
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, Z 2019 1

Virtual Network Embedding Approximations:
Leveraging Randomized Rounding

Matthias Rost1 Stefan Schmid2
1 Technische Universität Berlin, Germany 2 Faculty of Computer Science, University of Vienna, Austria

Abstract—The Virtual Network Embedding Problem (VNEP)
captures the essence of many resource allocation problems. In the
VNEP, customers request resources in the form of Virtual Net-
works. An embedding of a virtual network on a shared physical
infrastructure is the joint mapping of (virtual) nodes to physical
servers together with the mapping of (virtual) edges onto paths in
the physical network connecting the respective servers. This work
initiates the study of approximation algorithms for the VNEP for
general request graphs. Concretely, we study the offline setting
with admission control: given multiple requests, the task is to
embed the most profitable subset while not exceeding resource
capacities. Our approximation is based on the randomized round-
ing of Linear Programming (LP) solutions. Interestingly, we
uncover that the standard LP formulation for the VNEP exhibits
an inherent structural deficit when considering general virtual
network topologies: its solutions cannot be decomposed into valid
embeddings. In turn, focusing on the class of cactus request
graphs, we devise a novel LP formulation, whose solutions can be
decomposed. Proving performance guarantees of our rounding
scheme, we obtain the first approximation algorithm for the
VNEP in the resource augmentation model. We propose different
types of rounding heuristics and evaluate their performance in
an extensive computational study. Our results indicate that good
solutions can be achieved even without resource augmentations.
Specifically, heuristical rounding achieves 77.2% of the baseline’s
profit on average while respecting capacities.

I. INTRODUCTION

Cloud applications usually consist of multiple distributed
components (e.g., virtual machines, containers), which results
in substantial communication requirements. If the provider
fails to ensure that these communication requirements are met,
the performance can suffer dramatically [2]. Consequently,
over the last decade, several proposals have been made to
jointly provision the computational functionality together with
appropriate network resources. The Virtual Network Embed-
ding Problem (VNEP) captures the core of this problem: given
a graph specifying computational requirements at the nodes
and bandwidth requirements on the edges, an embedding of
this Virtual Network in the physical network has to be found,
such that both the computational and the network requirements
are met. Figure 1 depicts an exemplary embedding.

While the VNEP originated in the context of testbed
mappings and overlay networks, several further applications
have been envisioned. Among the most studied ones are
service chains [5] and virtual clusters [4]. Specifically, service
chains are mostly studied in the context of stitching together
(virtualized) network functions, while virtual clusters have

Parts of this work were presented at IFIP Networking 2018 [1].

A B

CD

AC B

D

1

11

1

6

virtual network

embedding 1/2

1/2 1/2

1/2

2/3

1/3

1 4

3 1

2/2 4/5

0/0 1/13/3

physical network

request substrate

Fig. 1. Example of embedding a virtual network request (left) on the physical
substrate network (right). The numeric labels of the virtual network elements
denote the resource demands, while for the substrate network the resource
usage and the total capacity are given. In the embedding, each request nodes
is mapped to a single substrate node and each request edge is realized by a
path in the substrate network. Notably, the model allows for the collocation
of virtual nodes A and C on the same substrate node and, accordingly, the
request edge (A,C) does not use any substrate edge resources.

Customer Internet

LB1 LB2Cache

FW

NAT
VM1

VM5

VM4VM3

VM2

Fig. 2. Examples for virtual networks ‘in the wild’. The left graph shows
a service chain for mobile operators [3]: load-balancers route (parts of
the) traffic through a cache. Furthermore, a firewall and a network-address
translation are used. The right graph depicts a Virtual Cluster abstraction for
provisioning virtual machines (VMs) in data centers. The abstraction provides
connectivity guarantees via a logical switch in the center [4].

been proposed in the context of batch-processing applications
within data centers (see Figure 2 for examples).

We study the offline setting of the VNEP with admission
control. Given are several requests, each being attributed with
a profit that the provider of the physical infrastructure obtains
when embedding it. The task is to decide which and how
to embed requests while maximizing the obtained profit and
respecting resource capacities. This work initiates the study of
approximation algorithms for the VNEP for general request
graphs and general physical network topologies. As the VNEP
is generally NP-hard and inapproximable [6], the resource
augmentation model is considered, in which the approximation
algorithms may exceed capacities by bounded factors. As
resource augmentations imply a distinct degradation of service
quality, we also derive and evaluate heuristics based on our
approximation framework, which do respect capacities.

A. Formal Problem Statement

In the light of the recent interest in Service Chaining [5],
we extend the VNEP’s general definition [7] by consid-

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, Z 2019 2

ering different types of computational nodes. We refer to
the physical network as the substrate network. The substrate
GS = (VS , ES) is offering a set T of computational types.
This set of types may contain, e.g., ‘FW’ (firewall), ‘x86
server’, etc. For a type τ ∈ T , the set V τS ⊆ VS denotes the
substrate nodes that can host functionality of type τ . Denoting
the node resources by RVS = {(τ, u) |τ ∈ T , u ∈ V τS } and all
substrate resources by RS = RVS ∪ES , the capacity of nodes
and edges is denoted by dS(x, y) > 0 for (x, y) ∈ RS .

For each request r ∈ R, a directed graph Gr = (Vr, Er)
together with a profit br > 0 is given. We refer to the
respective nodes as virtual or request nodes and similarly refer
to the respective edges as virtual or request edges. The types
of virtual nodes are indicated by the function τr : Vr → T .

Based on policies of the customer or the provider, the map-
ping of virtual node i ∈ Vr is restricted to a set V r,iS ⊆ V τr(i)

S ,
while the mapping of virtual edge (i, j) is restricted to a
subset of substrate edges Er,i,jS ⊆ ES . Each virtual node
i ∈ Vr and each edge (i, j) ∈ Er is attributed with a resource
demand dr(i) ≥ 0 and dr(i, j) ≥ 0, respectively. Virtual nodes
and edges can only be mapped on substrate nodes and edges
of sufficient capacity, i.e., V r,iS ⊆ {u ∈ V τr(i)

S |dS(u) ≥ dr(i)}
and Er,i,jS ⊆ {(u, v) ∈ ES |dS(u, v) ≥ dr(i, j)} holds.

We denote by dmax(r, x, y) the maximal demand that a
request r may impose on a resource (x, y) ∈ RS :

dmax(r, τ, u) = max({0} ∪ {dr(i)|i ∈ Vr : τ(i) = τ ∧ u ∈ V r,i
S })

dmax(r, u, v) = max({0} ∪ {dr(i, j)|(i, j) ∈ Er : (u, v) ∈ Er,i,j
S })

In the following the notions of valid mappings (respecting
mapping constraints) and feasible embeddings (respecting
resource capacities) are introduced to formalize the VNEP.

Definition 1 (Valid Mapping). A valid mapping mr of re-
quest r ∈ R is a tuple (mV

r ,m
E
r) of functions mV

r : Vr → VS
and mE

r : Er → P(ES), such that the following holds:
• Virtual nodes are mapped to allowed substrate nodes:
mV
r (i) ∈ V r,iS holds for all i ∈ Vr.

• The mapping mE
r (i, j) of virtual edge (i, j) ∈ Er is

an edge-path connecting mV
r (i) to mV

r (j) only using
allowed edges, i.e., mE

r (i, j) ⊆ P(Er,i,jS) holds.
We denote byMr the set of valid mappings of request r ∈ R.

Definition 2 (Allocations of Valid Mappings). We denote by
A(mr, x, y) the cumulative allocation induced by the valid
mapping mr ∈Mr on resource (x, y) ∈ RS:

A(mr, τ, u) =
∑

i∈Vr,τ(i)=τ,mV
r (i)=u

dr(i) ∀(τ, u) ∈ RVS

A(mr, u, v) =
∑

(i,j)∈Er,(u,v)∈mE
r (i,j)

dr(i, j) ∀(u, v) ∈ ES

The maximal allocation that a valid mapping of request r ∈ R
may impose on a substrate resource (x, y) ∈ RS is denoted
by Amax(r, x, y) = maxmr∈Mr

A(mr, x, y).

Definition 3 (Feasible Embedding). A feasible embedding
of a subset of requests R′ ⊆ R is a collection of valid
mappings {mr}r∈R′ , such that the cumulative allocations on
nodes and edges does not exceed the substrate capacities, i.e.,∑
r∈R′ A(mr, x, y) ≤ dS(x, y) holds for (x, y) ∈ RS .

Definition 4 (Offline Virtual Network Embedding Problem).
The VNEP asks for a feasible embedding {mr}r∈R′ of a
subset of requests R′ ⊆ R maximizing the profit

∑
r∈R′ br.

B. Related Work
In the last decade, the VNEP has attracted much attention

due to its many applications. A survey from 2013 already lists
more than 80 different algorithms for its many variations [7].
The VNEP is known to be NP-hard and inapproximable
in general (unless P =NP) [6]. Based on the hardness
of the VNEP, most works consider heuristics without any
performance guarantee [7], [8]. Other works proposed exact
methods as integer or constraint programming, coming at the
cost of an exponential runtime [9], [10], [11].

A column generation approach was proposed by Jarray et al.
in [10] to efficiently compute solutions to the VNEP by iter-
atively generating feasible mappings subject to a specific cost
measure. In particular, Jarray et al. compute feasible mappings
by relying on heuristics and, if no feasible heuristical solution
was found, rely on Mixed-Integer Programming to compute a
cost optimal feasible embedding in non-polynomial time. Our
work can potentially bridge the gap between the heuristic and
optimal generation of feasible mappings as our approach can
be used to compute approximate mappings.

Acknowledging the hardness of the general VNEP and the
diversity of applications, several subproblems of the VNEP
have been studied recently by considering restricted graph
classes for the virtual networks and the substrate graph. For
example, virtual clusters with uniform demands are studied in
[4], [12], line requests are studied in [13], [14], [15] and tree
requests were studied in [14], [16].

Considering approximation algorithms, Even et al. em-
ployed randomized rounding in [14] to obtain a constant ap-
proximation for embedding line requests on arbitrary substrate
graphs under strong assumptions on both the benefits and the
capacities. In their interesting work, Bansal et al. [16] give an
nO(d) time O(d2 log (nd))-approximation algorithm for mini-
mizing the load of embedding d-depth trees based on a n-node
substrate. Their result is based on strong Linear Programming
(LP) relaxations like the Sherali-Adams hierarchy.

