
SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid∗, Chen Avin∗, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, Zvi Lotker

Abstract—This paper initiates the study of locally self-
adjusting networks: networks whose topology adapts dynamically
and in a decentralized manner, to the communication pattern σ.
Our vision can be seen as a distributed generalization of the self-
adjusting datastructures introduced by Sleator and Tarjan [22]:
In contrast to their splay trees which dynamically optimize the
lookup costs from a single node (namely the tree root), we seek
to minimize the routing cost between arbitrary communication
pairs in the network.

As a first step, we study distributed binary search trees
(BSTs), which are attractive for their support of greedy routing.
We introduce a simple model which captures the fundamental
tradeoff between the benefits and costs of self-adjusting networks.
We present the SplayNet algorithm and formally analyze its
performance, and prove its optimality in specific case studies. We
also introduce lower bound techniques based on interval cuts and
edge expansion, to study the limitations of any demand-optimized
network. Finally, we extend our study to multi-tree networks, and
highlight an intriguing difference between classic and distributed
splay trees.

I. INTRODUCTION

In the 1980s, Sleator and Tarjan [22] proposed an appealing
new paradigm to design efficient Binary Search Tree (BST)
datastructures: rather than optimizing traditional metrics such
as the search tree depth in the worst-case, their splay datastruc-
ture self-adjusts to its usage pattern, moving more frequently
accessed elements closer to the root. A natural performance
metric to evaluate a self-adjusting system is the amortized cost:
the “average cost” for a worst case sequence of operations (of
a certain class).

Since this seminal work, self-adjusting datastructures have
been studied intensively, and various more efficient self-
adjusting datastructures such as Tango BSTs [7] or multi-
splay trees [23] have been proposed. In particular, the fa-
mous Dynamic Optimality conjecture [7] continues to puzzle
researchers: the conjecture claims that splay trees perform as
well as any other binary search tree algorithm up to a constant
factor.

In contrast to these flexible classic datastructures, today’s
distributed datastructures and networks are still optimized

S. Schmid is with the TU Berlin & Telekom Innovation Laboratories,
Germany, e-mail: stefan@net.t-labs.tu-berlin.de

C. Avin and Z. Lotker are with the Department of Communica-
tion Systems Engineering, Ben-Gurion University of the Negev, e-mail:
{avin,zvilo}@bgu.ac.il.

C. Scheideler is with the University of Paderborn, Germany, e-mail:
scheideler@upb.de

M. Borokhovich is with the University of Texas at Austin, USA, e-mail:
michaelbor@gmail.com

B. Haeupler is with the School of Computer Science, Carnegie Mellon
University, e-mail: haeupler@cs.cmu.edu.

Conference versions of this work were published in [3], [5].
Research supported by the German Israeli G.I.F. Research Grant I-1245-

407.6/2014.
∗ The first two authors contributed equally to this work.

toward static metrics, such as the diameter or the length of
the longest route: the self-adjusting paradigm has not spilled
over to distributed networks yet.

We, in this paper, initiate the study of a distributed general-
ization of self-optimizing datastructures. This is a non-trivial
generalization of the classic splay tree concept: While in clas-
sic BSTs, a lookup request always originates from the same
node, the tree root, distributed datastructures and networks
such as skip graphs [2], [13] have to support routing requests
between arbitrary pairs (or peers) of communicating nodes; in
other words, both the source as well as the destination of the
requests become variable. Figure 1 illustrates the difference
between classic and distributed binary search trees.

In this paper, we ask: Can we reap similar benefits from self-
adjusting entire networks, by adaptively reducing the distance
between frequently communicating nodes?

As a first step, we explore fully decentralized and self-
adjusting Binary Search Tree networks: in these networks,
nodes are arranged in a binary tree which respects node
identifiers. A BST topology is attractive as it supports greedy
routing: a node can decide locally to which port to forward a
request given its destination address.

A. Our Contributions

This paper makes the following contributions.
1) We initiate the study of self-adjusting distributed datas-

tructures and introduce a formal model accordingly. Our
model is simple but captures the fundamental tradeoff
between the benefits of self-adjustments (namely shorter
routing paths) and their costs (namely reconfigurations).

2) We present a self-adjusting distributed BST called
SplayNet. SplayNet is a natural generalization of the
classic splay tree algorithm which “splays” communica-
tion partners to their common ancestor. SplayNet is fully
decentralized in the sense that all topological adjustments
as well as routing are local.

3) We formally analyze the performance of SplayNet (in
terms of amortized costs). In particular, we show that the
overall cost is upper bounded by the empirical entropies
of the sources and destinations in the communication
pattern; a simple lower bound follows from conditional
empirical entropies. We also prove the optimality of our
approach in specific case studies, e.g., when the commu-
nication pattern follows a product distribution. Finally,
we also present a dynamic programming algorithm to
optimally solve the offline problem variant in polynomial
time.

4) We introduce novel lower bound techniques to study the
limitations of self-adjusting networks. These techniques
are based on interval cuts and edge expansion, and may

2

be of independent interest and find applications beyond
the setting studied in this paper.

5) Finally, we initiate the discussion of more complex
self-adjusting networks, namely topologies consisting
of multiple trees. We make the interesting observation
that in contrast to classic datastructures where the self-
adjustment benefits of multiple trees is limited, in a
distributed setting, a single additional BST can sometimes
reduce the amortized cost dramatically.

In summary, our work shows that while some algorithmic
concepts of traditional splay trees can be generalized to
networks, the distributed setting requires new analytical tools.
Moreover, our results highlight that self-adjustment benefits
can indeed be reaped also in the context of networks; for
multi-tree networks, these benefits can even be significantly
higher than in classic datastructures.

In general, we regard our study as a first step, and believe
that our model and results open a rich area for future research.

B. Paper Organization

The upcoming Section II introduces our formal model
and provides the reader with the necessary background. Sec-
tion III describes an offline algorithm to compute optimal
static distributed BSTs and presents the SplayNet approach.
Section IV derives entropy-based upper and lower bounds
on the performance of SplayNets, and Section V studies the
locality and convergence properties of the SplayNet algorithm
in specific scenarios. Section VI then derives improved lower
bounds which allow us to show the optimality of SplayNets in
additional scenarios. In Section VII we initiate the discussion
of datastructures based on multiple BSTs. After reviewing
related work in Section VIII, we conclude our contribution in
Section IX. In the Appendix, some additional technical details
are provided.

II. MODEL AND BACKGROUND

We consider a set of n nodes (or peers) V = {1, . . . , n}
interacting according to a certain communication pattern. The
pattern is modeled by σ = (σ0, σ1 . . . σm−1): a sequence of
m communication requests where σt = (u, v) ∈ V × V , with
source u to destination v, henceforth sometimes denoted by
src(σt) and dst(σt), respectively.

Our goal is to find a communication network G which
connects the nodes V according to the communication pattern:
additionally, G must be chosen from a certain family of desired
topologies G, for example, the set of tree topologies (the focus
of this paper), expander graphs, or low-diameter networks, etc.
Each topology G ∈ G is a graph G = (V,E). We distinguish
two problem variants: (1) A static variant where G can be
optimized towards the communication pattern σ in the sense
that it can exploit, e.g., long-term characteristics of σ, however,
G is fixed and cannot change over time. (2) A self-adjusting
variant where G can be adapted over time.

Generally, it is desirable that networks are adjusted
smoothly, and we are interested in local transformations:
changing communication pattern leads to “local” adjustments
of the communication graph over time.

As mentioned above, this paper focuses on a setting where
G represents the set of binary search trees (BSTs), hence-
forth sometimes simply called tree networks. Besides their
simplicity, BSTs are attractive for their low node degree and
the possibility to route locally: given a destination identifier
(or address), each node can decide locally whether to forward
the packet to its left child, its right child, or its parent; see
Appendix A for details.

3

41

2

7

6 8

5

3

41

2

7

6 8

5
root

peer

peer

(a) (b)
Fig. 1: (a) Classic BST vs (b) distributed BST: Classic splay
tree datastructures optimize the distance of the elements from
the root (the lookup cost), while in a distributed datastructure,
communication occurs between arbitrary nodes (the peers).
Also note that in a BST network, requests also travel upwards
in the tree; nevertheless, as we will see, routing decisions are
completely local.

The local transformations of tree networks are called ro-
tations. Informally, a rotation in a sorted binary search tree
changes up to three adjacency relationships, while keeping
subtrees intact. Note that it is possible to transform any binary
search tree into any other binary search tree by a sequence
of local transformations (e.g., by induction over the subtree
roots).

For our formal analysis, we consider a simplified syn-
chronous model where first a communication request arrives,
then local network transformations can be performed, and
finally, the request is satisfied (i.e., the traffic routed). In
this paper, we are often interested in a setting where the
requests σ are drawn at random from a fixed but unknown
communication matrix. Concretely, we will sometimes regard
the communication requests σ as inducing a request graph
R(σ) = (V (σ), E(σ)) over the vertices V ; the edges E(σ) of
R(σ) are annotated with frequency information. (When clear
from the context, we will often omit σ in R(σ), V (σ), E(σ),
and simply write R, V , E.)

