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On the Hardness and Inapproximability of
Virtual Network Embeddings

Matthias Rost and Stefan Schmid

Abstract—Many resource allocation problems in the cloud can
be described as a basic Virtual Network Embedding Problem
(VNEP): the problem of finding a mapping of a request graph
(describing a workload) onto a substrate graph (describing
the physical infrastructure). Applications range from mapping
testbeds, over the embedding of batch-processing tasks to the
embedding of service function chains and come with different
mapping restrictions for nodes and edges. The restrictions stud-
ied most often are node and edge capacities, node mapping,
edge routing and latency restrictions. While the VNEP has
been studied intensively, complexity results are only known for
specific models and this paper provides a first comprehensive
study of the computational complexity of the VNEP by sys-
tematically analyzing its hardness for any combination of the
above stated mapping restrictions. For all studied variants the
NP-completeness of the respective decision problems is shown.
Furthermore, NP-completeness results for finding approximate
embeddings, which may, e.g., violate capacity constraints by
certain factors, are derived. Lastly, it is also shown that all these
results pertain when restricting the request graphs to planar and
degree-bounded graphs. While theoretic in nature, our results
have severe practical implications. Firstly, any optimization
variant of the VNEP is NP-hard and cannot be approximated
for any of the studied restrictions, unless P =NP . Secondly, we
uncover structural hardness properties: the VNEP is NP-hard
and inapproximable even if, e.g., only node placement and edge
routing restrictions are considered.

Index Terms—Network virtualization, virtual network embed-
dings, computational complexity, inapproximability.

I. INTRODUCTION

At the heart of the cloud computing paradigm lies the idea
of efficient resource sharing: due to virtualization, multiple
workloads can co-habit and use a given resource infrastruc-
ture simultaneously. Indeed, cloud computing introduces great
flexibilities in terms of where workloads can be mapped. At
the same time, exploiting this mapping flexibility poses a
fundamental algorithmic challenge. In particular, in order to
provide predictable performance, guarantees on all, i.e., node
and edge, resources need to be ensured as cloud application
performance can otherwise suffer significantly [2].

The underlying algorithmic problem is essentially a graph
theoretical one: both the workload as well as the infrastructure
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Fig. 1. Example of embedding a virtual network request (left) on the physical
substrate network (right). The numeric labels of the request graph’s network
elements denote the resource demands, while for the substrate network the
resource usage and the total capacity are given. In the embedding, each request
node is mapped to a single substrate node and each request edge is realized
by a path in the substrate network. Notably, the model allows for collocation
of virtual nodes A and C on the same substrate node and, accordingly, the
request edge (A,C) does not use any of the substrate edges.

can be modeled as graphs. The former, the so-called request
graph, describes the resource requirements both on the nodes
(e.g., the virtual machines) as well as on the interconnecting
network. The latter, the so-called substrate graph, describes
the physical infrastructure and its resources (servers and links).
The task is to embed the request graph on the substrate
network by mapping each request node on a substrate node
and embedding each request edge via a path in the substrate
network connecting the respective endpoints while satisfying
capacity constraints (see Figure 1 for an example).

The problem is known in the networking community under
the name Virtual Network Embedding Problem (VNEP). It
has been studied intensively for over a decade in various con-
texts and subject to varying objectives and several additional
constraints [3]. The objectives most prominently studied in
the online setting are to minimize resource allocations or to
balance the load while in the offline setting the task is mainly
to maximize the profit. While node and edge capacities are
nearly always enforced, node placement, routing and latency
restrictions are often considered as well [3]. Besides the
VNEP, the same graph theoretic problem is considered in
the context of Service Function Chaining [4], [5] and the
embedding of virtual clusters [6], [7]. Specifically, service
chains have been primarily envisioned in the context of
stitching virtualized network functions as, e.g., firewalls in data
center or ISP networks, while virtual clusters were envisioned
in the context of batch-processing applications. As the name
suggests, service chains model chain-like request abstractions
while virtual clusters constrain request topologies to simple
star-shaped networks.

This work presents fundamental computational complexity
results for the VNEP and its related problems. In contrast to
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previous works, this work mainly studies the decision variant
of the VNEP, where the task is to decide whether an embed-
ding exists that meets all imposed constraints. Notably, any
result for the decision VNEP carries over to any optimization
variant of the VNEP under the same restrictions. Specifically,
optimizing over the set of feasible solutions necessitates
solving the respective decision problem by constructing a
feasible solution. To clearly discern between the decision and
optimization variants of the VNEP, we refer to these as
D-VNEP and O-VNEP. Before discussing our results, we
review the related work in the following.

A. Related Work

a) Objectives & Restrictions: Depending on the setting,
many different objectives are considered for the VNEP. The
most studied ones concern minimizing the (resource alloca-
tion) cost [3], [8], maximizing the profit by exerting admission
control [9], [10], and minimizing the maximal load [4], [8].

Besides commonly enforcing that the substrate’s physical
node and edge capacities are not exceeded to provide Quality-
of-Service [3], additional restrictions have emerged:
• Restrictions on the placement of virtual nodes constrain

the potential mapping of each virtual node to a subset
of substrate nodes. This type of restriction first arose to
enforce closeness to locations of interest [8], but were also
used in the context of privacy policies, e.g., to restrict
mappings to certain countries [11]. Additionally, these
restrictions are now also used in the context of Service
Function Chaining, as, e.g., specific functions may only
be mapped on commodity servers, while, e.g., virtualized
firewall appliances may not [4], [5].

• Routing restrictions constrain the set of substrate edges
which may be used to map virtual edges. These first
arose in the context of expressing security policies, as
for example some traffic may not be routed via insecure
domains or physical links shall not be shared with other
virtual networks [3], [12].

• Restrictions on latencies, i.e., imposing bounds on the
latency of edge embeddings, were studied for the VNEP
in [13] and have been recently studied intensely in the
context of Service Function Chaining to achieve respon-
siveness and Quality-of-Service [4], [5].

b) Algorithmic Approaches: Dozens of algorithms were
proposed to solve the VNEP [3] and its siblings, including
the embedding of virtual clusters [6] and of service func-
tion chains [4]. Most approaches to solve the VNEP rely
on (meta-)heuristics [3]. On the other hand, several works
study exact (non-polynomial time), algorithms to compute
(near-)optimal solutions. Here, Mixed-Integer Programming is
the most widely used approach [4], [10], [13].