To the best of our knowledge, this work is the first to
give approximation algorithms for arbitrary substrate graphs
and classes of virtual networks containing cyclic subgraphs.
While our results are limited to the family of cactus request
graphs, the approach presented in this work can be extended to
arbitrary request graphs as shown in our technical report [17].
However, this generalization comes at the cost of polynomial-
time solvability: for general graphs the size of the LP for-
mulations may be exponential in the input. As finding LP
formulations of minimal size is shown to be NP-hard, this
generalized approach may be hard to use in practice.

Besides the generalization of [17], another parametrized ap-
proach to compute decomposable solutions for general graphs
has been recently presented in [18]. Specifically, in [18],
column generation and dynamic programming are used to
compute decomposable LP solutions in time exponential in
the treewidth of the request graphs, while using the analysis
and evaluation framework presented in this work.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, Z 2019 3

C. Outline of Randomized Rounding for the VNEP

We shortly revisit the concept of randomized rounding [19].
Given an Integer Program for a certain problem, randomized
rounding works by (i) computing a solution to its Linear
Program relaxation, (ii) decomposing this solution into convex
combinations of elementary solutions, and (iii) probabilisti-
cally selecting elementary solutions based on their weight.

Accordingly, for applying randomized rounding for
the VNEP, a convex combination of valid mappings
Dr = {(fkr ,mk

r)|mk
r ∈Mr, f

k
r > 0} must be recovered from

the Linear Programming solution for each request r ∈ R,
such that (i) the profit of these convex combinations equals the
profit achieved by the Linear Program and (ii) the (fractional)
cumulative allocations do not violate substrate capacities.
Rounding a solution is then done as follows. For each request
r ∈ R, the mapping mk

r is selected with probability fkr ,
rejecting r with probability 1−

∑
k f

k
r .

D. Results and Organization

This paper initiates the study of approximation algorithms
for the VNEP on general substrates and general virtual
networks. Specifically, we employ randomized rounding to
obtain the first approximation for the non-trivial class of cactus
graph requests in the resource augmentation model.

Studying the classic multi-commodity flow (MCF) formu-
lation for the VNEP in Section II, we show that its solutions
can only be decomposed for tree requests: solutions for request
graphs containing cycles can in general not be decomposed
into valid mappings. This result has ramifications beyond
the inability to apply randomized rounding: we prove that
the MCF formulation exhibits an unbounded integrality gap.
Investigating the root cause for this surprising result, we
devise a novel decomposable Linear Programming formulation
in Section III for the class of cactus graph requests. We
then present our randomized rounding algorithm and prove
its performance guarantees in Section IV, obtaining the first
approximation algorithm for the VNEP. Section V presents a
synthetic computational study, in which two types of rounding
heuristics are evaluated. Our results indicate that high-quality
solutions can be obtained even without resource augmenta-
tions: our heuristic achieves 77.2% of the baseline’s profit on
average, without exceeding resource capacities.

II. THE CLASSIC MULTI-COMMODITY FORMULATION
FOR THE VNEP AND ITS LIMITATIONS

In this section, we study the relaxation of the standard multi-
commodity flow (MCF) formulation for the VNEP (cf. [5],
[8]). We first show the positive result that the formulation is
sufficiently strong to decompose virtual networks being trees
into convex combinations of valid mappings. Subsequently, we
show that the formulation fails to allow for the decomposition
of solutions for cyclic requests. This not only impacts its
applicability for randomized rounding but renders the formu-
lation useless for approximations in general: we show that the
formulation’s integrality gap is unbounded.

A. The Classic Multi-Commodity Formulation

The classic MCF formulation for the VNEP is presented as
Formulation 1 . We first describe its (mixed-)integer variant,
which computes a single valid mapping for each request by
using binary variables. The Linear Programming variant is
obtained by relaxing the binary variables’ domain to [0, 1].

The variable xr ∈ {0, 1} indicates whether request r ∈ R is
embedded or not. The variable yur,i ∈ {0, 1} indicates whether
virtual node i ∈ Vr was mapped on substrate node u ∈ VS .
Similarly, the flow variable zu,vr,i,j ∈ {0, 1} indicates whether
the substrate edge (u, v) ∈ ES is used to realize the virtual
edge (i, j) ∈ Er. The variable ax,yr ≥ 0 denotes the cumulative
allocations of request r ∈ R induced on resource (x, y) ∈ RS .

By Constraint 2, the virtual node i ∈ Vr of request r ∈ R
must be placed on any of the suitable substrate nodes of V r,iS

iff. xr = 1 holds and Constraint 3 forbids the mapping on
nodes which may not host node i. Constraint 4 induces an
unsplittable unit flow for each virtual edge (i, j) ∈ Er from
the substrate location to which i was mapped to the substrate
location to which j was mapped. By Constraint 5 virtual edges
may only be mapped on allowed substrate edges. Constraints 6
and 7 compute the cumulative allocations and Constraint 8
guarantees that the substrate resource capacities are respected.
The following lemma states the connectivity property enforced
by Formulation 1.

Lemma 5 (Local Connectivity Property of Formulation 1).
For any virtual edge (i, j) ∈ Er and any substrate node
u ∈ V r,iS with yur,i > 0, there exists a path Pu,vr,i,j in GS from u

to v ∈ V r,jS with yvr,j > 0, such that the flow along any edge
of Pu,vr,i,j with respect to the variables z·,·r,i,j is greater 0.

The path Pu,vr,i,j can be computed in polynomial time.

Proof. First, note that
∑
u∈V r,i

S
yur,i =

∑
v∈V r,j

S
yvr,i holds by

Formulation 1: Classic MCF Formulation for the
VNEP

max
∑
r∈R

brxr (1)∑
u∈V r,i

S

yur,i= xr ∀r ∈ R, i ∈ Vr (2)

∑
u∈VS\V r,i

S

yur,i= 0 ∀r ∈ R, i ∈ Vr (3)
∑

(u,v)∈δ+(u)

zu,vr,i,j

−
∑

(v,u)∈δ−(u)

zv,ur,i,j

=

yur,i
−yur,j

 ∀
 r ∈ R, (i, j) ∈ Er,
u ∈ VS

 (4)

zu,vr,i,j= 0 ∀

 r ∈ R, (i, j) ∈ Er,
(u, v) ∈ ES \ Er,i,jS

 (5)∑
i∈Vr,τr(i)=τ

dr(i) · yur,i= aτ,ur ∀r ∈ R, (τ, u) ∈ RVS (6)∑
(i,j)∈Er

dr(i, j) · zu,vr,i,j= au,vr ∀r ∈ R, (u, v) ∈ ES (7)∑
r∈R

ax,yr ≤ dS(x, y) ∀(x, y) ∈ RS (8)

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, Z 2019 4

Constraint 2 and hence both virtual nodes i and j must be
mapped to an equal extent on suitable substrate nodes. Fix any
substrate node u ∈ V r,iS with yur,i > 0. If j is also partially
mapped on u, i.e., if yur,j > 0 holds, then the result follows
directly, as u connects to u using (and allowing) the empty
path Pu,ur,i,j = 〈〉. If, on the other hand, yur,j = 0 holds, then
Constraint 4 induces a flow of value yur,i at u in the commodity
z·,·r,i,j . As the right hand side of Constraint 4 may only attain
negative values at nodes v ∈ V r,jS for which yvr,j > 0 holds, the
flow emitted at node u must eventually reach a node v ∈ V r,jS

with yvr,j > 0 and hence the result follows. The path Pu,vr,i,j can
be constructed in polynomial-time by a breadth-first search
only considering edges (u′, v′) ∈ ES with zu

′,v′

r,i,j > 0.

B. Decomposing Solutions for Tree Requests

Given Lemma 5, we now present Algorithm 1 to decompose
solutions to the LP Formulation 1 into convex combinations of
valid mappings Dr = {(fkr ,mk

r)|mk
r ∈Mr, f

k
r > 0} (cf. Sec-

tion I-C), if the request’s underlying undirected graph is a
tree. Recall that in the LP formulation the binary variables are
relaxed to take any value in the interval [0, 1].

Given a request r ∈ R, the algorithm processes all vir-
tual edges according to an arbitrary acyclic representation
GAr = (Vr, E

A
r , rr) of the undirected interpretation of Gr

being rooted at rr ∈ Vr. Concretely, the edge set EAr is
obtained from Er by reorienting (some of the) edges, such
that any node i ∈ Vr can be reached from rr. Considering tree
requests for now, GAr is an arborescence and can be computed
by a simple graph search of the underlying undirected graph
starting at an arbitrary root node rr ∈ Vr. We denote by←−
EAr = Er \ EAr the edges whose orientations were reversed
in the process of computing GAr .

The algorithm extracts mappings mk
r of value fkr iteratively,

as long as xr > 0 holds. Initially, in the k-th iteration, none of
the virtual nodes and edges are mapped. As xr > 0 holds, there
must exist a node u ∈ V r,rrS with yur,rr > 0 by Constraint 2
and the algorithm accordingly sets mV

r (rr) = u. Given this
initial fixing, the algorithm iteratively extracts nodes from the
queue Q which have been already mapped and considers all
outgoing virtual edges (i, j) ∈ EAr . If an outgoing edge (i, j)
is contained in Er, Lemma 5 can be readily applied to obtain
a joint mapping of the edge (i, j) and its head j. If the edge’s
orientation was reversed, i.e. if (i, j) ∈

←−
EAr holds, Lemma 5 is

applied while reversing the flow’s direction (see Lines 13-16).
First, note that by the repeated application of Lemma 5,

the mapping of virtual nodes and edges is valid. As GAr
is an arborescence, each edge and each node of GAr will
eventually be mapped and hence mk

r is a valid mapping. The
mapping value fkr is computed as the minimum of the mapping
variables Vk used for constructing mk

r . Reducing the values
of the mapping variables together with the allocation variables
~ar (Lines 20-21), the Constraints 2-7 continue to hold.