Concretely, the node set V of R is given by the set of nodes
participating in σ, i.e., V = {v : ∃t, v ∈ σt}, and the set of
directed edges E is given by E = {σt : t ∈ [0, . . . ,m − 1]}.
The weight w(e) of each directed edge e = (u, v) ∈ E is
the frequency f(u, v) of the request from u to v in σ. In
the following, we will sometimes simply write w(u, v) to
denote the weight w(e) of edge e. For example, in some
scenarios the communication pattern between the nodes V
may form a tree (e.g., a multicast tree), a complete graph, or
a set of disconnected components (e.g., describing a clustered
communication pattern).

3

T1 T2

T3 T1
T2 T3

u

v u

v

zig

T1

zigzig

T2

T3

T4

T3 T4

w
T1

T2

u

v

u

v

w

T2

zigzag

T3

T1

T4

w

u

v

T2 T3 T1 T4

v w

u

Fig. 2: Basic rotations of splay trees. The dashed bold lines
indicate adjacency relationships which are not maintained
during the operation.

Let A be an algorithm that given the request σt and the
graph Gt ∈ G at time t, transforms the current graph (via
local transformations) to Gt+1 ∈ G at time t+ 1. We will use
the notation A = ⊥ to refer to a static (i.e., non-adjusting) “al-
gorithm” which does not change the communication network
over time.

We are interested in the fundamental tradeoff between the
benefits of self-adjusting algorithms (i.e., shorter routing paths)
and their costs (namely reconfiguration costs). We introduce
a most simple, linear cost model that captures this tradeoff.
Concretely, we denote the cost of the network transformations
at time t by ρ(A, Gt, σt), and we denote the number of
rotations performed to change Gt to Gt+1; when A is clear
from the context, we will simply write ρt. We denote with
dG(·) the distance function between nodes in G, i.e., for two
nodes v, u ∈ V we define dG(u, v) to be the number of edges
of a shortest path between u and v in G, and we assume
messages are routed along the shortest paths. For a given
sequence of communication requests, the cost for an algorithm
is given by the number of transformations and the distance of
the communication requests plus one (i.e., also a request (u, u)
comes at a minimal cost of one unit).

We need the following formal definitions.

Definition 1 (Average and Amortized Cost). For an algorithm
A and given an initial network G0 with node distance function
d(·) and a sequence σ = (σ0, σ1 . . . σm−1) of communication
requests over time, we define the (average) cost of A as:

Cost(A, G0, σ) =
1

m

m−1∑
t=0

(dGt(σt) + 1 + ρt) (1)

The amortized cost of A is defined as the worst possible cost
of A, i.e., maxG0,σ Cost(A, G0, σ).

Similarly to classic splay trees [22], our yardstick to evalu-
ate the obtained costs of a self-adjusting algorithm is the cost
to serve the same requests σ on an optimal static tree network.

Definition 2 (Optimal Static Cost). The optimal static cost
for a given communication sequence σ is defined as the cost
Cost(⊥, G∗, σ) = 1

m

∑m−1
t=0 (dG∗(σt) + 1) where ⊥ denotes a

static algorithm that does not change the topology, and G∗ ∈
G is the graph in the allowed graph family G that minimizes
the cost with respect to σ.

A. Entropy and Empirical Entropy

The entropy of the communication pattern σ turns out to
be a useful parameter to evaluate the performance of self-
adjusting SplayNets. For a discrete random variable X with
possible values {x1, . . . , xn}, the entropy H(X) of X is
defined as

∑n
i=1 p(xi) log2

1
p(xi)

where p(xi) is the probability
that X takes the value xi. Note that, 0 · log2

1
0 is considered

as 0. For a joint distribution over X,Y , the joint entropy
is defined as H(X,Y) =

∑
i,j p(xi, yj) log2

1
p(xi,yj) . Also

recall the definition of the conditional entropy H(X|Y):
H(X|Y) =

∑n
j=1 p(yj)H(X|Y = yj).

Since the sequence of communications σ is revealed over
time and may not be chosen from a fixed probability dis-
tribution, we are often interested in the empirical entropy
of σ, i.e., the entropy implied by the communication fre-
quencies. Let X̂(σ) = {f(x1), . . . , f(xn)} be the empirical
entropy measure of the frequency distribution of the com-
munication sources (origins) occurring in the communica-
tion sequence σ, i.e., f(xi) is the frequency with which a
node xi appears as a source in the sequence, i.e., f(xi) =
(#xi is a source in σ)/m. The empirical entropy H(X̂) is
then defined as

∑n
i=1 f(xi) log2

1
f(xi)

. Similarly, we define the
empirical entropy of the communication destinations H(Ŷ)
and analogously, the empirical conditional entropies H(X̂|Ŷ)
and H(Ŷ |X̂).

B. Splay Trees

Our work can be regarded as a distributed generalization of
splay trees, binary search trees whose topology adapts to the
lookup sequence. Indeed, assuming that all requests originate
from the same node, the SplayNet problem becomes equivalent
to the classic splay tree problem. In the following, we hence
briefly review the concept of splay trees.

For a node set V with unique identifiers (IDs) or values,
we consider the family B of the set of all binary search trees
over the IDs of V . Let s = (v0, v1, . . . , vm−1), vi ∈ V , be
a sequence of lookup requests. In the classic offline problem
(i.e., for algorithm A = ⊥), the goal is to find the best search
tree T ∗ ∈ B that minimizes the cost Cost(⊥, T ∗, s).

We will make use of the following two well-known prop-
erties of optimal BSTs.

Theorem 1 ([16]). An optimal binary search tree T ∗ that
serves s with minimum cost can be found via dynamic pro-
gramming.

4

Note however that the computation of T ∗ is more compli-
cated than simply using greedy Huffman coding [15] on the
frequency distribution of the items in s.

Theorem 2 ([17]). Given s, for any (optimal) binary search
tree T :

Cost(⊥, T, s) ≥ 1

log 3
H(Ŷ) (2)

where Ŷ (s) is the empirical measure of the frequency distri-
bution of s and H(Ŷ) is its empirical entropy.

Knuth [16] first gave an algorithm to find an optimal BST,
but Mehlhorn [17] proved that a simple greedy algorithm is
near optimal with an explicit bound:

Theorem 3 ([17]). Given s, there is a BST which can be
computed using a balancing argument and which has the
amortized cost that is at most

Cost(⊥, T, s) ≤ 2 +
H(Ŷ)

1− log(
√

5− 1)
(3)

where Ŷ (s) is the empirical measure of the frequency distri-
bution of s and H(Ŷ) is its empirical entropy.

We can adapt some tools developed for dynamic binary
search trees also in our generalized setting. In particular, as
we will see, our SplayNet algorithm is a natural generaliza-
tion of the splay tree algorithm: it limits operations to the
smallest subtree connecting two communication partners. The
basic operation to adjust a splay tree is called splaying (see
Algorithm 1) which consists of the classic Zig, ZigZig, and
ZigZag rotations. In a nutshell, the main idea of the online
splay tree algorithm introduced by Sleator and Tarjan [22]
is to rotate (using the uniquely defined sequence of Zig,
ZigZig, and ZigZag operations) the currently accessed
element directly to the root of the tree. Interestingly, this rather
aggressive scheme to promote elements already after a single
access, results in a good performance.

For our analysis of the distributed setting, we can also adapt
the Access Lemma [22] by Sleator and Tarjan. It is reviewed in
the following. In [22], in order to compute the amortized time
to splay a tree, each node v in the tree is assigned an arbitrary
weight w(v). Then the size of a node v, s(v) is defined as the
sum of the individual weights of all the nodes in the subtree
rooted at v. The so-called rank r(v) of a node v is the logarithm
of its size, i.e., r(v) = log(s(v)). Sleator and Tarjan showed
the following:

Lemma 1 (Access Lemma [22]). The amortized time
to splay a tree with root r at a node u is at most
3 · (r(r)− r(u)) + 1 = O(log (s(r)/s(u))).

Algorithm 1 Algorithm SPLAY

1: (* upon lookup (u) *)
2: splay u to root of T

Following this lemma, Sleator and Tarjan were able to show
that splay trees are optimal with respect to static binary search
trees:

Theorem 4 (Static Optimality Theorem [22] - rephrased). Let
SPLAY denote the SPLAY algorithm. Let s be a sequence of
lookup requests where each item is requested at least once,
then for any initial tree T , Cost(SPLAY, T, s) = O(H(Ŷ))
where H(Ŷ) is the empirical entropy of s.

III. SPLAY NETWORKS

We first acquaint ourselves with the distributed BST
model by studying optimal static topologies. Subsequently,
we present the SplayNet approach and introduce the simple
SPLAYNET algorithm to self-adjust the network.