Approximation algorithms providing quality guarantees for
the VNEP have only been recently presented for the offline
setting in which the substrate provider can select which
requests to embed to maximize its profit. In particular, the
embedding of service chains is approximated under assump-
tions on the requested resources and the achievable benefit
in [14]. In [15] the first approximations for cyclic request

graph topologies, namely cactus request graphs, was detailed
under node placement and routing restrictions. In [16] these
results were extended to arbitrary request graph topologies
while also taking latency restrictions into account. Importantly,
the runtime of the approximation for general request graphs
depends exponentially on the complexity of the request graphs,
measured via their treewidth. Our results validate that this is
indeed the best one can hope for, as it is shown that the VNEP
even remains inapproximable in polynomial-time for planar
request graphs.

c) Complexity Results: Surprisingly, despite the rele-
vance of the problem and the large body of literature, the
complexity of Virtual Network Embedding Problem has not
received much attention. While it is not hard to see that the
VNEP generalizes several NP-hard problems as, e.g., the k-
disjoint paths problem [17], the minimum linear arrangement
problem [18], or the subgraph isomorphism problem [19],
most works on the VNEP cite aNP-hardness result contained
in a technical report from 2002 by Andersen [20].

The only other work studying the computational complexity
is one by Amaldi et al. [21], which proved the NP-hardness
and inapproximability of the profit maximization objective
while not taking into account latency or routing restrictions
and not considering the hardness of embedding a single
request. In contrast, this work provides detailed results for any
combination of the above introduced node and edge mapping
restrictions. Furthermore, our reduction framework allows to
show the inapproximability of approximate embeddings, i.e.,
when relaxing constraints, and under restrictions of the request
graphs to planar graphs.

Lastly, we note that the VNEP is not only related to
the aforementioned classical optimization problems, but that
similar tasks arise also in other networking contexts as em-
bedding coflows [22] or routing packets through virtualized
pipelines [23]. These problems exhibit similar properties as
the VNEP but generally do not reduce to the VNEP. Routing
through pipelines is an inherent temporal task, while VNEP
embeddings remain the same over the embedding period and
for coflows the workload endpoints are assumed to be fixed.

B. Contributions and Overview

This work initiates the systematic study of the computa-
tional complexity of the VNEP. Taking all the aforementioned
restrictions into account, first a concise taxonomy of the
VNEP variants is compiled in Section II. Then, a powerful
reduction framework from 3-SAT is presented in Section III,
which is the base for most hardness results presented in this
paper. In particular, we show the following (see also Table I):
• We show the NP-completeness of the D-VNEP under

any combination of the studied node and edge mapping
restrictions. Specifically, we study node capacities and
node placement restrictions as well as edge capacities,
routing, and latency restrictions. Accordingly, for all six
different restriction combinations, the NP-completeness of
D-VNEP is shown in Section IV.

• We extend these results in Section V and show that the
considered variants remain hard even when computing
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TABLE I
OVERVIEW ON RESULTS

V
N

E
P

va
ri

an
ts Identifier according to Definition 9 〈VE | - 〉 〈E |N 〉 〈V |R 〉 〈 - |NR 〉 〈 - |NL 〉 〈V |L 〉

Enforcing node capacities X ? X ? ? X
Enforcing edge capacities X X ? ? ? ?

Enforcing node placement restrictions ? X ? X X ?

Enforcing edge routing restrictions ? ? X X ? ?

Enforcing latency restrictions ? ? ? ? X X

R
es

ul
ts

Section IV NP-Completeness of D-VNEP Thm. 22 Thm. 23 Thm. 24 Thm. 25 Thm. 25 Thm. 26

Section V

NP-Completeness of D-VNEP under node capacity violations by factor α < 2 Thm. 27 - Thm. 27 - - Thm. 27
Hardness of D-VNEP under edge capacity violations by factor β ∈ Θ(

log |VS |
log log |VS | ) Thm. 33 Thm. 31 - - - -

NP-Completeness of D-VNEP under latency bound violations by factor γ < 2 - - - - Thm. 28 Thm. 28

Section VI
All above NP-completeness results are preserved for acyclic substrates Obs. 34

All above results are preserved for acyclic, planar, degree-bounded requests Thm. 37

Section VII All above results translate to the (NP-)hardness and inapproximability of Thm. 38
O-VNEP under the respective restrictions and under any objective

approximate embeddings, which may exceed latency or
capacity constraints by certain factors.

• In Section VI it is then shown that the respective D-VNEP
variants remain NP-complete even when restricting sub-
strate graphs to acyclic graphs and request graphs to acyclic
planar, degree-bounded graphs.

• Given the above results for the decision variants, the
NP-hardness and inapproximability of any O-VNEP op-
timization variant is discussed in Section VII.

Table I summarizes our results and is to be read as follows.
Any of the six rightmost columns represents a specific VNEP
variant. The X symbol indicates enforced restrictions, while
the ? symbol indicates that a restriction is not enforced.
Importantly, enabling a ? restriction, does not change the
results (cf. Lemma 10 in Section II). Considering a specific
variant, the respective column should be read from top to
bottom. For example, for 〈VE | - 〉, its NP-completeness is
shown in Theorem 22, while results pertaining to computing
approximate embeddings are stated in Theorems 27 and 33.
Whenever a result is not applicable for a VNEP variant, this
is marked using ‘-’. Notably, the results stated in the last three
rows hold for any VNEP variant.

II. FORMAL MODEL

In this section the variants of the VNEP are formalized.
We first introduce the capacitated VNEP and then formal-
ize other restrictions, yielding our taxonomy of the VNEP.
Furthermore, the notion of approximate embeddings and an
Integer Program to solve the D-VNEP are given.

Notation: The following notation is used throughout this
work. We use [x] to denote the set {1, 2, . . . , x} for x ∈ N. For
a directed graph G = (V,E), we denote by δ+(v) ⊆ E and
δ−(v) ⊆ E the outgoing and incoming edges of v ∈ V . When
considering functions on tuples, we omit the parentheses of
the tuple and simply write f(a, b) instead of f((a, b)).

A. Basic Problem Definition

We refer to the physical network as substrate network and
model it as directed graph GS = (VS , ES). Capacities in the
substrate are given by the function cS : VS∪ES → R≥0∪{∞}.

The capacity cS(u) of node u ∈ VS may represent for example
the number of CPU cores while the capacity cS(u, v) of edge
(u, v) ∈ ES represents its available bandwidth. By allowing
to set substrate capacities to∞, the capacity constraints of the
respective substrate elements can effectively be disabled. We
denote by PS the set of all simple paths in GS .

A request is analogously modeled as directed graph
Gr = (Vr, Er) together with node and edge capacities (de-
mands) cr : Vr ∪ Er → R≥0.

The general task is to find a mapping of the request graph
Gr to the substrate network GS , i.e., to map each request
node to a substrate node and to map each request edge to
paths in the substrate. Virtual nodes and edges can only be
mapped on substrate nodes and edges of sufficient capacity.
Accordingly, we denote by V iS = {u ∈ VS |cS(u) ≥ cr(i)} the
set of substrate nodes supporting the mapping of node i ∈ Vr
and by Ei,jS = {(u, v) ∈ ES |cS(u, v) ≥ cr(i, j)} the substrate
edges supporting the mapping of virtual edge (i, j) ∈ Er.