As the decomposition process continues as long as xr > 0
holds and in the k-th iteration at least one variable’s value is set
to 0, the algorithm terminates with a complete decomposition
for which

∑
k f

k
r = xr holds. Furthermore, the algorithm has

polynomial runtime, as in each iteration at least one variable is

Algorithm 1: Decompositioning MCF solutions for Tree Re-
quests
Input : Tree request r ∈ R, solution (xr, ~yr, ~zr,~ar) to LP

Formulation 1, acyclic reorientation GAr = (Vr, E
A
r , rr)

Output: Convex combination Dr = {(fkr ,mk
r)}k

1 set Dr ← ∅ and k ← 1
2 while xr > 0 do
3 set mk

r = (mV
r ,m

E
r) ← (∅, ∅)

4 set Q = {rr}
5 choose u ∈ V r,rrS with yur,rr > 0 and set mV

r (rr) ← u
6 while |Q| > 0 do
7 choose i ∈ Q and set Q ← Q \ {i}
8 foreach (i, j) ∈ EAr do
9 if (i, j) ∈ Er then

10 compute
−→
P u,v
r,i,j connecting mV

r (i) = u to
v ∈ V r,jS

11 according to Lemma 5
set mV

r (j) = v and mE
r (i.j) =

−→
P u,v
r,i,j

12 else
13 let ←−z v

′,u′

r,i,j , zu
′,v′

r,j,i for all (u′, v′) ∈ ES
14 compute

←−
P v,u
r,i,j connecting mV

r (i) = v to
u ∈ V r,jS

15 according to Lemma 5
set
−→
P u,v
r,j,i = reverse(

←−
P v,u
r,i,j)

16 set mV
r (i) = u and mE

r (j, i) =
−→
P u,v
r,j,i

17 set Q ← Q∪ {j}

18 set Vk ←

(
{xr} ∪ {y

mV
r (i)

r,i |i ∈ Vr}
∪ {zu,vr,i,j |(i, j) ∈ Er, (u, v) ∈ mE

r (i, j)}

)
19 set fkr ← minVk
20 set v ← v − fkr for all v ∈ Vk
21 set ax,yr ← ax,yr − fkr ·A(mk

r , x, y) for all (x, y) ∈ RS
22 add Dk

r = (fkr ,m
k
r) to Dr and set k ← k + 1

23 return Dr

set to 0 and the number of variables for request r is bounded
by O(|Gr| · |GS |). Hence, we obtain the following:

Lemma 6. Given a virtual network request r ∈ R,
whose underlying undirected graph is a tree, Algorithm 1
decomposes a solution (xr, ~yr, ~zr,~ar) to LP Formula-
tion 1 into valid a convex combination of valid mappings
Dr = {(mk

r , f
k
r)|mk

r ∈Mr, f
k
r > 0}k, such that:

• The decomposition is complete, i.e., xr =
∑
k f

k
r holds.

• The decomposition’s allocations are bounded by ~ar, i.e.,
ax,yr ≥

∑
k f

k
r ·A(mk

r , x, y) holds for (x, y) ∈ RS .

C. Limitations of the Classic MCF Formulation

Above it was shown that LP solutions to the classic MCF
formulation can be decomposed into convex combinations of
valid mappings if the underlying graph is a tree. However,
this does not hold anymore when considering cyclic virtual
networks:

Theorem 7. Solutions to the LP Formulation 1 can in general
not be decomposed into convex combinations of valid map-
pings if the virtual networks contain cycles.

Proof. In Figure 3 we visually depict an example of a solution
to the LP Formulation 1 from which not a single valid mapping

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, Z 2019 5

Request Gr

i

jk

Substrate GS LP Solution

u1

u2

u3

u4

u5

u6

0.5i

0.5j

0.5k

0.5i

0.5j

0.5k

0.5i

0.5j

0.5k

Decomposition Attempt

0.5k

0.5k

Fig. 3. Example showing that solutions to the LP Formulation 1 can in general
not be decomposed into convex combinations of valid mappings. Request r
is a simple cyclic graph which shall be mapped on the substrate graph GS .
We assume following node mapping restrictions V r,i

S = {u1, u4}, V r,j
S =

{u2, u5}, V r,k
S = {u3, u6}. The LP solution with xr = 1 is depicted as

follows. Substrate nodes are annotated with the mapping of virtual nodes.
Hence, 0.5i at node u1 indicates yu1

r,i = 1/2, i.e., that virtual node i is
mapped with 0.5 on substrate node u1. Substrate edges are colored according
to the color of virtual links mapped onto it. Virtual links are all mapped using
flow values 1/2. Accordingly, e.g., zu1,u2

r,i,j = 1/2 holds.

can be extracted. The validity of the depicted solution follows
from the fact that the virtual node mappings sum to 1 and
each virtual node connects to its neighboring node with half
a unit of flow. Assume for the sake of contradiction that the
depicted solution can be decomposed. As virtual node i ∈ Vr
is mapped onto substrate node u1 ∈ VS , and u2 ∈ VS is
the only neighboring node with respect to variables z·,·r,i,j that
hosts j ∈ Vr, there must exist a mapping (mV

r ,m
E
r) with

mV
r (i) = u1 and mV

r (j) = u2. Similarly, mV
r (k) = u3 must

hold. However, for mV
r (i) = u1, the virtual node k must be

mapped to u6, as otherwise the embedding of (k, i) cannot
lead to substrate node u1. Hence the virtual node k ∈ Vr must
be mapped both on u6 and u3. As this is not possible and the
same argument holds when considering mapping i onto u4,
no valid mapping can be extracted from the LP solution.

The non-decomposability of the solutions to the MCF for-
mulation shows that it cannot be used for applying randomized
rounding, as no valid mappings can be extracted in the first
place. Even more, the non-decomposability does not only
forbid the application of randomized rounding but cannot be
at all used for obtaining approximations. Specifically, given
the non-decomposability it is easy to construct instances in
which the MCF formulation attains the maximal profit while
any optimal solution cannot embed any request. Hence, the
integrality gap of the MCF formulation is unbounded and can
– for graphs containing cycles – never lead to approximation
algorithms. At this point, we only state the respective theorems
and refer the reader to the appendix for the proofs.

Theorem 8. The integrality gap of the MCF formulation is
unbounded. This even holds under infinite substrate capacities.

Theorem 9. The integrality gap of the MCF formulation lies
in Ω(|VS |), when only considering node mapping restrictions.

III. NOVEL DECOMPOSABLE LP FORMULATION

In this section, we present a novel LP formulation and its
accompanying decomposition algorithm for the class of cactus
request graphs, i.e., graphs for which cycles intersect in at most
a single node (in its undirected interpretation). Accordingly,
these graphs can be uniquely decomposed into cycles and a
single forest (cf. Lemma 10 below).

Before delving into the details of our novel LP formula-
tion, we discuss our main insight on how to overcome the
limitations of the MCF formulation and accordingly how to
derive decomposable formulations. To this end, it is instruc-
tive, to revisit the non-decomposable example of Figure 3
by applying the decomposition Algorithm 1 on the depicted
LP solution. Concretely, we consider the acyclic reorientation
GAr = (Vr, E

A
r , rr) with EAr = {(i, k), (i, j), (j, k)}, such

that i is the root, rr = i. Assuming that i is initially mapped
on node u1, Algorithm 1 will map edges (i, k) and (i, j)
first, setting mV

r (k) = u6 and mV
r (j) = u2 However, when

the edge (j, k) is processed, k must be mapped on substrate
node u3 6= mV

r (k) and the algorithm hence fails to produce
a valid mapping. Accordingly, to avoid such diverging node
mappings, our key idea is to decide the mapping location
of nodes with more than one incoming edge in the request’s
acyclic reorientation GAr a priori.

By considering only cactus request graphs, the above can
be implemented rather easily as exactly one node of each
cycle has more than one incoming edge: one only needs
to ensure compatibility of node mappings for this node. To
resolve potential conflicts for the mapping of this unique cycle
target, our formulation employs multiple copies of the MCF
formulation for the respective cyclic subgraph. Specifically,
considering a cycle with virtual target node k, we instantiate
one MCF formulation per substrate node w ∈ V r,kS onto which
k can be mapped. Accordingly, this yields at most |VS | many
copies and for each of these copies k is fixed to one specific
(substrate) mapping location. Accordingly, as the mapping
location of k is fixed to a specific node, valid mappings for the
respective cycles can always be extracted from such a MCF
copy: the mappings of k cannot possibly diverge.

A. Cactus Request Graph Decomposition and Notation

Based on the assumed cactus graph nature of request
graphs, we consider the following decomposition of request
graphs (see the appendix for the proof).

Lemma 10. Consider a cactus request graph Gr and an
acyclic reorientation GAr of Gr. The graph GAr can be
uniquely partitioned into subgraphs {GA,C1

r , . . . , GA,Cn
r } t

GA,Fr , such that the following holds:

1) The subgraphs {GA,C1
r , . . . , GA,Cn

r } correspond to the
(undirected) cycles of Gr and GA,Fr is the forest remain-
ing after removing the cyclic subgraphs. We denote the
index set of the cycles by Cr = {C1, . . . , Cn}.

2) The subgraphs partition the edges of EAr : an edge
(i, j) ∈ EAr is contained in exactly one of the subgraphs.

3) The edge set EA,Ck
r of each cycle Ck ∈ Cr can itself be

partitioned into two branches BCk
1 and BCk

2 , such that
both lead from sCk

r ∈ V A,Ck
r to tCk

r ∈ V A,Ck
r .

Besides the above introduced notation, we denote by GCk
r

and GFr the subgraphs that agree with Gr on the edge
orientations and use V Ck

S,t = V r,t
Ck
r

S to denote the substrate
nodes on which tCk

r can be mapped.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, Z 2019 6

B. Novel LP Formulation for Cactus Request Graphs

Our novel Formulation 2 uses the a priori partition of GAr
into cycles GA,Ck

r and the forest GA,Fr to construct MCF
formulations for the respective subgraphs: for the subgraph
GFr a single copy is used (cf. Constraint 10) while for the
cyclic subgraphs a single MCF formulation is employed
per potential target location contained in the set V Ck

S,t (cf.
Constraint 11). We index the variables of these sub-LPs by
employing square brackets.

To bind together these (at first) independent MCF formu-
lations, we reuse the variables ~x, ~y, and ~a introduced already
for the MCF formulation. We refer to these variables, which
are defined outside of the sub-LP formulations, as global
variables and do not index these. As we only consider the
LP formulation, all variables are continuous.

The different sub-formulations are linked as follows. We
employ Constraint 12 to enforce the setting of the (global)
node mapping variables (cf. Constraint 2 of Formulation 1).
By Constraints 13 and 14, the node mappings of the sub-
LPs for mapping the subgraphs must agree with the global
node mapping variables. With respect to cyclic subgraphs, we
note that Constraint 14 allows for distributing the global node
mappings to any of the |V Ck

S,t | formulations: only the sum of
the node mapping variables must agree with the global node
mapping variable. Constraint 15 is of crucial importance for
the decomposability: considering the sub-LP for cycle Ck and
target node w ∈ V Ck

S,t , it enforces that the target node tCk
r of the

cycle Ck must be mapped on w. Thus, in the sub-LP [Ck, w]
both branches BCk

1 and BCk
2 of cycle Ck are pre-determined

to lead to the node w. Lastly, for computing node allocations
the global node mapping variables are used (cf. Constraint 16)
and for computing edge allocations the sub-LP formulations’
allocations are considered (cf. Constraint 17).

C. Decomposing Solutions to the Novel LP Formulation

We now show how to adapt the decomposition Algorithm 1
to decompose solutions to Formulation 2.