A. Optimal Static Distributed BST

Given a certain communication pattern or “guest graph”,
the optimal BST can be computed in polynomial time using
a dynamic programming approach. The main insight needed
is that the problem for the entire tree can be decomposed into
optimal subproblems for smaller trees, and that the demand
towards a given node in a subtree can be decoupled from nodes
outside a given subtree: the precise topological structure of the
nodes outside a subtree does not matter.

Concretely, the optimal static tree T which minimizes the
sum of the weighted node distances

min
∑

(u,v)∈R(σ)

dT (u, v)

can be computed using dynamic programming. Let V denote
the set of ordered nodes and let R denote the request matrix
(i.e., the frequency of a given ordered communication pair).
We will index subproblems by intervals I on V , and will refer
to all nodes outside I by Î = V \ I . For each node v in an
interval I , we can compute the aggregate demand towards v
(v’s weight) from nodes outside I:

WI(v) :=
∑
u∈Î

w(u, v) + w(v, u)

Let WI denote the corresponding vector consisting of all nodes
in the interval I .

The demand from outside the considered interval can be
“decoupled” with the aggregate weight. The cost of a given
tree TI on I can be computed as follows:

Cost(TI ,WI) =

 ∑
u,v∈I

(d(u, v) + 1) · w(u, v)

+DI ·WI

where DI in the scalar product DI ·WI is the vector denoting
the distance of the nodes in I from the root of TI , i.e., the
vector of the depths of the nodes.

Dynamic programming is then based on merging optimal
sub-intervals. In order to compute the optimal tree T ∗I for
an interval I partitioned into two contiguous and adjacent
subintervals I ′ and I ′′, we exploit the computed optimal
substructures for the sub-intervals and choose the best overall
root x. For the induction hypothesis, a single-node tree has

5

cost zero. The total tree cost can be expressed as follows (the
additive 1 has to be added in the end):

Cost(T ∗I ,WI) = min
x∈I=I′tI′′

Cost(T ∗I′ ,WI′)

+Cost(T ∗I′′ ,WI′′)

+
∑
v∈I′

WI′(v) +
∑
v∈I′′

WI′′(v).

Note that when choosing a new root x, all nodes except x are
pushed one level down in the tree.

Our algorithm terminates with an overall solution when I
represents the entire node set. Since there are O(n2) intervals
I and since merging two trees requires testing O(n) different
root candidates, the runtime is at most cubic in the number
of nodes. (The WI values can be computed within the same
asymptotic order.)

We have derived the following result.

Theorem 5. The optimal distributed BST for a sequence σ
can be computed in time O(n3), where n is the number of
nodes.

B. Self-Adjusting Distributed BSTs

Let us now consider self-adjusting BST networks. The
SplayNet algorithm presented in this paper is a natural gener-
alization of the classic splay tree algorithm. It is based on a
double splay strategy: similarly to classic splay trees, SplayNet
aggressively moves communicating nodes together; however,
rather than splaying nodes to the root of the BST, locality
is preserved in the sense that the source and the destination
node are only rotated to their common ancestor (of the subtree
covering the communication partners).

Concretely, consider a communication request (u, v) from
node u to node v, and let αT (u, v) denote the lowest common
ancestor of u and v in the current network T . For an arbitrary
node x, let T (x) be the subtree rooted at x. When a request
(u, v) occurs, SplayNet first simply splays u to the lowest
common ancestor αT (u, v) of u and v, using the classic splay
operations Zig, ZigZig, ZigZag from [22] (see Figure 2).
We assume that the splay function returns the tree resulting
from these operations. Subsequently, the idea is to splay the
destination node v to the child of the lowest common ancestor
αT ′(u, v) of u and v in the resulting tree T ′. Observe that this
common ancestor is u itself (u = αT ′(u, v)), i.e., we define
the double splay algorithm SplayNet to splay v such that it
becomes a child of u. (Note that the child is uniquely defined:
if u > v, v will be the left, if u < v, the right child of u.)

The formal algorithm listing of SplayNet is shown in
Algorithm 2.

Algorithm 2 Algorithm SplayNet

1: (* upon request (u, v) in T *)
2: w := αT (u, v)
3: T ′ := splay u to root of T (w)
4: splay v to the child of T ′(u)

IV. BASIC ENTROPY BOUNDS

This section provides a formal analysis of self-adjusting
distributed splay networks. The amortized costs of SplayNet
depends on the empirical entropy of the pattern σ, and a simple
cost upper bound can be obtained by adapting Lemma 1.
The amortized communication cost of SplayNet can be upper
bounded by the entropy of the sources and destinations of the
requests.

Theorem 6. Let σ be an arbitrary sequence of communication
requests, then for any initial tree T0,

Cost(SPLAYNET, T0, σ) = O(H(X̂) +H(Ŷ))

where H(X̂) and H(Ŷ) are the empirical entropies of the
sources and the destinations in σ, respectively.

Proof: For any node v let s(v) denote the total number
of times v appears as a source in σ, and let d(v) denote the
total number of times v appears as a destination. We assign
each node v ∈ V two weights s(v)/m and d(v)/m and
analyze the two basic operations of SPLAYNET separately:
first splaying the source to the common ancestor and second
splaying the destination to the new common ancestor. The cost
Cost(SPLAYNET, T0, σ) can be computed as

1

m

m∑
t=1

(
splay src(σt) to wt + splay dst(σt) to w′t

)
where wt is the lowest common ancestor of src(σt) and
dst(σt) at time t and w′t is the child of wt after the first
splay operation. Similarly to the proof of Lemma 1, we define
the size of a subtree T as the sum of the weights of all nodes
in T . Since the size of a source v ∈ V is at least s(u)/m and
the size of any node is at most 1 (analogously for the case of
destinations: just replace s(u) by d(v)), by Lemma 1 we can
compute Cost(SPLAYNET, T0, σ) as:

Cost(SPLAYNET, T0, σ) ≤ 1

m

m∑
t=1

(
3 · (r(src(σt))− r(wt))

+ 3 · (r(dst(σt))− r(w′t)) + 2
)

= O(
1

m
(2m+

n∑
i=1

s(i) log(
m

s(i)
)

+

n∑
j=1

d(j) log(
m

d(j)
)

= O(H(X̂) +H(Ŷ))

A lower bound on the cost can be stated in terms of the
conditional empirical entropy of the request sequence.

Theorem 7. Given a request sequence σ, for any optimal
(binary search) tree network T :

Cost(⊥, T, σ) = Ω(H(Ŷ |X̂) +H(X̂|Ŷ)) (4)

Proof: For any node x ∈ V , let Ŷx denote the frequency
distribution of the destinations given that the source is x.

6

1 2 3 n-1 n........

I1 IkIj

(a) - cluster scenario

1 2 3 n-1 n........
(b) - non-crossing matching scenario

Fig. 3: (a) An example of a request graph,R(σ), for the cluster
scenario, (b) an example of a request graph, R(σ), for the
non-crossing matching scenario

1 2 3 4 5 6 7 8

3

42

1

7

6 8

5

Fig. 4: An example of a request graph, R(σ), for the multicast
tree scenario on 8 nodes. The same R(σ) is shown in two
layouts.

Consider an optimal tree T with root x. Following Theorem 2,
the average path length of requests is Ω(H(Ŷx)). Considering
the optimal tree for each source, we have a cost of at least

n∑
i=1

f(xi)H(Ŷxi
) = Ω(H(Ŷ |X̂))

A similar argument holds for the destinations: since for each
destination y the cost for its requests in an optimal tree where y
is the root is at least H(X̂y), where X̂y denotes the frequency
distribution of the sources given that the destination is y.

Theorems 6 and 7 are relatively general and there remains a
gap between upper and lower bound. However, there are inter-
esting problem instances where this simple bound is already
tight. For example, observe that SplayNet achieves an optimal
amortized cost for all request patterns following a product dis-
tribution: the probability p(u, v) of a communication request
(u, v) can be described by the product of the activity levels
p(u) and p(v) of the nodes, i.e., p(u, v) = p(u) · p(v). Hence,
from the independence it follows that the entropy of the com-
munication sources given the destinations equals the entropy
of the communication sources only (i.e., H(X̂|Ŷ) = H(X̂)),
and vice versa for the destinations (H(Ŷ |X̂) = H(Ŷ)).

Corollary 1. SplayNet is asymptotically optimal if σ follows
a product distribution.

However, there are also simple examples where the gaps
remain open. Figure 6 gives three exemplary request patterns

R(σ) which help us to better understand the gap between our
upper and lower bound. All three request graphs in Figure 6
are bounded degree graphs, i.e., H(Ŷ |X̂) and H(X̂|Ŷ) are
upper bounded by a constant while H(Ŷ) and H(X̂) can be
as high as log n. In Scenarios (a) and (b) the lower bound
is actually zero since given the source there is no ambiguity
about the destination and vice versa.