Definition 1 (Valid Mapping). A valid mapping of request Gr
to the substrate GS is a tuple m = (mV ,mE) of functions that
map nodes and edges, respectively, s.t. the following holds:

• The function mV : Vr → VS maps virtual nodes to suitable
substrate nodes, such that mV (i) ∈ V iS holds for i ∈ Vr.

• The function mE : Er → PS maps virtual edges
(i, j) ∈ Er to paths in GS connecting mV (i) to mV (j),
such that mE(i, j) ⊆ Ei,jS holds for (i, j) ∈ Er. �

Accordingly, a valid mapping ensures that virtual nodes and
virtual edges are only mapped to nodes of sufficient capacity
and that virtual edges correctly connect the respective end-
points. Furthermore, note the following. Firstly, the mapping
mE(i, j) of the virtual edge (i, j) ∈ Er may be the empty
path, if and only if both i and j are mapped on the same
substrate node. Secondly, the definition only enforces that
each single resource mapping does not exceed the available
capacity. To enforce that the cumulative allocations respect
capacities, we formalize the following notion of allocations.

Definition 2 (Allocations). We denote by Am(x) ∈ R≥0
the resource allocations induced by the valid mapping
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m = (mV ,mE) on substrate element x ∈ GS , where

Am(u) =
∑
i∈Vr:mV (i)=u cr(i)

Am(u, v) =
∑

(i,j)∈Er:(u,v)∈mE(i,j) cr(i, j)

for node u ∈ VS and edge (u, v) ∈ ES , respectively. �

We call a mapping feasible, if the (cumulative) allocations
do not exceed the capacity of any substrate element.

Definition 3 (Feasible Embedding). A mapping m is a feasible
embedding, if the allocations do not exceed the capacity, i.e.,
Am(x) ≤ cS(x) holds for x ∈ GS . �

While the related work considers the optimization of embed-
dings subject to objectives, in this paper mostly the decision
variant of the VNEP, referred to as D-VNEP, is studied. The
following definition caters to the capacitated VNEP, while
additional restrictions can be easily included by adapting the
notion of valid mappings and feasible embeddings (see below).

Definition 4 (D-VNEP). Given is a single request graph Gr
that shall be embedded on the substrate graph GS . The task
is to find any feasible embedding or to decide that no feasible
embedding exists. �

Given the decision variant, we also introduce the optimiza-
tion variant O-VNEP under an abstract objective as follows.

Definition 5 (O-VNEP). Given is a single request Gr that
shall be embedded on the substrate GS and an objective
function. The task is to find a feasible embedding of optimal
objective or to decide that no feasible embedding exists. �

Note that the optimization variant O-VNEP is introduced
with respect to a single request graph, but may also be easily
extended to several request graphs.

B. Variants of the VNEP & Nomenclature

As discussed when reviewing the related work in Sec-
tion I-A, additional restrictions are enforced in many settings.
Accordingly, we now formalize (i) node placement, (ii) edge
routing, and (iii) latency restrictions. Node placement and
edge routing restrictions effectively exclude potential mapping
options for nodes and edges. For latency restrictions we
introduce latency bounds for each of the virtual edges.

Definition 6 (Node Placement Restrictions). For each virtual
node i ∈ Vr a set of forbidden substrate nodes V

i

S ⊂ VS is
provided. Accordingly, the set of allowed nodes V iS is set to
be {u ∈ VS \ V

i

S | cS(u) ≥ cr(i)} for i ∈ Vr. �

Definition 7 (Routing Restrictions). For each virtual edge
(i, j) ∈ Er a set of forbidden substrate edges E

i,j

S ⊆ ES
is given. Accordingly, the set of allowed edges Ei,jS is set to
be {e ∈ ES \ E

i,j

S | cS(e) ≥ cr(i, j)} for (i, j) ∈ Er. �

Definition 8 (Latency Restrictions). For each substrate edge
e ∈ ES the edge’s latency is given via lS(e) ∈ R≥0.
Latency bounds for virtual edges are specified via the func-
tion lr : Er → R≥0 ∪ {∞}, such that the latency along the
substrate path mE(i, j), used to realize the edge (i, j) ∈ Er,

must be less than lr(i, j). Formally, the definition of feasible
embeddings (cf. Definition 3) is extended by including that∑
e∈mE(i,j) lS(e) ≤ lr(i, j) holds for (i, j) ∈ Er. �

The following taxonomy is employed to denote the various
VNEP variants under the respective restrictions.

Definition 9 (Taxonomy). We use the notation 〈C |A 〉 to
indicate whether and which of the capacity constraints C and
which of the additional constraints A are enforced.
C We denote by V node capacities, by E edge capacities, and

by - that none are enforced. When node or edge capacities
are not considered, we set the capacities of the respective
substrate element sets to ∞.

A For additional restrictions -, N, L, and R stand for none,
node placement, latency, and routing restrictions. �

Hence, 〈VE | - 〉 refers to the capacitated VNEP without
additional constraints and 〈 - |NL 〉 indicates the combination
of node placement and latency restrictions without considering
substrate capacities. We note that the introduction of more
restrictions only makes the respective problem harder:

Lemma 10. A VNEP variant 〈A |C 〉 that encompasses all
restrictions of 〈A’ |C’ 〉 is at least as hard as 〈A’ |C’ 〉.
Proof. All restrictions were formulated in such a way that
these can be easily disabled. Considering capacities and laten-
cies, one may set the respective substrate capacities to ∞ and
the latencies of substrate edges to 0, respectively, to disregard
these. For node placement and edge restrictions one may set
the forbidden node and edge sets to the empty set. Hence,
there exists a trivial reduction from 〈A |C 〉 to 〈A’ |C’ 〉. �

C. Relaxing Constraints: Approximate Embeddings
Within this work, we show the D-VNEP to be
NP-complete under any combination of studied node and
edge restrictions. As shown in Section VII, this in turn also im-
plies the inapproximability of the respective O-VNEP variants
unless P =NP . Hence, it is natural to consider a broader class
of (approximation) algorithms that may violate constraints by
a certain factor: instead of answering the question whether an
embedding exists that satisfies the capacity constraints, one
might relax the capacity constraints and seek embeddings of
bounded capacity violations. We refer to these as approximate
embeddings:

Definition 11 (α- / β- / γ-Approximate Embeddings).
A mapping m is an approximate embedding, if it is valid

and violates capacity or latency constraints only within a
certain bound. Specifically, we call an embedding α- and
β-approximate, when node and edge allocations are bounded
by α and β times the respective node or edge capacity. Con-
sidering latency restrictions, we call a mapping γ-approximate
when latencies are within a factor of γ of the original bound.
Formally, the following must hold for α, β, γ ≥ 1:

Am(u) ≤α · cS(u) ∀u ∈ VS
Am(u, v) ≤ β · cS(u, v) ∀(u, v) ∈ ES∑

e∈mE(i,j)

lS(e) ≤ γ · lr(i, j) ∀(i, j) ∈ Er �
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Given the above notion of approximate embeddings, the
approximate D-VNEP and O-VNEP are defined as follows.