To decompose the LP solution for a request r, the acyclic
reorientation GAr , which was also used for constructing the
LP, must be handed over to the decomposition algorithm.

As the novel LP formulation does not contain (global)
edge mapping variables, the edge mapping variables used
in Lines 10 and 13 of Algorithm 1 must be substituted by
edge mapping variables of the respective sub-LP formulations.
Concretely, as each edge of the request graph Gr is covered
exactly once, it is clear whether a virtual edge (i, j) ∈ Er
is part of GFr or a cyclic subgraph GCk

r . If (i, j) ∈ GFr
holds, then the edge mapping variables z·,·r,i,j [Fr] are used.
If on the other hand the edge (i, j) ∈ Er is covered in the
cyclic subgraph GCk

r , then there exist |V Ck

S,t | many sub-LPs to
choose the respective edge mapping variables from. To ensure
the decomposability, we proceed as follows.

If the edge (i, j) ∈ EAr is the first edge of GCk
r to be mapped

in the k-th iteration, the mapping variables z·,·r,i,j [Ck, w] be-

longing to an arbitrary target node w, with ym
V
r (i)

r,i [Ck, w] > 0,
are used. Such a node w exists by Constraint 14.

Formulation 2: Novel LP for Cactus Request Graphs

max
∑
r∈R

brxr (9)

Cons. (2) - (7) for GFr on

variables (xr, ~yr, ~zr,~ar)[Fr]
∀r ∈ R (10)

Cons. (2) - (7) for GCk
r on

variables (xr, ~yr, ~zr,~ar)[Ck, w]
∀r ∈ R, Ck ∈ Cr, w ∈ V Ck

S,t (11)

xr=
∑

u∈V r,i
S

yur,i ∀r ∈ R, i ∈ Vr (12)

yur,i= yur,i[F] ∀r ∈ R, i ∈ V Fr , u ∈ V
r,i
S (13)

yur,i=
∑
w∈tCk

r

yur,i[Ck, w] ∀

 r ∈ R, i ∈ Vr, u ∈ V r,iS ,

Ck ∈ Cr : i ∈ V Ck
r

 (14)

0= yu
r,t

Ck
r

[Ck, w] ∀

 r ∈ R, Ck ∈ Cr, w ∈ V Ck

S,t ,

u ∈ V Ck

S,t \ {w}

 (15)

aτ,ur =
∑

i∈Vr,τr(i)=τ

dr(i) · yur,i ∀r ∈ R, (τ, u) ∈ RVS (16)

au,vr = au,vr [F] +
∑

Ck∈Cr,w∈V
Ck
S,t

au,vr [Ck, w] ∀r ∈ R, (u, v) ∈ ES (17)

∑
r∈R

ax,yr ≤ dS(x, y) ∀(x, y) ∈ RS (18)

If another edge (i′, j′) of the same cycle was already
mapped in the k-th iteration, the same sub-LP before is
considered. Accordingly, the mapping of cycle target nodes
cannot conflict, and as these are the only nodes with potential
mapping conflicts, the returned mappings are always valid.

To successfully iterate the extraction process, the steps
taken in Lines 18 - 21 of Algorithm 1 must be adapted to
consider the sub-LP variables. Again, as in each iteration at
least a single variable of the LP is set to 0 and as the novel
Formulation 2 contains at most O(|VS |) times more variables
than the MCF Formulation 1, the decomposition algorithm
still runs in polynomial-time. Hence, we conclude that the
result of Lemma 6 carries over to the novel LP Formulation 2
for cactus request graphs and state the following theorem.

Theorem 11. Given a solution (xr, ~yr, ~zr,~ar) to the novel LP
Formulation 2 for a cactus request graph Gr, the solution can
be decomposed into a convex combination of valid mappings
Dr = {(mk

r , f
k
r)|mk

r ∈Mr, f
k
r > 0}k, such that:

• The decomposition is complete, i.e., xr =
∑
k f

k
r holds.

• The decomposition’s allocations are bounded by ~ar, i.e.,
ax,yr ≥

∑
k f

k
r ·A(mk

r , x, y) holds for (x, y) ∈ RS .

IV. APPROXIMATION VIA RANDOMIZED ROUNDING

Above we have shown how convex combinations for the
VNEP can be computed for cactus requests. Given these
convex combinations, we now present our approximation
algorithm (see Algorithm 2) and analyze its probabilistic
guarantees in Sections IV-A to IV-C. Afterwards, we propose
several rounding heuristics to apply our approximation in
practice (see Section IV-D).

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, Z 2019 7

Algorithm 2: Randomized Rounding for the VNEP

1 foreach r ∈ R do // preprocess requests
2 compute LP Formulation 2 for request r maximizing

xr
3 if xr < 1 then remove request r from the set R
4 compute LP Formulation 2 for R maximizing∑

r∈R br · xr
5 foreach r ∈ R do // perform decomposition
6 compute Dr = {(fkr ,mk

r)}k from LP solution

7 do // perform randomized rounding
8 foreach r ∈ R select mk

r with probability fkr
9 while

(
solution is not (α, β, γ)-approximate and
maximal rounding tries are not exceeded

)

Synopsis of our Approximation Algorithm: The algorithm
first performs a preprocessing in Lines 1 to 3 by removing
all requests which cannot be fully (fractionally) embedded in
the absence of other requests, as these can never be part of
any feasible solution. In Lines 4 to 6 an optimal solution
to the novel LP Formulation 2 is computed and afterwards
decomposed into convex combinations. Then, in Lines 7 to 9,
the rounding is performed: for each request r ∈ R a mapping
mk
r is selected with probability fkr . Importantly, the summed

probabilities may not sum to 1, i.e., with probability 1−
∑
k f

k
r

the request r is not embedded.
The rounding procedure is iterated as long as the constructed

solution is not of sufficient quality or until the number of
maximal rounding tries is exceeded. Concretely, we seek
(α, β, γ)-approximate solutions which achieve at least a factor
of α ≤ 1 times the optimal (LP) profit and exceed node and
edge capacities by at most factors of β ≥ 1 and γ ≥ 1,
respectively. In the following we derive parameters α, β, and
γ for which solutions can be found with high probability.

Note that Algorithm 2 is indeed a polynomial-time algo-
rithm, as the size of the novel LP Formulation 2 is polynomi-
ally bounded and can hence be solved in polynomial-time.

A. Probabilistic Guarantee for the Profit

For bounding the profit achieved by the randomized round-
ing scheme, we recast the profit achieved in terms of random
variables. The discrete random variable Yr ∈ {0, br} models
the profit achieved by the rounding of request r ∈ R. Accord-
ing to our rounding scheme, we have P(Yr = br) =

∑
k f

k
r

and P(Yr = 0) = 1−
∑
k f

k
r . We denote the overall profit by

B =
∑
r∈R Yr with E(B) =

∑
r∈R br ·

∑
k f

k
r . Denoting the

profit of an optimal LP solution by BLP, we have BLP = E(B)
due to the decomposition’s completeness (cf. Theorem 11).

By preprocessing the requests and confirming that each
request can be fully embedded, the LP will attain at least the
maximal profit of any of the considered requests:

Lemma 12. E(B) = BLP ≥ maxr∈R br holds.

We employ the following Chernoff bound over continuous
variables to bound the probability of achieving a small profit.

Theorem 13 (Chernoff Bound [20]). Let X =
∑n
i=1Xi,

Xi ∈ [0, 1], be a sum of n independent random variables.
For any 0 < ε < 1, the following holds:

P
(
X ≤ (1− ε) · E(X)

)
≤ exp(−ε2 · E(X)/2)

Theorem 14. Let BIP denote the profit of an optimal solution.
Then P(B < 1/3 · BIP) ≤ exp(−2/9) ≈ 0.8007 holds.

Proof. Let b̂ = maxr∈R br be the maximum bene-
fit among the preprocessed requests. We consider ran-
dom variables Y ′r = Yr/b̂, such that Y ′r ∈ [0, 1] holds.
Let B′ =

∑
r∈R Y

′
r = B/b̂. As E(B) = BLP ≥ b̂

holds (cf. Lemma 12), we have E(B′) ≥ 1. Choos-
ing ε = 2/3 and applying Theorem 13 on B′ we ob-
tain P

(
B′ ≤ (1/3) · E(B′)

)
≤ exp(−2 · E(B′)/9). Plugging

in the minimal value of E(B′), i.e., 1, into the equation we
obtain P

(
B′ ≤ (1/3) ·E(B′)

)
≤ exp(−2/9) and by linearity

P
(
B ≤ (1/3) · E(B)

)
≤ exp(−2/9).

Denoting the profit of an optimal solution by BIP and
observing that BIP ≤ BLP holds as the linear relaxation yields
an upper bound, we have BIP/3 ≤ E(B)/3. Accordingly, we
conclude that, P

(
B ≤ (1/3) · BIP

)
≤ exp(−2/9) holds.

B. Probabilistic Guarantee for Resource Augmentations

In the following, we analyze the probability that a rounded
solution exceeds substrate capacities by a certain factor.

We first note that dmax(r, x, y) ≤ dS(x, y) holds for
all resources (x, y) ∈ RS and all requests r ∈ R. We
model the allocations on resource (x, y) ∈ RS by re-
quest r ∈ R as random variable Ar,x,y ∈ [0, Amax(r, x, y)].
By definition, we have P(Ar,x,y = A(mk

r , x, y)) = fkr
and P(Ar,x,y = 0) = 1−

∑
k f

k
r . Furthermore, we denote by

Ax,y =
∑
r∈RAr,x,y the random variable capturing the

overall allocations on resource (x, y) ∈ RS . As E(Ax,y) =∑
r∈R

∑
k f

k
r · A(mk

r , x, y) holds by Theorem 11, we obtain
E(Ax,y) ≤ dS(x, y) for all resources (x, y) ∈ RS .

We employ Hoeffding’s inequality to upper bound Ax,y .

Theorem 15 (Hoeffding’s inequality [20]). Let X=
∑n
i=1Xi,

Xi ∈ [ai, bi], be a sum of n independent random variables.
The following holds for any t ≥ 0:

P(X − E(X) ≥ t) ≤ exp(−2t2/(
∑

i
(bi − ai)2))

Lemma 16. Consider a resource (x, y) ∈ RS and 0 < ε ≤ 1,
such that dmax(r, x, y)/dS(x, y) ≤ ε holds for r ∈ R. Let
∆(x, y) =

∑
r∈R:dmax(r,x,y)>0(Amax(r, x, y)/dmax(r, x, y))2.