In Section VI we will derive an improved lower bound on
the cost of an optimal static network. On that occasion, we
will revisit our examples here and show that some gaps can
be closed.

V. CASE STUDIES: LOCALITY AND OPTIMALITY

The section provides insights into the properties of our
algorithms in different specific settings. In particular, using
different case studies, we show that our approach sometimes
exhibits a desirable local convergence to the optimal network.
The section also serves the purpose of introducing some
analytical tools that are useful to study SplayNets.

A. Cluster Scenario

We first study a scenario which shows the locality properties
of SplayNet. In this scenario, requests are clustered, and so is
the resulting tree of SplayNet.

Definition 3 (Cluster Scenario). In a cluster scenario the com-
munication pattern σ partitions the nodes into k contiguous
and disjoint intervals I1∪̇I2∪̇I3∪̇ . . . ∪̇Ik where nodes within
an interval Ij have consecutive numbers and where commu-
nication only happens between node pairs in the interval. In
particular, a request (u, v) implies that u and v belong to the
same interval: (u, v) ∈ σ → ∃j : u, v ∈ Ij . A maximal
cluster scenario is a cluster scenario where no intervals can
be divided into two intervals.

See Figure 3 (a) for an example of a maximal cluster
scenario. For this case we are able to prove the following.

Theorem 8. In a maximal cluster scenario σ, SplayNet
features the following two properties:

1) SplayNet will eventually construct a tree network in
which for any communication pair (u, v) ∈ Ij , for any
j ∈ {1, . . . , k}, u and v are connected by a local path
which only includes nodes from Ij .

2) Once this local routing property is established, it will
never be violated again.

Proof: For any BST T and an interval Ij let rj be the node
such that the subtree T (rj) is the smallest size sub-tree where
all the nodes of Ij are in T (rj); we denote this tree by T (Ij).
Let out(T (Ij)) denote the number of requests (u, v) ∈ R(σ)
s.t. either u or v are in T (Ij), but not both.

For the (maximal) cluster scenario σ and a BST T , we
consider the potential function φ =

∑k
j=1 out(T (Ij)). We

will prove the theorem by first showing that when φ = 0, for
any (u, v) ∈ Ij , j ∈ {1, . . . , k}, u and v are connected by
a local path: a path which only includes nodes from Ij ; φ
remains zero after such a request. Subsequently, we will show

7

T1 T2

T3

x
y

rj

Ij

Fig. 5: Illustration for proof of Claim 1 and Theorem 8. T (rj)
is the tree rooted at rj (and includes T1 and T2).

that when φ > 0, SplayNet cannot increase φ, and there exists
a request in σ which will reduce the potential.

We start with the following claim.

Claim 1. Consider Ij s.t. out(T (Ij)) = 0. Then this property
is invariant for all future requests in σ and out(T (Ij)) will
always remain 0.

Proof: A generic situation for T (Ij) is illustrated in
Figure 5. Each node not in Ij is in one of 3 possible locations:
in one of the (possibly empty) subtrees T1, T2, or T3. Clearly,
T1 contains only IDs smaller than Ij and must be attached to
the smallest ID in Ij , and T2 contains only IDs larger than Ij
and must be attached to the largest ID in Ij . T3 can contain
either smaller or larger IDs depending on whether rj is a left
or a right son of its parent. Since out(T (Ij)) = 0, there are
no requests involving T3 so all requests remain within T (Ij)
and so out(T (Ij)) will remain 0 for all future requests.

Now observe that if φ = 0, every out(T (Ij)) = 0, and so
φ will remain zero also in the future.

Next we claim that no request can increase φ, and that if
φ > 0, there is a request in σ that will decrease the potential
function. Consider T (Ij) and any request (u, v). If (u, v) ∈ Ij
then out(T (Ij)) does not change. If u, v ∈ Ti for i = 1, 2 or 3,
then again out(T (Ij)) does not change. If u ∈ T1 or u ∈ T2

and v ∈ T3, then the lowest common ancestor of u, v is in
T3 and after splaying u and v, out(T (Ij)) will decrease by
one. Therefore φ can only decrease. Now if φ > 0, there is
some j for which out(T (Ij)) > 0. Take the request (u, v)
that is a witness; after this request out(T (Ij)) will decrease
by one, so φ will decrease. So overall given a cluster σ, φ
will decrease to zero. To conclude the theorem we show that
if φ = 0 then for any communication pair (u, v) ∈ Ij , for any
j ∈ {1, . . . , k}, u and v are connected by a local path which
only includes nodes from Ij . Assume by contradiction that
this is not the case and there is a j and (u, v) ∈ Ij (assume
w.l.o.g. that u < v) s.t. the path between them visits a node
w ∈ Ii. Also assume w.l.o.g. that w < u. Now it must be
the case that either T (rj) ⊂ T (ri) or T (ri) ⊂ T (rj). Let’s
assume w.l.o.g. that T (rj) ⊂ T (ri) so it must be that case that
rj < w. Since it is a maximal cluster scenario there must be a
path in σ from a node x ∈ Ii, x ≥ w to a node y ∈ Ii, y ≤ ri
(otherwise the cluster Ii can be divided into two clusters).

Since all nodes in Ii with larger ID than w must be in T (rj)
and since ri /∈ T (rj) there must be a request along the path
from x to y witnessing that out(T (Ij)) > 0. Contradiction. A
similar observation can be made for the case T (ri) ⊂ T (rj),
to get a contradiction for out(T (Ii)) > 0.

B. Non-crossing Matching Scenario

SplayNet sometimes achieves an optimal performance by
converging to the optimal static network implied by R(σ).
We have already encountered an example where SplayNets
are asymptotically optimal, namely if σ describes a product
distribution (cf Corollary 1). In the following, we will examine
other optimal scenarios in more detail.

For a request (u, v) in σ, let I(u,v) denote the interval
[min(u, v),max(u, v)].

Definition 4 (Non-Crossing Matching Scenario). In a non-
crossing matching scenario, it holds for the communication
pattern σ that for any two pairs (u1, v1) and (u2, v2) in σ,
either:

1) I(u1,v1) (I(u2,v2) or I(u2,v2) (I(u1,v1), or
2) I(u1,v1) ∩ I(u2,v2) = ∅.

It follows from the definition that the request graph R(σ)
must describe a matching, and for each request (u, v) there
are no other requests that enter or leave (i.e., cross) the
interval I(u,v). Figure 3 (b) provide an example of a non-
crossing matching scenario. If R(σ) describes a non-crossing
matching scenario, SplayNet will converge to an optimal
solution. Formally:

Theorem 9. In a non-crossing matching scenario σ, SplayNet
will eventually converge to a tree where any communication
pair {u, v} ∈ σ is adjacent.

Proof: To any request pair pi = (ui, vi) we assign a
level L(pi) depending on the number of pairs pj = (uj , vj)
it is nested in, i.e., L(pi) = |{pj : Ipi (Ipj}|. Pairs with
level 0 are the outmost pairs, pairs at level 1 are nested in
a single other pair and so on. We will prove by induction
on the level that all pairs become (and stay) adjacent. Our
induction hypothesis is that pairs at level i coverage and we
will show that once that happens, pairs at level i + 1 will
converge next. First we show that pairs at level 0 converge.
Notice that pairs do not intersect (i.e., cross), so the pairs at
level 0 represent a clustered scenario. By Theorem 8, after
the convergence of clusters, requests within each interval (of
pair at level 0) will remain only within the interval. After the
cluster convergence, we claim that after a pair pi = (ui, vi)
of level 0 communicated, it will stay adjacent forever. To see
this, consider any other pair pj = (uj , vj). If pj is outside
the cluster of pi we are done. Let pj be inside the interval
of pi, i.e., I(uj ,vj) (I(ui,vi). By the definition of SplayNet,
after a request (ui, vi), vi is the right (resp. left) child of ui if
ui < vi (resp. u1 > v1). We will show that this implies that the
nodes uj , vj must be both in the same subtree, and can hence
not change the adjacency relationship of ui and vi anymore.
The claim follows by case distinction: (1) If ui < vi, the left

8

subtree of vi is the only subtree which can contain nodes w
with ui < w < vi; however, these are exactly the nodes that
can fulfill the non crossing property so both uj and vj must
be in this subtree. If ui > vi, the right subtree of vi is the
only subtree which can contain nodes w with u1 < w < v1 so
both uj and vj must be in this subtree. Therefore the induction
hypothesis holds for level 0.

We can now prove the induction step. Assume the links of
level up to i are stable. Note that within each cluster the pairs
of level i + 1 are also disjoint and correspond to a clustered
scenario. Essentially, then the previous argument still holds,
and first each cluster of levels larger than i will converge,
by Theorem 8, and then, after a pair from level i + 1 will
communicate, it will never break apart again since all higher
level pairs are in the same subtree.