Definition 12 (Approximate D-VNEP). Given is a single
request graph Gr that shall be embedded on the substrate
graph GS . The task is to return an (α-/β-/γ-)approximate
embedding, if a feasible embedding subject to the original
restrictions exists, or to decide that none exists. �

Definition 13 (Approximate O-VNEP). Given is a single
request graph Gr that shall be embedded on the substrate graph
GS . The task is to return an (α-/β-/γ-)approximate embedding
of optimal objective, if a feasible embedding subject to the
original restrictions exists, or to decide that none exists. �

D. Integer Programming Formulation

We now give an Integer Programming (IP) formulation,
which can be used to solve any of the considered decision
VNEP variants. A similar formulation was proposed in [13].
Given the hardness results presented in this paper and given
that solving IPs lies in NP [24], the IP may serve as an attrac-
tive approach to solve the respective variants in exponential
time. Besides the practical application, the existence of our
formulation (constructively) shows that the D-VNEP variants
considered here are also all contained in NP .

Our formulation naturally encompasses node placement and
routing restrictions, while for latencies an additional constraint
is introduced. The decision variable x ∈ {0, 1} is used to
indicate, whether the request graph Gr is embedded or not.
By maximizing x, the IP decides whether a feasible embedding
exists (x = 1) or whether no such embedding exists (x = 0).
The mapping of virtual nodes is modeled using decision
variables yui ∈ {0, 1} for i ∈ Vr and u ∈ VS . If yui = 1
holds, then the virtual node i ∈ Vr is mapped on substrate node
u ∈ VS . Constraint 2 enforces that each virtual node is mapped
to one substrate node, if the request is embedded (x = 1),
while Constraint 3 excludes unsuitable substrate nodes.

For computing edge mappings the decision variables
zu,vi,j ∈ {0, 1} for (i, j) ∈ Er and (u, v) ∈ ES are employed.

Integer Program 1: VNEP Decision Variant
max x (1)∑

u∈VS

yui = x ∀i ∈ Vr (2)∑
u∈VS\V iS

yui = 0 ∀i ∈ Vr (3)∑
(u,v)∈δ+(u)

zu,vi,j −
∑

(v,u)∈δ−(u)

zv,ui,j = yui − yuj ∀(i, j) ∈ Er, u ∈ ES (4)∑
(u,v)∈ES\Ei,jS

zu,vi,j = 0 ∀(i, j) ∈ Er (5)∑
i∈Vr

cr(i) · yui ≤ cS(u) ∀u ∈ VS (6)∑
(i,j)∈Er

cr(i, j) · zu,vi,j ≤ cS(u, v) ∀(u, v) ∈ ES (7)∑
(u,v)∈ES

lS(u, v) · zu,vi,j ≤ lr(i, j) ∀(i, j) ∈ Er ?(8)

If zu,vi,j = 1 holds, then the substrate edge (u, v) lies on the
path mE(i, j). Constraints 4 and 5 embed virtual links as
paths in the substrate, if the request is embedded. In particular,
Constraint 4 constructs a unit flow for virtual edge (i, j) ∈ Er
from the location u ∈ VS onto which i was mapped (yui = 1)
to the location v ∈ VS onto which j was mapped (yvj = 1),
while Constraint 5 excludes unsuitable edges. Constraints 6
and 7 enforce that substrate capacities are obeyed. Lastly,
Constraint 8 is only used when latencies are considered: it
enforces that the sum of latencies along the embedding path
of a virtual edge is smaller than the respective latency bound.

III. REDUCTION FRAMEWORK

This section presents the main insight and contribution of
this work, namely a generic reduction framework that allows
to derive hardness results by slightly tailoring the proof to the
respective problem variants. Our reduction framework relies
on 3-SAT and we first introduce some notation. Afterwards,
a generic construction of D-VNEP instances for 3-SAT
formulas is given and the relationship between the existence
of specific feasible embeddings and the satisfiability of the
3-SAT formula is established.

A. 3-SAT: Notation and Problem Statement

We denote by Lφ = {xk}k∈[N ] a set of N ∈ N literals
and by Cφ = {Ci}i∈[M ] a set of M ∈ N clauses, in which
literals may occur either positively or negated. The formula
φ =

∧
Ci∈Cφ Ci is a 3-SAT formula, iff. each clause Ci is the

disjunction of at most 3 literals of Lφ. Denoting the truth
values by F and T, 3-SAT asks to determine whether an
assignment α : Lφ → {F,T} exists, such that φ is satisfied.
3-SAT is one of Karp’s 21 NP-complete problems:

Theorem 14 (Karp [25]). Deciding 3-SAT is NP-complete.

For reducing 3-SAT to D-VNEP, we assume that the
clauses are ordered and we define the following:

Definition 15 (First Occurence of Literals). We denote by
C : Lφ → [M ] the function yielding the index of the clause
in which a literal first occurs. Hence, if C(xk) = i, then xk is
contained in Ci while not contained in Ci′ for i′ ∈ [i− 1]. �

The assignments satisfying a clause are defined as follows.

Definition 16 (Satisfying Assignments). We denote by
Ai = {ai,m : Li → {F,T} | ai,m satisfies Ci} the set of all
possible assignments of truth values to the literals Li of Ci
satisfying Ci. Note that all elements of Ai are functions. �

Lastly, to abbreviate notation, we employ Li,j = Li ∩ Lj
to denote the intersection of the literal sets of Ci and Cj .

B. General VNEP Instance Construction

For a given 3-SAT formula φ, we now construct a D-VNEP
instance consisting of a substrate graph GS(φ) and a request
graph Gr(φ). The question whether the formula φ is satisfiable
will eventually reduce to the question whether a feasible
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φ: (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x4)

GS(φ):

x1, x2, x3 : TTT

x1, x2, x3 : TTF

x1, x2, x3 : TFT

x1, x2, x3 : TFF

x1, x2, x3 : FTT

x1, x2, x3 : FTF

x1, x2, x3 : FFT

x1, x2, x4 : TTT

x1, x2, x4 : TTF

x1, x2, x4 : FTT

x1, x2, x4 : FTF

x1, x2, x4 : FFT

x1, x2, x4 : FFF

x2, x3, x4 : TTT

x2, x3, x4 : TTF

x2, x3, x4 : TFT

x2, x3, x4 : TFF

x2, x3, x4 : FTT

x2, x3, x4 : FFT

x2, x3, x4 : FFF

v1 v3v2Gr(φ):

x1, x2, x4 : TFT

mr(φ):

x1, x2, x3 : TTF

x1, x2, x3 : TFT

x1, x2, x3 : TFF

x1, x2, x4 : TTF x2, x3, x4 : TTF

x2, x3, x4 : TFT

x2, x3, x4 : TFF

x1, x2, x4 : TFT

Fig. 2. Visualization of the construction the request and the substrate
graphs for the 3-SAT formula φ (cf. Definitions 17 and 18). Note that
all virtual edges are contained in EL

r(φ)
, i.e., these are introduced as the

clauses of the connected virtual nodes share literals. Hence, EN
r(φ)

= ∅
holds and the substrate also does not contain edges for neighboring clauses
EN
S . Additionally, a mapping mr(φ) satisfying the conditions of Lemma 20

is shown. Hence, the formula φ is satisfiable. Concretely, the mapping
corresponds satisfying assignment x1 = T, x2 = T, x3 = F, x4 = F.

embedding of Gr(φ) on GS(φ) exists. Figure 2 illustrates the
construction described in the following.