P(Ax,y ≥ δ(λ) · dS(x, y)) ≤ λ−4 (19)

holds for δ(λ) = 1 + ε ·
√

2 ·∆(x, y) · log(λ) and any λ > 0.

Proof. We apply Hoeffding with t = (1− δ(λ)) · dS(x, y):

P
(
Ax,y − E(Ax,y) ≥ (1− δ(λ)) · dS(x, y)

)
≤ exp

(−4 · ε2 · log(λ) ·∆(x, y) · d2
S(x, y)∑

r∈R
(Amax(r, x, y))2

)

≤ exp
(−4 · ε2 · log(λ) ·∆(x, y) · d2

S(x, y)∑
r∈R:dmax(r,x,y)>0

(Amax(r, x, y))2

)

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, Z 2019 8

≤ exp
(−4 · ε2 · log(λ) ·∆(x, y) · d2

S(x, y)∑
r∈R:dmax(r,x,y)>0

(ε · dS(x, y) ·Amax(r, x, y)/dmax(r, x, y))2

)

≤ exp
(−4 · log(λ) ·∆(x, y)∑

r∈R:dmax(r,x,y)>0

(Amax(r, x, y)/dmax(r, x, y))2

)
= λ−4

The second inequality holds, as Amax(r, x, y) > 0
implies dmax(r, x, y) > 0. For the third inequality,
Amax(r, x, y)≤ ε ·dS(x, y) ·Amax(r, x, y)/dmax(r, x, y) is used,
which follows from the assumption dmax(r, x, y) ≤ ε ·dS(x, y)
and dmax(r, x, y) > 0. In the next step, ε2 ·d2

S(x, y) is reduced
from the fraction. As the denominator equals ∆(x, y) by
definition, the final equality follows. Lastly, we utilize that
the expected allocation E(Ax,y) is upper bounded by the
resource’s capacity dS(x, y) to obtain Equation 19.

Given Lemma 16, we obtain the following corollary.

Corollary 17. Let 0 < ε ≤ 1 be chosen minimally, such that
dmax(r, x, y)/dS(x, y) ≤ ε holds for all resources (x, y) ∈ RS
and all requests r ∈ R. Let ∆(X) = max(x,y)∈X ∆(x, y),

β =(1 + ε ·
√

2 ·∆(RVS) · log(|VS | · |T |)) , and

γ =(1 + ε ·
√

2 ·∆(ES) · log(|ES |)) .
The following holds for all node resources (τ, u) ∈ RVS and
edge resources (u, v) ∈ ES , respectively:

P(Aτ,u ≥ β · dS(τ, u)) ≤(|VS | · |T |)−4 (20)

P(Au,v ≥ γ · dS(u, v)) ≤|ES |−4 (21)

Proof. First, note that ε is chosen over all resources and
requests and that ∆(RVS) ≥ ∆(τ, u) and ∆(ES) ≥ ∆(u, v)
hold for (τ, u) ∈ RVS and (u, v) ∈ ES , respectively. Equa-
tions 20 and 21 are then obtained from Lemma 16 by setting
λ = |VS | · |T | for nodes and λ = |ES | for edges.

C. Approximation Result

Given the probabilistic bounds established above, the main
approximation result is obtained via a union bound.

Theorem 18. Assume |VS | ≥ 3. Let β and γ be defined as
in Corollary 17. Algorithm 2 returns (α, β, γ)-approximate
solutions for the VNEP (restricted on cactus request graphs)
of at least an α = 1/3 fraction of the optimal profit, and
allocations on nodes and edges within factors of β and γ of
the original capacities, respectively, with high probability.

Proof. We employ the following union bound argument. Em-
ploying Corollary 17 and as there are at most |VS |·|T | node re-
sources and at most |VS |2 edges, the joint probability that any
resource exceeds their respective capacity by factors of β or γ
is upper bounded by 1/(|VS | · |T |)3 + 1/|VS |2 ≤ 1/27 + 1/9
for |VS | ≥ 3. By Theorem 14 the probability of not finding a
solution achieving an α = 1/3 fraction of the optimal objective
is upper bounded by exp(−2/9). Hence, the probability to not
find a (α, β, γ)-approximate solution within a single round
is upper bounded by exp(−2/9) + 1/9 + 1/27 ≤ 19/20.
Hence, as the probability to return a suitable solution within
a single round is at least 1/20, the probability that the
algorithm returns an approximate solution within N ∈ N

rounding tries is lower bounded by 1 − (19/20)N . Thus,
Algorithm 2 yields approximate solutions for the VNEP with
high probability.

Note that while the theorem is restricted to |VS | ≥ 3, a
similar result can be obtained for |VS | = 2 by increasing
the respective approximation factors slightly. Adapting Corol-
lary 17 by using λ = 2 · |VS | · |T | for nodes and λ = 2 · |ES |
for edges, the respective probabilities for violations become
(2 · |VS | · |T |)−4 and (2 · |ES |)−4, such that the union
bound yields exp(−2/9) + 1/27 + 1/26 ≤ 0.85 as a bound
on the failure probability. Hence, the result holds with for
|VS | = 2 with β = (1 + ε ·

√
2 ·∆(RVS) · log(2 · |VS | · |T |))

and γ = (1 + ε ·
√

2 ·∆(ES) · log(2 · |ES |)). For |VS | = 1,
the VNEP reduces to the knapsack problem and can be solved
using respective algorithms.

D. Discussion & Proposed Heuristics

Theorem 18 yields the first approximation algorithm for the
profit variant of the VNEP. However, the direct application
of Algorithm 2 to compute (α, β, γ)-approximate solutions
is made difficult by the cumbersome definition of the terms
∆(RVS) and ∆(ES). Specifically, computing β and γ exactly
requires enumerating all valid mappings, which is not feasible.
Hence, to directly apply Algorithm 2, the respective values
have to be estimated. The following upper bounds can be
easily established:

∆(RVS) ≤|R| ·max
r∈R
|Vr|2 (22)

∆(ES) ≤|R| ·max
r∈R
|Er|2 . (23)

Both inequalities follow from the observation
that Amax(r, x, y)/dmax(r, x, y) is upper bounded
by the number of virtual nodes and edges,
respectively, as Amax(r, τ, u) ≤ dmax(r, τ, u) · |Vr| and
Amax(r, u, v) ≤ dmax(r, u, v) · |Er| holds for node resources
(τ, u) ∈ RVS and edge resource (u, v) ∈ ES , respectively.
Now, plugging these upper bounds into the definition
of β and γ yields large resource augmentations of
β ∈ O(ε ·maxr∈R |Vr| ·

√
|R| · log(|VS | · |T |)) and

γ ∈ O(ε ·maxr∈R |Er| ·
√
|R| · log(|ES |)), respectively.

To overcome estimating β and γ by the above (or simi-
lar) bounds, we propose the following to apply randomized
rounding in practice. Concretely, we consider two types of
adaptations to our Algorithm 2. The first adaptation is to
discard the consideration of respective approximation factors
α, β, γ and simply returning the best solution found within
a fixed number of rounding iterations. We refer to this type
of rounding heuristic as vanilla rounding, as the rounding
procedure itself is not changed. The other type of adaptation
is the avoidance of resource augmentations by considering
heuristical rounding.

Concretely, we consider two vanilla rounding heuristics,
namely RRMinLoad and RRMaxProfit, as well as one heuristi-
cal rounding variant RRHeuristic, as described below:
RRMinLoad A fixed number of solutions is rounded at random

as in Line 7 of Algorithm 2. The solution minimizing

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, Z 2019 9

resource augmentations (and among those the one of the
highest profit) is selected.

RRMaxProfit A fixed number of solutions is rounded at ran-
dom as in Line 7 of Algorithm 2. The solution maximizing
the profit (and among those the one of the least resource
augmentations) is selected.

RRHeuristic Line 7 of Algorithm is adapted in such a way that
selected mappings are only accepted, when its incorporation
into the solution does not exceed resource capacities. In
other words, if a mapping mk

r is selected for request r ∈ R
whose addition would exceed any resource capacity, then
this mapping is simply discarded and request r is not
embedded. To increase the diversity of found solutions, the
order in which requests are processed is permuted before
each rounding iteration. A fixed number of solutions is
rounded and the one maximizing the profit is returned.

Besides the above heuristics, we will also study the best
solution obtainable via randomized rounding while respecting
resource capacities. Specifically, similar to Jarray et al. [10],
we propose to use a Multi-Dimensional Knapsack (MDK)
Integer Programming formulation (see IP 3) as follows. Given
the set of decomposed mappings Dr = {(fkr ,mk

r)}k for each
request, the MDK formulation introduces a single binary vari-
able xkr ∈ {0, 1} per mapping mk

r of request r while ensuring
that at most one of the mappings of a request is selected and
that capacities are not violated. As each decomposed mapping
mk
r has a probability of fkr > 0 to be chosen, the MDK allows

to compute the best possible solution that may be attained by
rounding the solution while having an exponential runtime.

IP 3: Multi-Dimenstional Knapsack – Optimal Round-
ing

max
∑

r∈R,(·,mk
r)∈Dr

br · xkr (24)∑
(·,mk

r)∈Dr

xkr≤ 1 ∀r ∈ R (25)∑
r∈R,(·,mk

r)∈Dr

xkr ·A(mk
r , x, y)≤ dS(x, y) ∀(x, y) ∈ RS (26)

xkr ∈ {0, 1} ∀(·,mk
r) ∈ Dr (27)

V. EXPLORATIVE COMPUTATIONAL STUDY

We now complement our formal approximation result in
the standard multi-criteria model with resource augmentation
with an extensive computational study. Specifically, we study
the performance of vanilla rounding and heuristical rounding
(i.e., without resource augmentations) as introduced above.

As we are not aware of any systematic evaluation of the
profit maximization in the offline settings, we present a syn-
thetic but extensive computational study. Following existing
works [7], [8], we consider randomly generated (cactus) re-
quest graphs while employing real-world wide-area topologies
as substrate networks. For our study, we have created 7,500
offline VNEP instances, consisting of up to 100 requests.
To study the approximation guarantees and resource augmen-
tations under varying demand-to-capacity ratios and under

TABLE I
SUMMARY OF USED SUBSTRATE NETWORKS

Name Identifier Type Year |VS| |ES|
Deutsche Telekom DT Global 2010 30 110

NTT NT Global 2011 32 126
Geant GE Continent 2012 40 122
UUnet UN Country 2011 49 168
Surfnet SN Country 2010 50 136

different resource scarcities, the instances are generated ac-
cording to a large parameter space. To analyze the performance
of the proposed algorithm, baseline solutions were computed
by solving the Formulation 1 for all instances.