C. Multicast Scenario

To give one more example where SplayNet is optimal, we
consider the multicast tree scenario. For this scenario, we
may assume that an overlay network of a binary search tree
structure is constructed to facilitate in-network duplication.
The same tree may be used by many multicast sources
and different receivers, hence the local (hop-by-hop) source
and destination pairs (i.e., communication requests) are the
endpoints of the tree edges.

Definition 5 (Binary Multicast Tree Scenario). In a binary
multicast tree scenario, it holds for the communication pattern
σ that the request graph R(σ) forms a rooted and sorted
binary tree.

See Figure 4 for an example of a multicast scenario. For
this case as well, we are able to prove optimality.

Theorem 10. If the communication pairs in σ form a multicast
tree, SplayNet will eventually converge to the optimal static
solution, i.e., to R(σ).

Proof: Let T (v) denote the subtree of v (including v)
in the current SplayNet, and let Tl(v) and Tr(v) denote v’s
left and right subtree, respectively. Similarly, let R(v) denote
the subtree of v in the multicast tree R(σ), and let Rl(v)
resp. Rr(v) denote the left resp. right subtree. Consider the
path from the root of R(σ), denoted by vi, to the maximum
node in R(σ), denoted by v1, and let this path be Pm =
vi, . . . , v2, v1, where for j = 1, . . . , i, vj is the parent of vj−1.

We start with a fundamental invariant.

Claim 2. Let vj ∈ Pm denote a node in the path from the root
to the maximum node. Then it holds that once T (vj) = R(vj),
the parent of vj in T will be vj+1. These properties will remain
invariant during all future requests.

Proof: We first prove the identical parent property. If j =
i the result holds trivially since T and R(σ) are identical. Let
j < i. For the sake of contradiction, assume that T (vj) =
R(vj), that the parent of vj inR(σ) is vj+1, but that the parent
of v in T is x 6= vj+1. It holds that vj+1 < vj . Since both
T and R are valid BSTs, x cannot be in the subtree T (vj) =
R(vj), and it must hold that vj+1 < x < vj . However, the

fact that vj+1 is a parent of vj in R(σ) implies that x must be
a decedent of vj in R(σ), which contradicts our assumption
that T (vj) = R(vj).

It remains to show that the trees will also remain the same in
the future. Consider any future request (y, z). Since T (vj) =
R(vj) and there are no requests leaving R(vj) beside vj and
its parent, vj cannot be on a path between y to z (which
includes their least common ancestor), and hence, T (vj) will
remain unchanged during any splay operation.

We can also make the following observation.

Claim 3. Let vj ∈ Pm denote a node in the path from
the root to the maximum node for j < i. Once the right
subtrees Tr(vj−1) and Rr(vj−1) of the node vj are the same,
then after a request (vj+1, vj) from vj’s parent in R(σ) the
subtree Tl(vj) will have exactly the same nodes as Rl(vj).
This property will remain invariant during all future requests.

Proof: Assume T (vj−1) = Rr(vj−1). Then by Claim 2,
vj is the parent of vj−1 in T , and this still holds after
the request (vj+1, vj). Recall that vj+1 < vj and we are
considering the right most tree branch. However, this implies
that all the nodes between vj+1 and vj must be situated in the
same subtree, the left subtree of vj So Tl(vj) will have the
exact same nodes as Rl(vj).

Now consider any future request (y, z). Since T (vj) and
R(vj) have now the same set of nodes, vj is not on a path
between y to z (which includes their least common ancestor),
so T (vj) will indeed remain unchanged during such a request.

We are now ready to prove the theorem by induction over
the number of nodes. That is, we will show that for each size
k of R(σ), the theorem holds.

Induction Base: The claim trivially holds for the cases
where we only have one node (k = 1) or one request (k = 2).

Induction Step: Assume that the hypothesis is true for
1, . . . , k−1; we will now show that it is also true for k nodes.
We will prove, again by induction, but now on j, that T (vj)
will become (and stay) R(vj): one node after the other along
this path will stabilize.

Base case, j = 1: Since v1 is the maximum node it has no
right child both in T and R(σ). By Claim 3 after the
request (v2, v1) T (v1) and R(v1) will have the same set
of nodes. Since R(v1) has less than k nodes by the main
induction hypothesis we will eventually have T (v1) =
R(v1).

Induction step: Assume the claim is true for j − 1. If j < i
then after the request (vj , vj−1), by Claim 3 Tl(vj) will
consist of the same nodes as Rl(vj), and by the main
induction hypothesis (since the size of Rl(vj) < k) and
Claim 3, Tl(vj) will converge to Rl(vj). Then we will
have T (vj) = R(vj).

To prove the claim also holds for the root, we can simply
apply a variant of Claim 3 also to a path from the root to the
minimum node. Given that both subtrees of the root stabilize,
also the root will be stabilized.

9

VI. IMPROVED LOWER BOUNDS

This section introduces two techniques to derive more
powerful lower bounds: one is based on interval cuts and
one on edge expansion. These lower bounds also imply the
optimality of our approach for a larger class of scenarios.

A. Interval Cuts Bound

The first lower bound leverages an intriguing connection to
request graph cuts. It is intuitively clear that if the request
graph R(σ) exhibits large cuts, it can be more difficult to
find a tree network that accommodates the requests well. But
one has to be careful when defining the problematic cuts, as
even graphs with many large cuts can sometimes be embedded
optimally.

We start with a definition of an interval cut.

Definition 6 (Interval Cut). Arrange the nodes V on a one
dimensional line in an ascending, sorted order, and let I`j ⊆ V
denote the set of nodes corresponding to the subinterval of
length ` covering the nodes of order j, j+ 1, ..., j+ `− 1. Let
Ī`j denote the remaining nodes, i.e., Ī`j = V \I`j . For a weighted
directed graph G(V,E), the interval cut, Cutin(I`j , G) is the
set of edges in G pointing to nodes in I`j , and the interval cut
Cutout(I

`
j , G) is the set of edges in G originating at nodes in

I`j and pointing outwards. Formally

Cutin(I
`
j , G) =

{
(u, v) : v ∈ I`j , u ∈ Ī`j , (u, v) ∈ G

}
Cutout(I

`
j , G) =

{
(u, v) : u ∈ I`j , v ∈ Ī`j , (u, v) ∈ G

}
The weight of a cut c̃ is defined as the sum of the weights

of its edges, w(c̃) =
∑

(u,v)∈c̃ w(u, v).

We consider the request graph R(σ) where a directed edge
represent a source-destination pair in σ and edge weights
represent the frequency of the communication requests. An
interval cut (as defined above) in R(σ) is therefor a set of
source-destination pairs, so for an interval cut c̃ the conditional
frequency distribution of the sources is denoted X̂c̃ and the one
of the destinations is denoted Ŷc̃.

Given an interval cut c̃, we will denote the weighted
empirical entropy of c̃ as:

H̃(c̃) = w(c̃)
(
H(X̂c̃) +H(Ŷc̃)

)
We can lower bound the average communication cost of an

(optimal) binary search tree T as follows.

Theorem 11. Given a request sequence σ, for any (optimal)
binary search tree T :

Cost(⊥, T, σ) = Ω

(
max

i
min
j,`

H̃(Cutin(I
`
j ,R(σ)))

)
(5)

Cost(⊥, T, σ) = Ω

(
max

i
min
j,`

H̃(Cutout(I
`
j ,R(σ)))

)
(6)

where i ∈ [0, log n−1], j ∈ [1, n] and ` ∈ [n
2i+1 ,

n
2i] and [a, b]

is the set of integers between a and b (including the boundary
nodes).

Proof: We will only prove Eq. (6), as Eq. (5) can be
proved in an analogous way. Let c̃∗, be a cut that maximizes
Eq. (6) and let i∗ be the corresponding i. Now consider T .
Let v be a node s.t. n

2i∗ > |T (v)| ≥ n
2i∗+1 (such a subtree

must exist in any T due to Claim 5). Let u be the parent of
v. Let `∗ = |T (v)| and let us choose j∗ such that the set of
nodes of T (v) is I`

∗

j∗ . Such a j must exist due to Claim 4. The
result now follows from Property 2, since all the requests from
inside I`

∗

j∗ to outside Ī`
∗

j∗ must cross edge (u, v) and entail a
cost of at least Ω(H̃(c̃∗)). To make the last statement more
clear, consider an optimal binary tree (with root v) that needs
to serve lookups from a frequency distribution X̂c̃∗ . The cost
of the lookups will be at least Ω(H(X̂c̃∗)). The same holds
for the destinations Ŷc̃∗ .

B. Edge Expansion Bound

Another lower bound can also be obtained by using concepts
related to graph expansion, and in particular the conduc-
tance [21] and the edge expansion [14] of graphs. We need
the following definitions: Let G(V,E) be a directed weighted
graph. We assume the edge weights are normalized, i.e., the
sum of all edge weights is one:

∑
(u,v)∈E w(u, v) = 1.