Definition 17 (Request Graph Gr(φ)). For a given 3-SAT
formula φ we define the request graph Gr(φ) = (Vr(φ), Er(φ))
as follows. For each clause Ci ∈ Cφ a node vi is introduced,
i.e., Vr(φ) = {vi | Ci ∈ Cφ}. An edge (vi, vj) is introduced
if either the i-th clause Ci introduces a literal used in the
j-th clause Cj , or if j = i + 1 holds. Accordingly, we set
Er(φ) = ELr(φ) t ENr(φ) with:

ELr(φ) = {(vi, vj) | ∃xk ∈ Li,j : C(xk) = i}
ENr(φ) = {(vi, vi+1) | i < M ∧ (vi, vi+1) /∈ ELr(φ)}

Note that the edges ELr(φ) pertaining to literals take precedence
over edges ENr(φ) created for neighboring request nodes. �

Note that the above definition only defined the request
topology and did not specify demands or other restrictions.
These will be set in the respective reductions. Matching the
general construction of the request graph, the substrate graph
is analogously defined, albeit introducing up to 7 substrate
nodes per clause: the respective substrate nodes correspond to
the satisfying assignments of the respective clause.

Definition 18 (Substrate Graph GS(φ)). For a given 3-SAT
formula φ the substrate graph GS(φ) = (VS(φ), ES(φ)) is
defined as follows. For each clause Ci ∈ Cφ and each potential
assignment ai,m ∈ Ai of truth values satisfying Ci a substrate
node is used, i.e., VS(φ) =

⋃
Ci∈Cφ Ai. Two substrate nodes

ai,m ∈ VS(φ) and aj,n ∈ VS(φ) are connected in either of the
following cases:
1) if (vi, vj) ∈ ELr(φ) holds then the edge (ai,m, aj,n) is

introduced if and only if the assignments ai,m and aj,n
agree on the literals Li,j contained in both clauses and

2) if (vi, vj) ∈ ENr(φ) holds, then any edge (ai,m, aj,n) with
ai,m ∈ Ai and aj,n ∈ Aj is introduced.

Accordingly, we set ES(φ) = ELS(φ) t ENS(φ), with

ELS(φ) =

{
(ai,m, aj,n)

∣∣∣∣ (vi, vj) ∈ ELr(φ) and
ai,m(xl) = aj,n(xl) for xl ∈ Li,j

}
ENS(φ) =

{
(ai,m, aj,n)

∣∣∣ (vi, vj) ∈ ENr(φ)
}
. �

C. The Base Lemma

In the following we give the base lemma, on which nearly
all of our results are based. It shows the connection between
the satisfiability of 3-SAT formulas and the existence of
specific valid mappings introduced below.

Definition 19 (Satisfiable Valid MappingsMSAT
r(φ)). We denote

by MSAT
r(φ) the set of valid mappings of Gr(φ) on GS(φ),

such that each virtual node vi pertaining to the i-th clause
is mapped on a substrate node of Ai and that each virtual
edge is embedded using a single substrate edge, i.e.:

MSAT
r(φ) =

{
m ∈Mr(φ)

∣∣∣∣mV (vi) ∈ Ai for vi ∈ Vr(φ) and
|mE(vi, vj)|=1 for (vi, vj)∈Er(φ)

}
�

Lemma 20. A 3-SAT formula φ is satisfiable iff.MSAT
r(φ) 6= ∅.

Proof. We first show that if φ is satisfiable, then a mapping
m ∈ MSAT

r(φ) must exist. Afterwards, we show that if such a
mapping m ∈MSAT

r(φ) exists, then φ must be satisfiable.
Assume that φ is satisfiable and let α : Lφ → {F,T}

denote an assignment of truth values, such that α satisfies φ.
We construct a mapping m = (mV ,mE) for request r(φ) as
follows. The virtual node vi ∈ Vr(φ) corresponding to clause
Ci is mapped onto the substrate node ai,m ∈ Ai ⊆ VS(φ), iff.
ai,m agrees with α on the assignment of truth values to the
contained literals, i.e., ai,m(xk) = α(xk) for xk ∈ Ci. As α
satisfies φ, it satisfies each clause and hence mV (vi) ∈ VS(φ)
holds for all Ci ∈ Cφ. The virtual edge (vi, vj) ∈ Er(φ) is
mapped via the direct edge between mV (vi) and mV (vj):
if (vi, vj) ∈ ELr(φ) holds, this edge (mV (vi),mV (vj)) must
exist in ELS , as mV (vi) = ai,m and mV (vj) = aj,n must
agree by construction on the assignment of truth values for all
literals. Secondly, if (vi, vj) ∈ ENr(φ) holds, then the edge
(mV (vi),mV (vj)) is always contained in ENS . Hence, the
constructed mapping m satisfies the conditions specified for
MSAT

r(φ), such that m ∈ MSAT
r(φ) holds, hence completing the

first half of the proof.
We now show that if there exists a mapping m ∈ MSAT

r(φ)
then the formula φ is indeed satisfiable. We constructively
recover an assignment of truth values α : Lφ → {F,T}
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from the mapping m by iteratively extending the initially
empty assignment. Concretely, we iterate over the mappings
of the virtual nodes corresponding to the clauses of Cφ one
by one according to the precedence relation of the clauses.
By our assumption on the node mapping, mV (vi) ∈ Ai
holds. Accordingly, as the substrate node mV (vi) represents
an assignment of truth values to the literals of clause Ci, we
extend α by setting α(xk) ,

[
mV (vi)

]
(xk) for all literals xk

contained in Ci.
We first show that this extension is always valid in the sense

that previously assigned truth values are never changed. To this
end, assume that the clauses C1, C2, . . . , Ci−1 were handled
without any such violations. Hence, the literals

⋃
j<i Lj have

been assigned truth values in the first i − 1 iterations not
contradicting previous assignments. When extending α by the
mapping of mV (vi) in the i-th iteration, there are two cases
to consider. First, if none of the literals Li were previously
assigned a truth value, i.e., if Li ∩

⋃
j<i Lj = ∅ holds,

then the extension of α as described above cannot lead to a
contradiction. Otherwise, if Li,pre = Li ∩

⋃
j<i Lj 6= ∅ holds,

we show that extending α by mV (vi) = ai,m does not change
the truth value of any literal xk contained in Li,pre.