We have implemented all presented algorithms in Python
2.7, employing Gurobi 8.1.1 to solve the Mixed-Integer
Programs and Linear Programs. Our source code is freely
available at [21]. All experiments were executed on a server
equipped with Intel Xeon E5-4627v3 CPUs running at 2.6
GHz and reported runtimes are wall-clock times.

A. Instance Generation

a) Substrate Graph: We use five different substrate net-
works obtained from the Internet Topology Zoo [22]. Specif-
ically, wide-area network topologies of between 30 and 50
nodes and between 110 and 168 edges are considered. The
topologies span single countries, a continent, or the whole
world (see Table I). We consider a single node type and set
node and edge capacities uniformly to 100.

b) Request Topology Generation: Cactus graph requests
are generated by (i) sampling a random binary tree of max-
imum depth 3, (ii) adding additional edges randomly unless
they do refute the cactus property as long as edges can be
added, and (iii) orienting the created edges arbitrarily.

Concretely, the sampling process of binary trees works
as follows: starting with an initial root node, the num-
ber of children is drawn using the discrete distribu-
tion P(#children = 0) = 0.15, P(#children = 1) = 0.5, and
P(#children = 2) = 0.35. For each (newly) generated node
(of depth less than 3) further children are generated according
to the same distribution. We discard graphs having less than
3 nodes. According to the above generation procedure, the

0 3 6 9 12 15 18 21
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

EC
DF

Request Graph Characteristics

number of nodes: |Vr|
number of edges: |Er|
number of cycles: |Er| |Vr| + 1

Fig. 4. Characteristics of the generated cactus requests graphs, namely
the number of nodes, edges and number of cycles. The depicted empirical
cumulative distribution function (ECDF) is based upon 100k sampled cactus
requests graphs.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, Z 2019 10

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e
Fa

ct
or

MIPMCF: #Feasible Requests

0

20

40

60

80

100

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e
Fa

ct
or

MIPMCF: #Embedded / #Feasible [%]

0

20

40

60

80

100

Fig. 5. Overview of the feasibility of generated requests and the baseline’s
acceptance ratio. Each cell averages the result of 375 instances.
Left: The feasibility of requests is obtained from optimally embedding the
requests to compute the profit a priori. Note that absolute numbers are given.
Right: The acceptance ratio of feasible requests by the baseline MIPMCF.

40 60 80 100
Number of Requests

DT

NT

GE

UU

SN

Su
bs

tra
te

MIPMCF: Objective Gap [%]

0

4

8

12

16

20

0.2 0.4 0.6 0.8 1.0
Node Resource Factor

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e
Fa

ct
or

MIPMCF: Objective Gap [%]

0

4

8

12

16

20

Fig. 6. Overview of the objective gap achieved by the baseline algorithm
MIPMCF after up to 2 hours of computation time. Note the different x-axes.
The left plot averages the results of 375 and the right one the results of 300
instances per cell. The number of requests, i.e., the problem size, has a less
distinct impact on the objective gap than the resource factors alone.

expected number of nodes and edges is 6.54 and 7.28, respec-
tively. On average, 61% of the edges lie on a cycle. Figure 4
offers an in-depth view on the characteristics of the requests.

c) Mapping Restrictions: To force the virtual networks
to span across the whole substrate network, we restrict the
mapping of virtual nodes to one quarter of the substrate
nodes. Hence, the mapping of virtual nodes is restricted to ten
substrate nodes. The mapping of virtual edges is not restricted.

d) Demand Generation: We control the demand-to-
capacity ratio of node and edge resource using a node resource
factor NRF and an edge resource factor ERF. The requests’
demands are drawn from an exponential distribution and
afterwards normalized, such that the following holds:

∑
r∈R

∑
i∈Vr

dr(i) =NRF ·
∑

u∈VS

dS(u) (28)

ERF ·
∑

r∈R

∑
(i,j)∈Er

dr(i, j) =
∑

(u,v)∈ES

dS(u, v) (29)

The resource factors can be best understood under the
assumption that all requests are embedded. Under this assump-
tion, a resource factor NRF = 0.6 implies that the node load
– averaged over all substrate nodes – equals exactly 60%. As
virtual edges can be mapped on arbitrarily long paths (even
of length 0), the edge resource factor should be understood as
follows: the ERF equals ‘the number of substrate edges that
each virtual edge may use’. In particular, a factor ERF = 0.5
implies that if each virtual edge spans exactly 0.5 substrate
edges (and all requests are embedded), then the (averaged)
edge resource utilization equals exactly 100%. Hence, while
increasing the NRF renders node resources more scarce, in-
creasing the ERF increases the available bandwidth resources.

e) Profit Computation: To correlate the profit of a request
with its size, its resource demands, and its mapping restric-
tions, we compute for each request its minimal embedding
costs as follows. The cost c(u, v) of using an edge (u, v) ∈ VS
equals the geographical distance of its endpoints. The cost of
nodes is set uniformly to c(·, u) =

∑
(u,v)∈ES

c(u, v)/|VS |
for all u ∈ VS . Hence, the total node cost equals the
total edge cost. Defining the cost of a mapping mr to be∑

(x,y)∈RS
A(mr, x, y) · c(x, y), we compute the minimum

cost embedding for each request r ∈ R using an adaption
of Mixed-Integer Program 1 and set br accordingly.

f) Parameter Space: Besides the five different substrate
topologies (see Table I), the following parameters are used:
• |R| ∈ {40, 60, 80, 100},
• NRF ∈ {0.2, 0.4, 0.6, 0.8, 1.0},
• ERF ∈ {0.25, 0.5, 1.0, 2.0, 4.0}.

Generating 15 instances per parameter combination, 7,500
instances are obtained overall.

B. Computational Results

We first present our baseline results computed by solving
the MCF Integer Programming Formulation 1 and then study
the performance of vanilla rounding and heuristical rounding.

a) Baseline MIPMCF: To obtain a near-optimal baseline
solution for each of the 7,500 instances, we employ Gurobi
8.1.1 to solve the Mixed-Integer Programming Formulation 1
(using a single thread). We terminate the computation after
2 hours or when the objective gap falls below 1%, i.e.,
when the constructed solution is provably less than 1% off
the optimum. On average the runtime per instance is 80.6
minutes (cf. Figure 8, right).

Figure 5 gives an initial overview of the number of requests
for which feasible embeddings exist and the acceptance ratio
of the best solution as a function of the number of requests
and the edge resource factor. The number of feasible requests
is determined during the a priori profit computation and may
(on average) lie below 50% when edge resources are very
scarce (ERF = 0.25) but lies otherwise consistently above
75%. Similarly, the acceptance ratio of the baseline solution
highly depends on the edge resource factor, ranging from close
to 63% to roughly 98% (on average).

Figure 6 depicts quality guarantees for the baseline solutions
obtained during the solution process of IP Formulation 1.
The formulation is solved using Gurobi’s branch-and-bound
implementation, consistently yielding upper bounds on the
attainable profit (by LP relaxation). Accordingly, the objective
gap depicted in Figure 6 gives guarantees on how far (at
most) the found solutions are off optimality (on average).
While increasing the number of requests does not increase
the objective gap per se, both the node and edge resource
factors have a distinct impact. Particularly, for the maximal
node resource factor of 1.0 and medium edge resource factor
1.0, the averaged objective gap lies slightly above 18%. The

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, Z 2019 11

40 60 80 100
Number of Requests

0.2

0.4

0.6

0.8

1.0

No
de

 R
es

ou
rc

e
Fa

ct
or

MIPMCF: Avg. Node Load [%]

0

10

20

30

40

50

60

0.2 0.4 0.6 0.8 1.0
Node Resource Factor

DT

NT

GE

UU

SN

Su
bs

tra
te

MIPMCF: Avg. Node Load [%]

0

10

20

30

40

50

60

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e
Fa

ct
or

MIPMCF: Avg. Edge Load [%]

25

35

45

55

65

75

0.25 0.5 1.0 2.0 4.0
Edge Resource Factor

DT

NT

GE

UU

SN

Su
bs

tra
te

MIPMCF: Avg. Edge Load [%]

25

35

45

55

65

75

Fig. 7. Overview of the resource loads of the solutions computed by the baseline algorithm MIPMCF. Depicted are the averaged node and edge loads as
a function of the respective node and edge resource factors and the number of requests or the substrate topology . Each cell averages the results of 375 or
300 solutions, respectively. While the node factor has a distinct impact on the node loads, the averaged edge loads lie consistently between 55% and 75%,
allowing the conclusion that edge resources often represent the bottleneck resource. Furthermore, the substrate topology has only a minor impact.

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e
Fa

ct
or

LPnovel: Total Runtime [min]

0

1

2

3

4

5

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e
Fa

ct
or

LPnovel: Runtime Gurobi [min]

0

1

2

3

4

5

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e
Fa

ct
or

Runtime MDK [min]

0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1.0
Node Resource Factor

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e
Fa

ct
or

MIPMCF: Runtime [min]

0
15
30
45
60
75
90
105
120

Fig. 8. Overview of the runtimes of the novel LP Formulation 2, the MDK IP 3, and of the baseline algorithm MIPMCF. The three plots on the left average
375 results per cell while the right one averages 300 per cell. Note the different x-axes as well as the different scales.
Left: The runtime of the novel LP Formulation 2 including the creation of the LP and the decomposition of the solutions.
Center, left: The pure runtime of Gurobi 8.1.1 for solving the LP, i.e., pre- and post-processing times are excluded.
Center, right: Runtime for solving the MDK Integer Program 3 using Gurobi 8.1.1 Computations are terminated after 120 minutes.
Right: The runtime of the MCF Integer Program 1 being solved by Gurobi 8.1.1 Computations are terminated after 120 minutes.

mean objective value is 6.6% and the maximum observed gap
across all 7,500 instances less than 62%.