Definition 7 (Conductance Entropy). The cut E(S, S̄) is the
set of outgoing edges from S: E(S, S̄) = {(u, v) : u ∈ S, v ∈
S̄, (u, v) ∈ E}. The weight of a cut E(S, S̄), W (S) is the
sum of the weights of the edges in the cut.

W (S) =
∑

(u,v)∈E(S,S̄)

w(u, v)

A distribution of the sources src(S) of a cut E(S, S̄) is defined
for the set of nodes in S that are also in E(S, S̄) as follows:
the probability (weight) of each u ∈ S and E(S, S̄) is defined
as

wS(u) =
∑

(u,v)∈E(S,S̄)
u∈S

w(u, v)
/
W (S).

Similarly the distribution dst(S) is defined over the destina-
tions in E(S, S̄), src(S) such that the probability of v being
a destination in S̄ is:

wS̄(v) =
∑

(u,v)∈E(S,S̄)
v∈S̄

w(u, v)/W (S).

The entropy of a cut (S, S̄) is defined as:

ϕH(S) = W (S) (H(src(S)) +H(dst(S))) (7)

The conductance entropy of a graph is defined as:

φH(G) = min
S⊆V

ϕ(S) (8)

We can now claim the following:

Theorem 12. Given a request sequence σ, for any (optimal)
binary search tree T :

Cost(⊥, T, σ) = Ω(φH(R(σ))) (9)

10

1 2 3 n/2 n/2+1 n-1 n........ n-2
(a) - random matching scenario

1 2 3 √n-1 √n

n-1 n

....

....

....

n-2

√n+1 2√n

3√n2√n+1

(b) - 2-dimensional grid scenario

Fig. 6: (a) An example of a requests graphs, R(σ), for the
a random matching scenario (b) An example of a requests
graphs, R(σ), for a 2-dimensional grid scenario. Both cases
are of bounded degree graphs, i.e., H(Ŷ |X̂) and H(X̂|Ŷ) are
upper bounded by a constant so the lower bound of Theorem
7 is not tight. Theorems 11, 12 and 13 provide better bounds.

The proof is similar to the arguments of the proof of
Theorem 11. Note that φH(G) can be at most O(log n) since
W (s) is at most 1 and the entropy is at most log n.

The edge expansion [14] of a graph G is defined as:

h(G) = min
0<|S|≤n

2

E(S, S̄)

|S|
(10)

For the special case where the request graph R(σ) is a
constant degree d-regular graph with uniform weights and an
edge expansion α, we can claim the following.

Theorem 13. Given a request sequence σ s.t. R(σ) is a d-
regular graph with uniform weights and edge expansion α then
Cost(⊥, T, σ) = Ω(log(αn)).

The claim follows since if we take S to be Ω(n) the entropy
of the cut must be Ω(log(αn). We now revisit the examples
of Figure 6 and elaborate on their bounds using the above
theorems.

C. Examples

Consider a request graph that forms a 2-dimensional grid
as in Figure 6 c). For this scenario, Theorem 13 gives a tight
lower bound of Ω(log n), since the edge expansion of the 2-
dimensional grid is of order 1/

√
n. For the random matching

case of Figure 6 b), Theorems 12 and 13 only give a constant
lower bound since the expansion of a matching is zero (the
graph is not even connected). However, with Theorem 11 that
only considers interval cuts (and not all cuts as is the case for
edge expansion), we can get a tight lower bound of Ω(log n)
for these cases.

VII. MULTIPLE BSTS

To round off our first study of self-adjusting networks, in
the following, we want to initiate the discussion of slightly
more complex network topologies. A natural next step towards
more scalable networks is to consider multiple BSTs. In the
following, we will write SplayNet(k) to denote an overlay
network consisting of k distributed BSTs. Formally, we define:

Definition 8 (SplayNet(k)). Consider a set {T1, T2, . . . , Tk}
of k BSTs. SplayNet(k) is an overlay over the peer set V where
connections are given by the BST edges, i.e., E =

⋃k
i=1E(Ti).

Note that our discussions so far hence revolved around
SplayNet(1). The obvious question we want to address is:
Can we improve the amortized costs when using larger k? We
will answer this question affirmatively, and highlight another
fundamental difference to classic splay trees. In the following,
we will focus on the static variant only, and denote the routing
cost under a sequence σ by Cost(SplayNet(k), σ).

For communication requests σ let s(v) be the frequency of
peer v as a source in σ, similarly let d(v) be the frequency
of peer i as a destination and f(u, v) be the frequency of
the request (u, v) in σ. Define z(v) = (s(v) + d(v))/2 and
note that by definition

∑
v∈V z(v) = 1. Let Ẑ be a random

variable (r.v.) with a probability distribution defined by the
z(v)s. For any k partition of the requests in σ into disjoint sets
S1, S2, . . . , Sk, let α1, α2, . . . , αk be the frequency measure of
the partition, i.e., αi =

∑
(u,v)∈Si

f(u, v).
First, we can prove a new bound on the optimal static

SplayNet(1):

Theorem 14. Given σ, there exists a SplayNet(1) such that:

Cost(SplayNet(1), σ) ≤ 4 +
2H(Ẑ)

1− log(
√

5− 1)

where H(Ẑ) is the entropy of Ẑ as defined earlier.

Proof: The result follows from Theorem 3 with some
modifications. Consider a tree T and let `(v) denote the
distance of node v ∈ V from the root. We will assume the
following non-optimal strategy: each request (u, v) is first
routed from u to the root and then from the root to v. Hence,
the amortized cost of σ can be bounded as:

Cost(SplayNet(1), σ) ≤
∑
v∈V

s(v)`(v) +
∑
v∈V

d(v)`(v) (11)

= 2
∑
v∈V

z(v)`(v). (12)

Now given z(v), the problem of finding the tree that
minimizes

∑
v∈V z(v)`(v) is exactly the lookup problem in

a single tree and, using Theorem 3, the result follows.
We can extend this upper bound to k BSTs.

Theorem 15. Given σ, there exists a SplayNet(k) such that:

Cost(SplayNet(k), σ) ≤ 4 +
2H(Ẑ)− 2H(α1, α2, . . . , αk)

1− log(
√
5− 1)

where H(Ẑ) is the entropy of Ẑ as defined earlier.

11

Proof: Assume a non-optimal strategy where we partition
σ into k disjoint sets of requests S1, S2, . . . , Sk, and each
request is routed on its unique BST. In each tree we use the
previous method, and the messages are routed from the source
to the root and from the root to the destination. For a subset
Si, 1 ≤ i ≤ k, let Ẑi denote the frequency measure defined
as Ẑ, but limited to the requests in Si. Now:

Cost(SplayNet(k), σ) ≤
k∑

i=1

αi

(
4 + 2

H(Ẑi)

1− log(
√
5− 1)

)
(13)

= 4 +
2

1− log(
√
5− 1)

k∑
i=1

αiH(Ẑi) (14)

= 4 +
2

1− log(
√
5− 1)

(
H(Ŷ)−H(α1, α2, . . . , αk)

)
(15)

where the last step is based on the decomposition property of
entropy.

The upper bound in Theorem 15 improves only marginally
for larger k, and we will show in the following that this
is overly conservative: There are situations where a single
additional BST can reduce the optimal communication cost of
SplayNet(k) from worst possible (e.g., Ω(log n)) to a constant
cost in SplayNet(k + 1).

Theorem 16. A single additional BST can reduce the amor-
tized costs from a best possible value of Ω(log n) to O(1).

The formal proof appears in Appendix B. Essentially, it
follows from the two BSTs T1 = (V,E1) and T2 = (V,E2)
shown in Figure 7: obviously, the two BSTs can be perfectly
embedded into SplayNet(2) consisting of two BSTs as well.
However, embedding the two trees at low cost in one BST is
impossible, since there is a large cut in the identifier space.
See the proof for details.

1

2

...

n/4

n/2

n/2-1

...

n/2+1

n/2+2

...

n/2-1

n

n-1

...

1

2

...

n/4

n

n-1

...

n/2+1

Fig. 7: A request sequence σ originating from these specific
two trees can yield high amortized costs on SplayNet(1) but
low on SplayNet(2) .

Interestingly, it turns out that while having multiple BSTs
can significantly reduce the routing cost (see Theorem 16),
the benefit of having parallel BSTs is rather limited in the
context of classical lookup datastructures, i.e., if all requests

originate from a single node (the root). Consider a sequence
σ = (v0, v1, . . . , vm−1), vi ∈ V of lookup requests, and |V | =
n. Theorem 2 can be generalized to k parallel lookup BSTs.

Theorem 17. Given σ, for any SplayNet(k):

Cost(SplayNet(k), σ) ≥ H(Ŷ)− log k

log 3
, (16)

where Ŷ (σ) is the empirical frequency distribution of σ and
H(Ŷ) is its empirical entropy.