For the sake of contradiction, assume that xk ∈ Ci is a
literal, for which α(xk) does not equal

[
mV (vi)

]
(xk). As xk

was previously assigned a value, there must exist a clause
Cj in which xk was first used, such that j < i holds. Let
mV (vi) = ai,m ∈ Ai and mV (vj) = aj,n ∈ Aj . By our
assumption all edges are mapped using a single substrate edge,
accordingly mE(vi, vj) = 〈(aj,n, ai,m)〉 must hold. Hence, the
substrate edge (aj,n, ai,m) must exist and must be contained
in ELr(φ) as Li,pre 6= ∅ holds. Since (vj , vi) ∈ ELr(φ) holds,
the respective substrate edge must be contained in ELS by
definition. As ELS contains only edges if assignments agree
with each other,

[
mV (vj)

]
(xk) = aj,n(xk) = ai,m(xk) =[

mV (vi)
]
(xk) is obtained. This contradicts our assumption

that α(xk) 6=
[
mV (vi)

]
(xk) holds. Hence, the extension of α

is always valid.
By construction of the substrate graph GS(φ), the node set

Ai ⊆ VS(φ) contains only the assignments of truth values for
the literals Li of clause Ci ∈ Cφ that satisfy the respective
clause. Hence, the constructed assignment α satisfies each
clause and thus the formula φ, hence concluding the proof. �

The above base lemma is the heart of our reduction frame-
work for obtaining our NP-completeness and NP-hardness
results. The following formalizes this observation.

Lemma 21. If the restrictions 〈X |Y 〉 are sufficiently ex-
pressive to constrain feasible mappings of Gr(φ) to GS(φ) to
exactly the mappings ofMSAT

r(φ) for any 3-SAT formula φ, then
the D-VNEP 〈X |Y 〉 is NP-complete.

Proof. We outline the polynomial-time reduction from 3-SAT
to the respective D-VNEP under constraints 〈X |Y 〉. Con-
sidering any 3-SAT formula φ, the respective request and
substrate graphs Gr(φ) and GS(φ) are constructed. As the size
of the request is bounded by the number of clauses and the
size of the substrate is bounded by 7 times the number of
clauses, the construction is polynomial. Under the assumption

that the D-VNEP variant is sufficiently expressive to constrain
the set of feasible embeddings to exactly MSAT

r(φ), the question
of whether the formula φ is satisfiable reduces to the question
of whether a feasible embedding of Gr(φ) on GS(φ) exists
(cf. Lemma 20). This reduction yields the NP-hardness of
the respective D-VNEP variant under restrictions 〈X |Y 〉 as
3-SAT is NP-complete. As the Integer Program presented
in Section II-D can be used to decide D-VNEP under any
restrictions 〈X |Y 〉 and solving Integer Programs lies in
NP [24], the respective D-VNEP lies in NP , hence showing
the NP-completeness of the respective D-VNEP variant. �

IV. NP -COMPLETENESS OF THE D-VNEP

Using the framework introduced above we now prove
a series of NP-completeness results for the D-VNEP.
Specifically, we consider the D-VNEP under any combina-
tion of node and edge mapping restrictions. We first show
the NP-completeness of the capacitated D-VNEP variant
〈VE | - 〉 in the absence of additional restrictions. Given this
result, we continue to prove the NP-completeness of the other
5 combinations of restrictions. In particular, we even show the
NP-completeness for the two variants 〈 - |LN 〉 and 〈 - |NR 〉,
which do not consider capacities at all. Hence, even when the
physical network does not impose any resource constraints,
finding embeddings satisfying node placement and latency or
routing restrictions is already NP-complete. Again, it must
be noted that adding further restrictions only renders the
respective D-VNEP harder, and hence the NP-completeness
is pertained when considering more than two restrictions (cf.
Lemma 10).

Theorem 22. D-VNEP 〈VE | - 〉 is NP-complete.

Proof. We show the statement via a polynomial-time reduction
from 3-SAT according to Lemma 21. Specifically, we show
how to constrain the set of feasible embeddings of Gr(φ)
to GS(φ) to exactly MSAT

r(φ) (cf. Definition 19), such that
each virtual node corresponding to the i-th clause is mapped
on a substrate node corresponding to the i-th clause, albeit
embedding all virtual edges using a single substrate edge.

To enforce the node mapping property of MSAT
r(φ), namely

that each virtual node vi ∈ Vr(φ) must be mapped on nodes
in Ai, we set unit substrate node capacities and demands:

cS(ai,m) = 1 ∀ Ci ∈ Cφ, ai,m ∈ Ai
cr(φ)(vi) = 1 ∀ vi ∈ Vr(φ)

Given these demands and capacities, we note the following.
Firstly, as the substrate nodes have a capacity of 1 and the
virtual nodes have a demand of 1, at most one virtual node
may be placed on any substrate node. Secondly, the request
graph Gr(φ) contains edges (vi, vi+1) for i ∈ [N−1], while the
substrate is acyclic with edges always being oriented towards
substrate nodes pertaining to clauses with a higher index.
Hence, if a virtual node vi ∈ Vr(φ) is mapped on a substrate
node ak,o ∈ VS(φ) corresponding to the k-th clause, then the
virtual node vi+1 corresponding to the next clause must be
mapped on a substrate node ak′,o′ ∈ VS(φ) with k′ ≥ k + 1.
Thus, if vi ∈ Vr(φ) was to be mapped on a substrate node
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ak,o ∈ VS(φ) with k > i, then at least the last node vM of the
chain 〈vi, vi+1, . . . , vM 〉 cannot be suitably mapped. By the
same argument, vi ∈ Vr(φ) cannot be mapped on a substrate
node ak,o with k < i, as then at least the first node v1 could
not be mapped feasibly on any substrate node. Therefore,
any feasible embedding must map the node vi ∈ Vr(φ) on
a substrate node ai,m ∈ VS(φ), therefore restricting the node
mappings exactly as in the definition of the set MSAT

r(φ).
To enforce the edge mapping restrictions specified for

MSAT
r(φ), namely that each virtual edge is embedded to exactly

one substrate edge, the following non-unit edge capacities and
demands are set for some λ with 0 < λ < 1/|Cφ|:

cS(e) = 1 + λ · j ∀ Cj ∈ Cφ, e ∈ δ−(Aj)
cr(φ)(e) = 1 + λ · j ∀ vj ∈ Vr(φ), e ∈ δ−(vj)

