages while in the on-duty scenario it uses
O((min{α, log2 n}+ min{k, nS}) · nS) messages.

V. Handling Multiple Components
We conclude our technical contribution with a discus-

sion of scenarios where event nodes S constitute multiple
connected components. In this scenario, we aim to ensure
that at least one node in each component knows this entire
component. First, note that such an extension does not
affect the off-duty algorithms (even when run in on-duty
scenarios) as event nodes from two different components
do not interact.

To make Decomp work for multiple components, we can
insert a special cleanup stage at the end of each epoch i.
The general idea is that if it is possible to identify a whole
event component, the nodes of this component should be
instructed to switch to idle state; henceforth, they act as if
they were non-event nodes. Specifically, such a verification
can be performed in each epoch i, right after line 12 of
Algorithm 1. To this end, each active node v forwards its
new responsibility areas δ(Ri(v)) to heads of all clusters
from Di+1 it belong to. Thus, each cluster head has a
complete picture of all nodes that are in its cluster plus
their immediate neighborhoods. For each event component
S′ ⊆ S that is contained entirely in the cluster, the cluster
head sends the description of S′ to all active nodes (in its
cluster) whose responsibility areas contain some nodes of
S′. Finally, each such active node v tells all nodes from
δ(Ri(v))∩S′ to switch to idle state and removes them from
its responsibility area. If, in effect, v’s responsibility area
becomes empty, it switches to inactive state. (Note that if
v ∈ S′, then it is possible that it remains active although
it became idle: it will play its usual role in choosing the
independent set Li+1 in the next epoch.) The introduced
change also modifies slightly the meaning of the main while
loop condition (line 8 of Algorithm 1): the algorithm may
now terminate because there are no more active nodes.

VI. Conclusion
We consider our work as a first step to shed light

onto the important problem of distributed alarming. We
identify two main directions for future research. First,
many of our results do not come with lower bounds, and
it remains to study the optimality of our solutions and

time
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n n · nS · log d

ParBFS

impossible possible unknown

d log2 n
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n2/nS
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nS n2
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nS log nS
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Fig. 6. Overview of results and comparison of different algorithms
for planar graphs in both off-duty and on-duty scenarios. Algorithms
Decomp and onParBFS use the capabilities of the on-duty scenario.
All the values are asymptotic ones. The depicted performance of the
algorithms is an immediate consequence of setting α = O(1) and
mS = O(nS). The algorithms k-wDFS and ParDFS are superseded
by others.

to close possible gaps. That said, our algorithms perform
quite well, e.g., for the case of planar graphs, cf Figure 6.

Second, our models are still simple and, depending on
the application, additional aspects may have to be taken
into account. For instance, for wireless network scenarios,
our models need to be extended with an appropriate
interference model. However, to some extent, the design
of efficient medium access schemes is orthogonal to our
approach, in the sense that our algorithms can be com-
bined with existing algorithms, e.g., [26]: the resulting
time and message complexities must be multiplied by the
medium access overhead. Finally, our algorithms should
be extended to be able to deal with misbehaving or
malfunctioning nodes that do not cooperate despite having
sensed an event.
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