Proof: Let f(i) denote the number of times the node vi
appeared in the lookup sequence σ. The empirical frequency
distribution is p̂(i) = f(i)/m for all i, and the entropy is given
by H(Ŷ) = H(p̂(1), . . . , p̂(n)). Since it is sufficient to serve
a node by one BST only, we can assume w.l.o.g. each BST
Ti ∈ SplayNet(k) is used to serve the lookup requests for a
specific subset Vi ∈ V , and that

⋂k
i=1 Vi = ∅ and

⋃k
i=1 Vi =

V .
Let Ŷi be the empirical measure of the frequency distribu-

tion of the nodes in Vi with respect to the lookup sequence σ.
Using entropy decomposition property, we can write: H(Ŷ) =
H(p̂1, p̂2, . . . , p̂n) = H(α1, α2, . . . , αk) +

∑k
i=1 αiH(Ŷi),

where αi =
∑
vj∈Vi

p̂j .
Always performing lookups on the optimal BST, we get:

Cost(SplayNet(k), σ) ≥
k∑
i=1

αi
1

log 3
H(Ŷi)

=
H(Ŷ)−H(α1, α2, . . . , αk)

log 3

≥ H(Ŷ)− log k

log 3
.

7

10

1

2

4

15

5

17

12

9

20

7

10

1

2

4

15

5

17

12

9

20

root

7

10

1

2

4

15

5

17

12

9

20

7

10

1

2

4

15

5

17

12

9

20

BST 1
BST 2

root

Fig. 8: Example of SplayNet(2) consisting of two BSTs. Top
left: BST 1 (e.g., rooted at peer v7). Top right: BST 2 (e.g.,
rooted at peer v10). Bottom: combined BSTs.

12

7

10

1

2

4

15

5

17

12

9

20

7

10

1

2

4

15

5

17

12

9

20

BST 1
(root 7)

BST 2
(root 10)

LCA(5,12)

Fig. 9: Example for splay operation in SplayNet(2) of Figure 8.

Finally, we sketch an intuitive approach to make
SplayNet(k) self-adjusting: initially, for each BST, we connect
all nodes V at random and independently (see Figure 8 for an
example). When communication requests occur, BSTs start to
adapt: upon a communication request (u, v), we determine
the BST T where u and v are closest (in case multiple trees
yield similar cost, an arbitrary one is taken), as well as the
least common ancestor w of u and v in T : w := αT (u, v).
Subsequently, u and v are splayed to the root of the subtree of
T rooted at w, using our SplayNet procedure. Figure 9 gives an
example: upon a communication request between peers v5 and
v12, the two peers are splayed to their least common ancestor,
peer v7, in BST T1.

VIII. RELATED WORK

Our work builds upon classic literature on self-adapting
datastructures, and in particular upon the work of Sleator
and Tarjan on splay trees [22]. Since this seminal work,
splay trees and their variants (e.g., Tango trees [7] or multi-
splay trees [23]) have been studied intensively for many years
(e.g. [1], [22]). Moreover, the related dynamic optimality
conjecture [7], [23] is arguably one of the most interesting
open problems in Theoretical Computer Science.

In contrast to the classical splay tree datastructures, our
paper studies a distributed variant where “lookups” or requests
cannot only originate from a single root, but where commu-
nication happens between all pairs of nodes in the network.
Hence, this paper is situated in the realm of distributed
datastructures or networking.

The static variant of our problem can be seen as a graph
embedding [8] or network design [10] problem. In particular,
the problem of computing the optimal static network, that is,
the binary search tree that minimizes the communication cost,
is related to the classic Minimum Linear Arrangement (MLA)
problem which asks for the embedding of an arbitrary “guest
graph” on the line: the nodes of the guest graph must be
mapped to the line such that the communication cost, i.e., the
sum of the lengths of the projected edges, is minimized. In
contrast to the MLA problem, in our case, we need to embed
the guest graph on a binary tree which respects a searchable

order. MLA [9] was originally introduced by Harper [12] in
the context of error-correcting codes with minimal average
absolute errors, and later used in many other domains such
as for modeling of some nervous activity in the cortex [18]
or job scheduling [19]. While there exist many interesting
algorithms for this problem already, e.g., with sublogarithmic
approximation ratios [11] or polynomial-time executions for
special requests graphs [9], no non-trivial results are known
about distributed and local solutions.

Bibliographic Note. Preliminary versions of the results
presented in this paper appeared at DISC 2012 [20], IEEE
IPDPS 2013 [6], and IEEE P2P 2013 [4].

IX. CONCLUSION

We regard our work as a first step towards the design of
novel distributed datastructures and networks which adapt dy-
namically to the demand. In order to focus on the fundamental
tradeoff between benefit and cost of self-adjustments, we pur-
posefully presented our model in a general and abstract form,
and many additional and application-specific aspects need to
be addressed before our approach can be tested in the wild.
The main theoretical simplification made in this paper regards
the restriction to the tree topology, and the generalization to
more complex and redundant networks is an open question.
Moreover, similarly to [22], we have focused on the amortized
costs of SplayNets, and an interesting direction for future
research regards the study of the achievable competitive ratio
under arbitrary communication patterns.

REFERENCES

[1] B. Allen and I. Munro. Self-organizing binary search trees. J. ACM,
25:526–535, 1978.

[2] J. Aspnes and G. Shah. Skip graphs. ACM Transactions on Algorithms
(TALG), 3(4):37–es, 2007.

[3] C. Avin, M. Borokhovich, and S. Schmid. Obst: A self-adjusting peer-to-
peer overlay based on multiple bsts. In Peer-to-Peer Computing (P2P),
2013 IEEE Thirteenth International Conference on, pages 1–5. IEEE,
2013.

[4] C. Avin, M. Borokhovich, and S. Schmid. Obst: A self-adjusting peer-
to-peer overlay based on multiple bsts. In Proc. 13th IEEE International
Conference on Peer-to-Peer Computing (P2P), September 2013.

[5] C. Avin, B. Haeupler, Z. Lotker, C. Scheideler, and S. Schmid. Locally
self-adjusting tree networks. In Parallel & Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium on, pages 395–406.
IEEE, 2013.

[6] C. Avin, B. Haeupler, Z. Lotker, C. Scheideler, and S. Schmid. Locally
self-adjusting tree networks. In Proc. 27th IEEE International Parallel
and Distributed Processing Symposium (IPDPS), May 2013.

[7] E. D. Demaine, D. Harmon, J. Iacono, and M. Patrascu. Dynamic
optimality - almost. In Proc. 45th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 484–490, 2004.

[8] J. Dı́az, J. Petit, and M. Serna. A survey of graph layout problems.
ACM Comput. Surv., 34(3):313–356, 2002.

[9] J. Dı́az, J. Petit, and M. Serna. A survey of graph layout problems.
ACM Comput. Surv., 34(3):313–356, 2002.

[10] H. Farvaresh and M. Sepehri. A branch and bound algorithm for bi-
level discrete network design problem. Networks and Spatial Economics,
13(1):67–106, 2013.

[11] U. Feige and J. Lee. An improved approximation ratio for the minimum
linear arrangement problem. Information Processing Letters, 101(1):26–
29, 2007.

[12] L. H. Harper. Optimal assignment of numbers to vertices. J. SIAM,
(12):131–135, 1964.

[13] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman.
Skipnet: A scalable overlay network with practical locality properties. In
Proc. 4th Conference on USENIX Symposium on Internet Technologies
and Systems (USITS), 2003.

13

[14] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their
applications. Bulletin of the American Mathematical Society, 43(4):439–
562, 2006.

[15] D. Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[16] D. Knuth. Optimum binary search trees. Acta informatica, 1(1):14–25,
1971.

[17] K. Mehlhorn. Nearly optimal binary search trees. Acta Informatica,
5(4):287–295, 1975.

[18] G. Mitchison and R. Durbin. Optimal numberings of an n n array. SIAM
J. Algebraic Discrete Methods, 7(4):571–582, 1986.

[19] R. Ravi, A. Agrawal, and P. N. Klein. Ordering problems approximated:
Single-processor scheduling and interval graph completion. In Proc.
International Colloquium on Automata, Languages and Programming
(ICALP), 1991.

[20] S. Schmid, C. Avin, C. Scheideler, and B. Haeupler. Brief announce-
ment: Splaynets (towards self-adjusting distributed data structures). In
Proc. 26th International Symposium on Distributed Computing (DISC),
2012.

[21] A. Sinclair and M. Jerrum. Approximate counting, uniform generation
and rapidly mixing markov chains. Inf. Comput., 82(1):93–133, 1989.

[22] D. Sleator and R. Tarjan. Self-adjusting binary search trees. Journal of
the ACM (JACM), 32(3):652–686, 1985.

[23] C. C. Wang, J. Derryberry, and D. D. Sleator. O(log log n)-competitive
dynamic binary search trees. In Proc. 17th Annual ACM-SIAM Sympo-
sium on Discrete Algorithm (SODA), pages 374–383, 2006.