Accordingly, the capacity of a substrate edge and the
demand of a virtual edge is determined by the index of the
clause its head is representing: the higher the clause-index of
the edge’s head, the higher the capacity. Given these capacities
and demands, we now show that any virtual edge must be
mapped on exactly one substrate edge. To this end, assume for
the sake of contradiction that the virtual edge (vi, vj) ∈ Er(φ)
is not mapped on a single substrate edge. As vi must be
mapped on some node ai,m ∈ Ai and vj must be mapped
on some node aj,n ∈ Aj , and as both the request and the
substrate are directed acyclic graphs, the mapping of edge
(vi, vj) must route through at least one intermediate node.
Denote by ak,l ∈ Ak for i < k < j the first intermediate node
lying on the path along which the edge (vi, vj) is routed. By
construction, the capacity of the substrate edge (ai,m, ak,l) is
1 + λ · k. However, as k < j holds and the edge (vi, vj) has
a demand of 1 + λ · j, the edge (vi, vj) cannot be routed
via ak,l. Thus, the only feasible edges for embedding the
respective virtual edges are the direct connections between
any two substrate nodes.

Therefore, according to the above capacities and demands,
any feasible embedding m satisfies the conditions of MSAT

r(φ)
and is hence contained in it. On the other hand, the above
imposed capacities do not constrain the set of feasible em-
beddings any further: each mapping m ∈MSAT

r(φ) is a feasible
embedding according to the above capacities. Thus, as the
set of feasible embeddings equals MSAT

r(φ), by Lemma 21,
any algorithm computing a feasible solution to the D-VNEP
obeying node and edge capacities, can be used to decide
3-SAT, showing the NP-completeness. �

In the following the above NP-completeness proof is
adapted to other settings. All the proofs purely rely on
constraining the set of feasible embeddings to the set MSAT

r(φ)
and the application of Lemma 21. Hence, in the following we
only prove that the set of feasible embeddings equals MSAT

r(φ).

Theorem 23. D-VNEP 〈E |N 〉 is NP-complete.

Proof. In this setting node placement restrictions and substrate
edge capacities are enforced. Employing the node place-
ment restrictions, we can force the mapping of virtual node
vi ∈ Vr(φ) onto substrate nodes Ai by setting V

vi
S = VS(φ)\Ai

for all vi ∈ Vr(φ). Utilizing the same edge capacities and

demands as in the proof of Theorem 22, virtual edges have
to be mapped using a single edge, as intermediate nodes do
not support the respective demand. Hence, the set of valid
mappings is constrained to MSAT

r(φ) and the result follows. �

Theorem 24. D-VNEP 〈V |R 〉 is NP-complete.

Proof. In this setting node capacities and routing restrictions
must be obeyed. We employ the same node capacities as in
the proof of Theorem 22, such that a virtual node vi ∈ Vr(φ)
may only be mapped on a substrate node contained in Ai.
Furthermore, routing restrictions are set to only allow direct
edges. Specifically, for the virtual edge (vi, vj) ∈ Er(φ) the
set of forbidden edges E

vi,vj
S is set to ES(φ) \ (Ai × Aj).

Hence, by using these restrictions, the set of valid mappings
is constrained to exactly MSAT

r(φ) and the result follows. �

Theorem 25. D-VNEP is NP-complete under restrictions
〈 - |NR 〉 and 〈 - |NL 〉.
Proof. Both VNEP variants do not consider capacities. Al-
lowing for node placement restrictions, the node mapping
restrictions of MSAT

r(φ) are easily safeguarded (cf. proof of
Theorem 23). By employing the same routing restrictions as
in the proof of Theorem 24 the result follows directly for the
case 〈 - |NR 〉.

For 〈 - |NL 〉, latency restrictions can be employed to en-
force that virtual edges span at most a single substrate edge.
Concretely, we set unit substrate edge latencies and unit virtual
edge latency bounds:

lS(e) = 1 ∀e ∈ ES(φ)
lr(φ)(e) = 1 ∀e ∈ Er(φ)

Accordingly, each virtual edge can only be realized by using
at most a single substrate edge. Furthermore, given the node
mapping restrictions, the virtual nodes cannot be mapped onto
the same substrate node. Hence, the set of feasible embeddings
equals exactly MSAT

r(φ) and the result follows for 〈 - |NL 〉. �
Theorem 26. D-VNEP 〈V |L 〉 is NP-complete.

Proof. This variant enforces node capacities while also obey-
ing latency restrictions. Again, utilizing unit node capacities
and demands as in the proof of Theorem 22, the node
mapping restrictions ofMSAT

r(φ) are safeguarded. By employing
unit substrate latencies and unit latency restrictions for each
virtual edge as in the proof of Theorem 25, also the edge
mapping restrictions of MSAT

r(φ) are enforced, thereby yielding
the result. �

V. NP -COMPLETENESS OF COMPUTING
APPROXIMATE EMBEDDINGS

Given the NP-completeness results presented in Sec-
tion IV, the question arises to which extent the hardness
can be overcome when relaxing constraints, such as capac-
ity or latency bounds, by considering approximate embed-
dings (cf. Definition 13). We first derive NP-completeness
results for computing α-approximate embeddings allowing
node capacity violations and γ-approximate embeddings al-
lowing latency violations for α < 2 and γ < 2. For
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β-approximate embeddings, another type of hardness result
is obtained. We show a reduction from a variant of the
edge-disjoint paths problem and show that β-approximate
embeddings can in general not be computed in polynomial-
time for β ∈ Θ(log |VS |/ log log |VS |).

Theorem 27. Deciding D-VNEP under restrictions 〈VE | - 〉,
〈V |R 〉, or 〈V |L 〉 remains NP-complete when asking only
for α-approximate embeddings for any α < 2.

Proof. The NP-completeness proofs under the restrictions
〈VE | - 〉, 〈V |R 〉, and 〈V |L 〉 relied all on the same argument
to show that the virtual node vi ∈ Vr(φ) must be mapped on
substrate nodes contained in Ai ⊆ VS (cf. Theorems 22, 24,
and 26): due to the unit substrate node capacities and the
unit node demands only a single virtual node can mapped
on a substrate node and accordingly the chain of virtual nodes
v1, v2, . . . , vM must be embedded linearly using substrate nod
sets A1,A2, . . . ,AM . Notably, the remaining parts of the
proofs were only relying on the condition that vi ∈ Vr(φ)
must be mapped on a node in Ai ⊆ VS .