Figure 7 validates the impact the node and edge resource
factors have on the respective resource loads. Depicted are the
averaged node and edge loads as a function of the respective
resource factors or the topologies and the number of requests.
As can be seen, increasing the node resource factor increases
the averaged node resource loads. For the edge resource loads,
the picture is a different one. In particular, the averaged edge
load lies with 40% to 75% significantly above the averaged
node load. Interestingly, the edge loads increase when making
more edge resources available, indicating that for very low
edge resource factors only some edges can at all be fully
utilized. Furthermore, as is shown in Figure 10 (left), both
the maximal node and edge resource loads lie above 99% for
more than 90% of the instances, i.e., for each instance there
exist both some bottleneck node resource as well as some
bottleneck edge resource.

b) Solving LP Formulation 2: To apply the rounding
algorithms presented in Section IV-D, we solve our novel LP
Formulation 2 by employing again Gurobi 8.1.1, specifically
its Barrier algorithm. Figure 8 (left) depicts the averaged
runtime to solve the LP, including the time to construct the
(potentially large) LP and the time to decompose the solution
into convex combinations. This pre- and post-processing is not
negligible as the formulation contains up to 1,000k variables.
In fact, solving the LP itself is on average faster than the
respective processing steps (see Figure 8, center left). The
runtime increases from less than half a minute for |R| = 40 to

around 4.5 minutes for |R| = 100. The maximally observed
runtime in our experiments amounted to roughly 15 minutes.

c) Vanilla Rounding: With respect to the results of our
rounding heuristics, we first discuss the results of our vanilla
rounding heuristics RRMinLoad and RRMaxProfit. Concretely,
we report on the best solution found within 1,000 rounding
iterations. Figure 11 depicts the respective results as a scatter
plot while Figure 10 depicts empirical cumulative distribution
functions (ECDF) for both the achieved profit and the maximal
resource loads. As can be seen, for RRMinLoad the algorithm
achieves a profit between 50% and 140% compared to the best
solution constructed by the MIP, while exceeding resource
capacities mostly by 150% of the resource’s capacity. For
RRMaxProfit, the achieved profit always exceeds the base-
line’s profit. This is to be expected based on our analysis in
Section IV-A, as the expected benefit is at least as large as
the optimal Mixed-Integer Programming formulation’s value.
The resource loads mostly lie below 500% with the maximum
being 871% (single data point).

For both selection criteria, the edge resource factor has a
distinct impact on the (overall) maximum load. This can be
explained as follows. As each request edge may use any of the
substrate edges (compared to the restricted node mappings),
the chances of ‘collisions’, i.e., multiple request edges being
mapped on the same substrate edge, is higher. Additionally,
the fact that the number of virtual edges is (always) at least as
large as the number of nodes (cf. Figure 4) and that a single
request edge may use multiple substrate edges, complicates
the rounding of edge mappings. This observation is further

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, Z 2019 12

60 80 100 120 140
Profit(RRMinLoad)/Profit(MIPMCF) [%]

100

150

200

250

M
ax

Lo
ad

(R
R M

in
Lo

ad
) [

%
]

Vanilla Rounding Performance
ERF

0.25
0.5
1.0
2.0
4.0

100 150 200
Profit(RRMaxProfit)/Profit(MIPMCF) [%]

100

200

300

400

500

600

M
ax

Lo
ad

(R
R M

ax
Pr

of
it)

 [%
]

Vanilla Rounding Performance

ERF
0.25
0.5
1.0
2.0
4.0

Fig. 9. Depicted are the solutions obtained via the two vanilla rounding
schemes RRMinLoad (left) and RRMaxProfit (right). Each point corresponds
to a single instance and is colored according to the instance’s edge resource
factor. The left and right plots shows results for 7,458 and 7,499 of the 7,500
instances, respectively; the other results lie outside the depicted area.

10 50 100 200 500
Maximum Resource Load [%]

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

ECDF of Resource Loads

Resource
node
edge

Algorithm
RRMinLoad
RRMaxProfit
RRHeuristic
RRMDK
MIPMCF

50 100 150 200
Profit(RRAlg)/Profit(MIPMCF) [%]

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

ECDF of Relative Achieved Profit

Algorithm
RRMinLoad
RRMaxProfit
RRHeuristic
RRMDK

Fig. 10. Comparison of the different algorithms in terms of (maximal)
resource usage and the relative achieved profit for all 7,500 results.
Left: ECDF of maximal node and edge resource loads.
Right: ECDF of the profit achieved by the randomized rounding algorithms
compared to the profit achieved by the baseline solution.

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e
Fa

ct
or

Heuristic Rounding Performance
Profit(RRHeuristic)/Profit(MIPMCF) [%]

65
70
75
80
85
90
95
100

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e
Fa

ct
or

Optimal Rounding Performance
Profit(RRMDK)/Profit(MIPMCF) [%]

65
70
75
80
85
90
95
100

40 60 80 100
Number of Requests

DT

NT

GE

UU

SN

Su
bs

tra
te

Heuristic Rounding Performance
Profit(RRHeuristic)/Profit(MIPMCF) [%]

65
70
75
80
85
90
95
100

40 60 80 100
Number of Requests

DT

NT

GE

UU

SN

Su
bs

tra
te

Optimal Rounding Performance
Profit(RRMDK)/Profit(MIPMCF) [%]

65
70
75
80
85
90
95
100

Fig. 11. Overview of the averaged relative performance achieved by the heuristic rounding algorithm and the MDK Integer Program 3 as a function of the
edge resource factor and the number of requests (left) and the substrate topologies (right). Each cell averages the result of 375 results.
Left: Both the performance of the heuristical rounding and the MDK generally depend on the edge resource factor as well as the number of requests.
Right: The performance of the heuristical rounding and the MDK are consistent among the different substrates.

1.0 1.5 2.0 2.5 3.0 3.5
Bound(MIPMCF) / Bound(LPnovel)

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

LPnovel: Formulation Strength

Bound(MIPMCF)
initial
final

#Requests
40
60
80
100

Fig. 12. Comparison of the bounds on the profit computed by the novel
LP Formulation 2 and the classic MCF Formulation 1. As objective bounds
are continuously improved during the solution process of the Mixed-Integer
Program MIPMCF, we report on the initial (weakest) bound and the final
(best) bound. The initial bound is essentially the objective value of the LP
relaxation of Formulation 1, but might be improved by the solver Gurobi
based on the introduction of cutting planes valid only for the integer variant.

substantiated by the ECDF presented in Figure 10: the maxi-
mal edge loads are consistently larger than the maximal node
resource load for all randomized rounding algorithms.

d) Heuristical Rounding RRHeuristic: The results of
the heuristical rounding, which does not exceed resource
capacities, are presented in Figure 10 (ECDFs) and Fig-
ure 11 (heatmaps). Again, 1,000 rounding iterations were
considered. While for low edge resource factors, i.e., scarce
edge resources, the solutions achieve around 68% of the profit
of the MIP baseline, for larger edge resource factors, the
relative performance exceeds 80%. For edge resource factors
above 0.5, the performance of the heuristic notably improves
with the number of requests. This can be explained as follows.
For any combination of resource factors, the virtual resource
demands are computed according to Equations 20 and 21

independently of how many requests are considered. Hence,
when increasing the number of requests, the resource demands
of each single request become smaller. Hence, the maximal
demand-to-capacity ratio dmax(r, x, y)/dS(x, y) decreases for
all substrate resources (x, y) ∈ RS when increasing the
number of requests. Accordingly, the value of ε (cf. Lemma 16
and Corollary 17) can be chosen smaller and the expected
resource augmentations decrease. Thus, the heuristical round-
ing algorithm is able to construct better solutions more easily.
Overall, the average relative performance with respect to the
baseline solutions is 77.2%, with the minimal one being 32.1%
and less than 2% of constructed solutions achieving less than
50% of the baseline’s profit (cf. Figure 10).

e) Optimal Rounding Solution RRMDK: We lastly dis-
cuss the results of executing the Multi-Dimensional Knapsack
(MDK) Integer Program 3. As for the baseline IP, solutions
were computed using Gurobi 8.1.1 and computations were
terminated when an objective gap of less than 1% was reached
or after 2 hours. As shown in Figure 11, the optimal rounding
solution improves upon the heuristical rounding solutions
significantly: the average relative profit is 91.2%, yielding an
average improvement over the heuristical rounding by 14%.
Interestingly, for the maximal edge resource factor and 80
and 100 requests, the solutions found by the MDK slightly
improve upon the baseline solutions, with the maximal im-
provement over the baseline being 20.6% (cf. Figure 10). Since
the runtime of the MDK (cf. Figure 8) consistently and at
times significantly lies beneath the runtime for constructing
the baseline solutions, the MDK may pose an interesting alter-
native to computing solutions using the MCF IP formulation.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, Z 2019 13

C. Comparison of Formulation Strengths

Lastly, we empirically study the strength of our novel
LP Formulation 2 and compare it with the classic MCF
Formulation 1. Concretely, as noted in Theorems 8 and 9,
the classic MCF formulation has an unbounded or very large
integrality gap in general, i.e., the bound on the profit returned
by the solution can be arbitrarily far off the optimal attainable
profit. Our novel LP formulation is provably stronger than the
old formulation, as it only allows for (fractional) solutions,
which can be decomposed into valid mappings. Thus, it will
always yield (equal or) better bounds on the attainable profit.

Figure 12 presents the experimental comparison of both
formulations. In particular, for each of the 7,5000 instances
we compare the objective of our novel Linear Programming
Formulation 2 to two bounds computed during the solution
process of the baseline MIPMCF: the initial bound, i.e., the
objective of the Linear Programming Formulation 1, and the
final (best) bound computed during the solution process of the
(Mixed-)Integer Program.

As can be seen, the initial LP bounds of the classic
formulation at times exceeds our formulation’s objective by
more than 300%, i.e., the classic formulation ‘overestimates’
the maximal attainable profit by more than a factor of 3.
For roughly 60% of the instances, the novel LP improves
the bounds by a factor of 1.5. Clearly, the more requests are
considered, the less accurate the classic MCF formulation is.
Considering the final bound computed during the execution of
the (Mixed-)Integer Program, we see that these bounds always
improve upon the novel LP’s bound. However, for 90% of the
instances, the novel LP’s bound is only improved by less than
10% with the maximal improvement being less than 28%.

Concluding, we note that our novel LP formulation is much
stronger than the classic formulation: it consistently yields
significantly better bounds in practice compared to the classic
LP formulation and comes close to the bounds obtained by
solving the (Mixed-)Integer Program for up to 2 hours.

VI. CONCLUSION

This paper has initiated the study of approximation algo-
rithms for the Virtual Network Embedding Problem supporting
arbitrary substrate graphs and supporting cyclic request graphs,
specifically cactus request graphs. To obtain the approximation
result, we have derived a novel strong LP formulation and have
mathematically proven performance guarantees in the resource
augmentation model. Our computational evaluation shows the
practical significance of our work: solutions obtained by our
derived heuristic achieve (on average) 77.2% of the baseline’s
profit while not augmenting capacities. Furthermore, our com-
putational study has shown that optimally rounded solutions
achieve on average 91.2% of the baseline’s profit, while even
exceeding it at times. Hence, future work might investigate
improvements of the presented heuristical rounding procedure,
to come closer to the optimal rounding.