APPENDIX

A. Properties of Binary Search Trees

This section presents some basic properties of binary search
trees which are frequently exploited in our proofs. We consider
a binary search tree T of size n and node IDs [1, 2, . . . , n].
The following fact is an obvious consequence of the binary
search structure.

Fact 1. For two nodes x < y in a binary search tree T , let
w be the lowest common ancestor of x and y. It holds that
x ≤ w ≤ y.

The next two claims are needed for our lower bounds.

Claim 4. Let T be any binary search tree. For any node v ∈ T
the sub-tree T (v) contains the IDs of a contiguous interval,
i.e., there exist j and `, s.t. I`j equals the set of nodes of T (v)
.

This can be shown easily by contradiction. Also the follow-
ing claim is simple:

Claim 5. Let T be any binary tree of size |T | = n. Then for
every i = 0, 1, . . . , blog nc − 1 there exists a node v s.t. n

2i >
|T (v)| ≥ n

2i+1 .

Proof: Let x0 be the root of T . Define xj+1 as the root
of the largest subtree of T (xj) (break ties arbitrarily) if there
exist any. Clearly for each xj ∈ T, j > 0 we have |T (xj)| <
|T (xj−1)|. Now for each i in the range above let vi = xj for
the minimal j s.t. |T (xj)| < n

2i . Since |T (xj−1)| is at least
n
2i , it holds that |T (xj)| ≥ n

2i+1 .
Sorted binary tree networks are attractive for their low

degree and the support for a simple and local routing.

Claim 6. Sorted binary tree networks facilitate local routing.

Proof: Basically, a local routing can be achieved by
exploiting Claim 4 as follows. Let us consider each node u in
the tree network T as the root of a (possibly empty) subtree

T (u). Then, a node u simply needs to store the smallest
identifier u′ and the largest identifier u′′ currently present in
T (u). This information can easily be maintained, even under
the topological transformations performed by our algorithms.
When u receives a packet for destination address v, it will
forward it as follows: (1) if u = v, the packet reached its
destination; (2) if u′ ≤ v ≤ u, the packet is forwarded to the
left child and similarly, if u ≤ v ≤ u′′, it is forwarded to
the right child; (3) otherwise, the packet is forwarded to u’s
parent.

B. Proof of Theorem 16

Theorem 16 (restated). A single additional BST can reduce
the amortized costs from a best possible value of Ω(log n) to
O(1).

Proof: Consider the two BSTs T1 = (V,E1) and T2 =
(V,E2) in Figure 7. Clearly, the two BSTs can be perfectly
embedded into SplayNet(2) consisting of two BSTs as well.
However, embedding the two trees at low cost in one BST is
hard, as we will show now.

Formally, we have that, where V = {1, . . . , n} (for an even
n): E1 = ({i, n/2− i+1} : ∀i ∈ [1, n/4]) ∪({n/2− i, i+2} :
∀i ∈ [0, n/4 − 2]) ∪({n/2 + i, n − i} : ∀i ∈ [0, n/4 − 1])
∪({n− i, n/2 + 1 + i} : ∀i ∈ [0, n/4− 1]), and E2 = ({i, n−
i + 1} : ∀i ∈ [1, n/2]) ∪({n − i, i + 2} : ∀i ∈ [0, n/2 − 2])
i.e., BST T2 is “laminated” over the peer identifier space, and
BST T1 consists of two laminated subtrees over half of the
nodes each. Consider a request sequence σ generated from
these two trees with a uniform empirical distribution over all
source-destination requests. Clearly, optimal SplayNet(2) will
serve all the requests with cost 2, since all the requests will
be neighbors in SplayNet(2). In order to show the logarithmic
lower bound for the optimal SplayNet(1), we leverage the
interval cut bound from Theorem 11 in [6]. Concretely, we
will show that for any interval I of size n/8 < ` < n/4
an Ω(`) (and hence an Ω(n)) fraction of requests have one
endpoint inside I and the other endpoint outside I . In other
words, each interval has a linear cut, and the claim follows
since the empirical entropy is Ω(log n).

The proof is by case analysis. Case 1: Consider an interval
I = [x, x + `] where x + ` < n/2. Then, the claim follows
directly from tree T2, as each node smaller or equal n/2
communicates with at least one node larger than n/2, so
the cut is of size Ω(`). Similarly in Case 2 for an interval
I = [x, x + `] where x ≥ n/2. In Case 3, the interval
I = [x, x + `] crosses the node n/2, i.e., x < n/2 and
x + ` > n/2. Moreover, note that since n/8 < ` < n/4,
n/4 < x and x+ ` < 3n/4 hold. The lower bound on the cut
size then follows from tree T1: each node < n/2 is connected
to a node ≤ n/4 outside the interval, and each node > n/2 is
connected to a node ≥ n/2 outside the interval.

14

Stefan Schmid is a senior research scientist at the
Telekom Innovation Laboratories (T-Labs) and at TU
Berlin, Germany. He received his MSc and Ph.D. de-
grees from ETH Zurich, Switzerland, in 2004 and
2008, respectively. 2008-2009 he was a postdoctoral
researcher at TU Munich and at the University of
Paderborn, Germany, and in 2014, he was also a
visiting professor at CNRS Toulouse, France, as well
as at the Université catholique de Louvain (UCL),
Belgium. Stefan Schmid is interested in fundamental
problems in distributed systems. He serves as the

editor of the Distributed Computing Column of the Bulletin of the European
Association of Theoretical Computer Science (EATCS).

Chen Avin received the B.Sc. degree in Com-
munication Systems Engineering from Ben Gurion
University, Israel, in 2000. He received the M.S. and
Ph.D. degrees in computer science from the Uni-
versity of California, Los Angeles (UCLA) in 2003
and 2006 respectively. He is a senior lecturer in the
Department of Communication Systems Engineering
at the Ben Gurion University for which he joined
in October 2006. His current research interests are:
graphs and networks algorithms, modeling and anal-
ysis with emphasis on wireless networks, complex

systems and randomized algorithms for networking.

Christian Scheideler received his M.S. and
Ph.D. degrees in computer science from the Uni-
versity of Paderborn, Germany, in 1993 and 1996.
Afterwards, he was a postdoc at the Weizmann Insti-
tute, Israel, for a year, an Assistant Professor at the
Johns Hopkins University, USA, for five years, and
an Associate Professor at the Technical University
of Munich, Germany, for three years. He is currently
a Full Professor at the Dept. of Computer Science,
University of Paderborn. He has co-authored more
than 100 publications in refereed conferences and

journals and has served on more than 50 conference committees. His main
focus is on distributed algorithms and datastructures, network theory (in par-
ticular, peer-to-peer systems, mobile ad-hoc networks, and sensor networks),
and the design of algorithms and architectures for robust and secure distributed
systems.

Michael Borokhovich is currently a Postdoctoral
Fellow at the UT Austin, He obtained his B.Sc.,
M.Sc., and the PhD degrees in Communication Sys-
tems Engineering from the Ben-Gurion University
of the Negev in Israel. His research interests are:
large scale graph analytics, networks algorithms and
software defined networks.

Bernhard Haeupler is currently a researcher at
Microsoft Research. He obtained his BS, MS and
Diploma from the Technical University of Munich
in mathematics and his MS and PhD in Com-
puter Science from MIT. His work on distributed
information dissemination via network coding and
gossip algorithms won best student paper awards at
STOC’11 and SODA’13. In the fall of 2014 Haeupler
joined CMU as a professor.

Zvi Lotker is an associate professor in the Com-
munication Systems Engineering department at Ben
Gurion University in Beer Sheva, Israel. He received
a BSc in Mathematics and Computer Science, and
a BSc in Industrial Engineering, from Ben Gurion
University in 1991. In 1997 he received his MSc in
Mathematics and in 2003, he received his PhD in
Algorithms both from Tel Aviv University. He was
a Postdoctoral Researcher at CWI, in Amsterdam,
MPI in Saarbrücken Germany, and Mascotte in Nice
France from 2003 to 2006. His main research areas

are communication networks, online algorithms, sensor networks and recently,
social networks.

	Introduction
	Our Contributions
	Paper Organization

	Model and Background
	Entropy and Empirical Entropy
	Splay Trees

	Splay Networks
	Optimal Static Distributed BST
	Self-Adjusting Distributed BSTs

	Basic Entropy Bounds
	Case Studies: Locality and Optimality
	Cluster Scenario
	Non-crossing Matching Scenario
	Multicast Scenario

	Improved Lower Bounds
	Interval Cuts Bound
	Edge Expansion Bound
	Examples

	Multiple BSTs
	Related Work
	Conclusion
	References
	Appendix
	Properties of Binary Search Trees
	Proof of Theorem 16

	Biographies
	Stefan Schmid
	Chen Avin
	Christian Scheideler
	Michael Borokhovich
	Bernhard Haeupler
	Zvi Lotker