Lastly, we note that the developed approximation framework
– including the proposed rounding heuristics – is independent
of how LP solutions are computed and decomposed. In par-
ticular, while the LP formulation presented in this paper is

only applicable for cactus request graphs, our approach can be
generalized to arbitrary request graphs as shown in [17], [18],
albeit coming at the cost of potentially exponential runtimes.
Acknowledgements. This work and its dissemination efforts
were supported in part by the BMBF Software Campus grant
01IS1205 and the European Research Council (ERC) grant
ResolutioNet (ERC-StG-679158). We thank Elias Döhne,
Alexander Elvers, and Tom Koch for their contribution to our
implementation [21].

REFERENCES

[1] M. Rost and S. Schmid, “Virtual Network Embedding Approximations:
Leveraging Randomized Rounding,” in Proceedings of the 2018 IFIP
Networking Conference (IFIP Networking), May 2018.

[2] J. C. Mogul and L. Popa, “What we talk about when we talk about cloud
network performance,” SIGCOMM Computer Communication Review,
vol. 42, no. 5, pp. 44–48, Sep. 2012.

[3] J. Napper, W. Haeffner, M. Stiemerling, D. R. Lopez, and
J. Uttaro, “Service Function Chaining Use Cases in Mobile
Networks,” Internet-Draft, Apr. 2016. [Online]. Available: https:
//tools.ietf.org/html/draft-ietf-sfc-use-case-mobility-06

[4] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proceedings of the ACM SIGCOMM
2011 Conference. New York, NY, USA: ACM, 2011, pp. 242–253.

[5] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Proc. IEEE CloudNet, October 2014.

[6] M. Rost and S. Schmid, “Charting the Complexity Landscape of Virtual
Network Embeddings,” in Proceedings of the 2018 IFIP Networking
Conference (IFIP Networking), May 2018.

[7] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
Tutorials, vol. 15, no. 4, pp. 1888–1906, Fourth 2013.

[8] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 206–219, Feb. 2012.

[9] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,
T. Telkamp, and P. Francois, “A declarative and expressive approach
to control forwarding paths in carrier-grade networks,” in Proceedings
of the ACM SIGCOMM 2015 Conference. New York, NY, USA: ACM,
2015, pp. 15–28.

[10] A. Jarray and A. Karmouch, “Decomposition approaches for virtual
network embedding with one-shot node and link mapping,” IEEE/ACM
Trans. Netw., vol. 23, no. 3, pp. 1012–1025, Jun. 2015.

[11] M. Rost, S. Schmid, and A. Feldmann, “It’s about time: On optimal
virtual network embeddings under temporal flexibilities,” in Proceedings
of the International Parallel and Distributed Processing Symposium,
May 2014, pp. 17–26.

[12] M. Rost, C. Fuerst, and S. Schmid, “Beyond the stars: Revisiting virtual
cluster embeddings,” SIGCOMM Computer Communication Review,
vol. 45, no. 3, pp. 12–18, Jul. 2015.

[13] G. Even, M. Medina, and B. Patt-Shamir, “Online path computation
and function placement in sdns,” in Proc. International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS), 2016.

[14] G. Even, M. Rost, and S. Schmid, “An approximation algorithm for path
computation and function placement in sdns,” in Structural Information
and Communication Complexity, J. Suomela, Ed. Cham: Springer
International Publishing, 2016, pp. 374–390.

[15] T. Lukovszki and S. Schmid, “Online admission control and embedding
of service chains,” in Structural Information and Communication Com-
plexity. Cham: Springer International Publishing, 2015, pp. 104–118.

[16] N. Bansal, K. Lee, V. Nagarajan, and M. Zafer, “Minimum congestion
mapping in a cloud,” SIAM Journal on Computing, vol. 44, no. 3, pp.
819–843, 2015.

[17] M. Rost and S. Schmid, “(FPT-)Approximation Algorithms for the
Virtual Network Embedding Problem,” Tech. Rep. arXiv:1803.04452
[cs.NI], March 2018.

[18] M. Rost, E. Döhne, and S. Schmid, “Parametrized complexity of virtual
network embeddings: Dynamic & linear programming approxima-
tions,” SIGCOMM Computer Communicaton Review, vol. 49, no. 1, pp.
3–10, Feb. 2019.

[19] P. Raghavan and C. D. Thompson, “Provably good routing in graphs:
Regular arrays,” in Proceedings of the Seventeenth Annual ACM Sym-
posium on Theory of Computing, ser. STOC ’85. New York, NY, USA:
ACM, 1985, pp. 79–87.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, Z 2019 14

[20] D. P. Dubhashi and A. Panconesi, Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, 2009.

[21] E. Döhne, A. Elvers, T. Koch, and M. Rost, “Github repository,” https:
//github.com/vnep-approx/evaluation-ieee-acm-ton-2019, 2019.

[22] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” Selected Areas in Communications, IEEE,
vol. 29, no. 9, 2011.

APPENDIX

Theorem 8. The integrality gap of the MCF formulation is
unbounded. This even holds under infinite substrate capacities.

Proof. Consider the example of Figure 3. We introduce the
following restrictions for mapping the virtual links: Er,i,jS =

{(u1, u2), (u4, u5)}, Er,j,kS = {(u2, u3), (u5, u6)}, Er,k,iS =
{(u3, u4), (u6, u1)}. Note that the LP solution depicted in
Figure 3 is still feasible and hence the LP will attain an
objective of br.

On the other hand, there does not exist a valid mapping
of request r: assume i to be mapped on u1, then j must be
mapped on u2 and k must be mapped on u3 due to the node
and edge mapping. However, the edge mapping restrictions
for (k, i) do not allow the establishment of a path from u3

to u1. By the same argument, the mapping of i on u4 is not
feasible. Accordingly, as the optimal solution achieves a profit
of 0 while the LP solution yields a profit of br, the integrality
gap of the MCF LP Formulation 1 is unbounded.

Theorem 9. The integrality gap of the MCF formulation lies
in Ω(|VS |), when only considering node mapping restrictions.

Proof. Consider the following instance. The substrate is a
cycle of an even number of n nodes ui, with 1 ≤ i ≤ n
and edges {(u1, u2), (u2, u3), . . . , (un−1, un), (un, u1)}. We
consider unit edge capacities, i.e., we set dS(e) = 1 for
e ∈ ES . Consider now a request r with Vr = {i, j} and
edges Er{(i, j), (j, i)} and unit bandwidth demands dr(i, j) =
dr(j, i) = 1. Assume that i can only be mapped on substrate
nodes having an uneven index and that j can only be mapped
on substrate nodes of even index. Clearly, any valid mapping of
this request will use all edge resources. Consider now the fol-
lowing MCF solution with xr = 1: nodes i and j are, together
with the respective edges, mapped in an alternating fashion:
yur,i = yvr,j = 2/n holds for all u ∈ V r,iS = {u1, u3, . . . }
and all v ∈ V r,jS = {u2, u4, . . . }, respectively. Similarly,
zer,i,j = ze

′

r,j,i = 2/n is set for all edges e and e′ originating
at uneven and even nodes, respectively. Hence, the allocation
equals 2/n on each edge. Hence, n/2 ∈ Θ(|VS |) many copies
of this request may be embedded in the MCF solution, while
the optimal solution may only embed a single request and the
integrality gap therefore lies in Ω(|VS |).

Lemma 10. Consider a cactus request graph Gr and an
acyclic reorientation GAr of Gr. The graph GAr can be
uniquely partitioned into subgraphs {GA,C1

r , . . . , GA,Cn
r } t

GA,Fr , such that the following holds:
1) The subgraphs {GA,C1

r , . . . , GA,Cn
r } correspond to the

(undirected) cycles of Gr and GA,Fr is the forest remain-
ing after removing the cyclic subgraphs. We denote the
index set of the cycles by Cr = {C1, . . . , Cn}.

2) The subgraphs partition the edges of EAr : an edge
(i, j) ∈ EAr is contained in exactly one of the subgraphs.

3) The edge set EA,Ck
r of each cycle Ck ∈ Cr can itself be

partitioned into two branches BCk
1 and BCk

2 , such that
both lead from sCk

r ∈ V A,Ck
r to tCk

r ∈ V A,Ck
r .

Proof. We prove that the lemma holds independently of
the chosen acyclic reorientation. Accordingly, let GAr be
an arbitrary acyclic reorientation of Gr. We first show that
|δ−(i)| ≤ 2 holds for each virtual node i ∈ Vr with respect
to the edge set EAr , i.e., any virtual node has at most 2
incoming edges in GAr . If |δ−(i)| > 2 held, then by the
definition of the acyclic reorientation there must exist at least
3 paths P1, P2, P3 from the root rr to i. Let p1,2, p2,3 ∈ Vr
be the last common nodes lying on both P1 and P2 and
P2 and P3, respectively. Clearly, from p1,2, there exist two
(otherwise) node-disjoint paths to i and from p2,3 there exist
two (otherwise) node-disjoint paths towards i. Accordingly,
there exist at least two cycles intersecting either in i and p1,2

or i and p2,3, which contradicts the assumption on Gr being
a cactus graph. Accordingly, |δ−(i)| ≤ 2 holds for all virtual
nodes i ∈ Vr according to EAr .

Now, consider any node i ∈ Vr with |δ−(i)| ≤ 2. By
performing a graph-search in the opposite direction of edges
in EAr , a unique common ancestor node i′ can be determined,
such that there exist exactly two paths B1 and B2 (branches)
from i′ to i. The union of these branches represents a single
‘cycle’ (cf. Statement 3). Removing the identified cycle from
the graph, the cactus graph property still holds, as removing
edges can never refute it. Accordingly, ‘cycles’ in the acyclic
reorientation GA,C1

r , . . . , GA,Cn
r can be uniquely identified

(decomposed) and after repeated removal only the forest GA,Fr

remains. Hence, the first statement of the lemma follows.
Lastly, the second statement of the lemma holds trivially as
each edge is either contained in any of the cycles or is part of
the remaining forest.

Matthias Rost is a postdoctoral researcher at Tech-
nische Universität Berlin, Germany, from which he
also received his MSc (2014) and his PhD (2019).
He was awarded the KuVS prize for his master
thesis on computing virtual aggregation and multi-
cast trees by the German Informatics Society. His
main research focus is the theoretical design of
provably good algorithms for service orchestration
in networks and their application in practice.

Stefan Schmid is a Professor at the University
of Vienna, Austria. He received his MSc (2004)
and PhD (2008) from ETH Zurich, Switzerland.
Subsequently, Stefan Schmid worked as postdoc at
TU Munich and the University of Paderborn (2009).
From 2009 to 2015, he was a senior research sci-
entist at the Telekom Innovations Laboratories (T-
Labs) in Berlin, Germany, and from 2015 to 2018 an
Associate Professor at Aalborg University, Denmark.
His research interests revolve around the algorithmic
problems of networked and distributed systems.