Clearly, in the above proofs one may increase the substrate
node capacities by any factor 1 ≤ α < 2 without any changes
in the respective proofs: even if substrate nodes were to have
a capacity of α, only a single virtual node can be hosted by
any of the substrate nodes. As asking for an α-approximate
embeddings is equivalent to finding a non-approximate em-
bedding while increasing all node capacities by the factor
α, any algorithm for the D-VNEP returning α-approximate
embeddings for α < 2 could still be used to decide 3-SAT and
therefore even deciding whether an α-approximate embedding
exists remains NP-complete for any α < 2. �

The NP-completeness of deciding whether a
γ-approximate embeddings exists uses the same argument:

Theorem 28. Deciding D-VNEP under restrictions 〈 - |NL 〉
and 〈V |L 〉 remains NP-complete when asking only for γ-
approximate embeddings for any γ < 2.

Proof. The proofs of Theorems 25 and 26 relied on the
fact that due to the latency constraints each virtual edge
must be mapped on a single substrate edge. As the latencies
of substrate edges are uniformly set to 1 and all latency
bounds are 1 as well, computing a γ-approximate embedding
for γ < 2 implies that each virtual edge can still only
be mapped on a single substrate edge. Analogously to the
proof of Theorem 27, the respective D-VNEP variants remain
NP-complete even when only asking to decide whether a
γ-approximate embedding exists. �

For β-approximate embeddings we employ a hardness result
pertaining to a variant of the edge-disjoint paths problem,
introduced below.

Definition 29 (DIREDPWC [17]). The decision variant of
the Directed Edge-Disjoint Paths Problem with Conges-
tion (DIREDPWC) is defined as follows. Given is a directed
graph G = (V,E) together with a set of l ∈ N source-sink
pairs (commodities) {(sk, tk)}k∈[l], sk, tk ∈ V , and a constant
c ∈ N. The task is to decide whether for each commodity

k ∈ [l] a path Pk connecting sk to tk exists, such that at most
c many paths are routed via any edge e ∈ E. �

It is well-known that DIREDPWC is hard to solve even
when relaxing the congestion constraints:

Theorem 30 (Chuzhoy et al. [17]). Let n = |V | denote the
number of nodes. Given an instance of the DIREDPWC, it is
impossible to distinguish between the following two cases in
polynomial-time, unless NP ⊆ BP-TIME(

⋃
d≥1 n

d log logn):
1) A solution with congestion c = 1 exists .
2) No solution with congestion c ∈ Θ(log n/log log n) exists.

Above, BP-TIME(f(n)) denotes the class of problems
solvable by probabilistic Turing machines in time f(n) with
bounded error-probability [26].

To apply this result for the DIREDPWC in the con-
text of β-approximate embeddings, we give reductions from
DIREDPWC to the D-VNEP variants 〈E |N 〉 and 〈VE | - 〉.
Importantly, these reductions are preserved when relaxing edge
capacities, such that γ-approximate embeddings translate to
solutions of the DIREDPWC with a congestion increase by
a factor γ. We first give our reduction from DIREDPWC to
D-VNEP under restrictions 〈E |N 〉.
Theorem 31. Solving the β-approximate D-VNEP un-
der restrictions 〈E |N 〉 is not possible in polynomial-
time for β ∈ Θ(log n/ log log n) with n = |VS |, unless
NP ⊆ BP-TIME(

⋃
d≥1 n

d log logn) holds.

Proof. Given a DIREDPWC instance on the graph
G = (V,E) with commodities (sk, tk)k∈[l] and congestion c,
an equivalent D-VNEP instance consisting of the substrate
graph GS(dir) = (VS(dir), ES(dir)) and the request graph
Gr(dir) = (Vr(dir), Er(dir)) is constructed. Firstly, the substrate
is set to equal the original graph, i.e., GS(dir) = G,
and the request graph Gr(dir) = (Vr(dir), Er(dir)) is
defined as follows. Vr(dir) consists of two virtual nodes
per commodity, Vr(dir) = {ik, jk|k ∈ [l]}, and we set
Er(dir) = {(ik, jk)|k ∈ [l]}. Let σ : Vr(dir) → VS(dir) denote
the function indicating the original substrate node locations
of the respective commodities. Specifically, σ(ik) = sk and
σ(jk) = tk holds for all k ∈ [l]. We employ node mapping
requirements to force the mapping of virtual nodes ik and
jk to the locations of the respective commodities sk and
tk by setting V

i

S = V \ {σ(i)} for i ∈ Vr(dir). Setting
edge capacities in the substrate to c (the congestion value)
and virtual edge demands to 1, deciding the respective
D-VNEP problem is equivalent to deciding DIREDPWC:
any embedding m = (mV ,mE) of the D-VNEP instance
induces a solution to the DIREDPWC instance by setting
Pk = mE(ik, jk) for k ∈ [l] and vice versa. Importantly,
note that when considering β-approximate solutions for the
above D-VNEP instance, a respective DIREDPWC solution
of congestion β · c can be obtained in exactly the same way.

Given that β-approximate embeddings yield an in-
crease in the congestion of the DIREDPWC solution
by the same factor, we can now prove the impossibil-
ity to decide whether β-approximate embeddings exist for
β ∈ Θ(log |VS |/ log log |VS |). For the sake of contradiction
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assume that there exists a polynomial-time algorithm for the β-
approximate D-VNEP for some β ∈ o(log |VS |/ log log |VS |)
and that NP 6⊆ BP-TIME(

⋃
d≥1 n

d log logn) holds. Now,
consider a DIREDPWC instance with c = 1 and assume
that a feasible solution of congestion 1 exists. Clearly, the
DIREDPWC solution of congestion c = 1 induces a fea-
sible embedding (without exceeding edge capacities) of the
respective D-VNEP instance. Accordingly, the β-approximate
D-VNEP algorithm must return a β-approximate embedding
in polynomial-time. The β-approximate solution can then be
used to recover a solution to the original DIREDPWC instance
having congestion c = β ∈ o(log |VS |/ log log |VS |) =
o(log n/ log log n), where n = |V | = |VS | denotes the number
of nodes of the original DIREDPWC instance. However, under
the assumption that NP 6⊆ BP-TIME(

⋃
d≥1 n

d log logn) holds,
the construction of this DIREDPWC instance of congestion
c = β contradicts Theorem 30, which states that such an
approximate solution cannot (always) be found in polynomial-
time. Hence, finding β-approximate in polynomial-time is in
general impossible for some β ∈ Θ(log n/ log log n). �

We will now derive a similar result for the impossibility of
solving the β-approximate D-VNEP variant under capacity
restrictions 〈VE | - 〉. In contrast to the variant 〈E |N 〉, the
reduction from DIREDPWC is slightly more involved as the
endpoints of the commodities have to be fixed using node
capacities only. To concisely state the result, we introduce
the notion of core nodes. Specifically, considering a graph
G = (V,E) we use V c = {u ∈ V | |δ+(u) ∪ δ−(u)| ≥ 2} to
denote the core nodes having more than a single incoming or
outgoing edge. We may assume that any DIREDPWC instance
does only consist of core nodes, as the following lemma shows.

Lemma 32. Any DIREDPWC instance on the graph
G = (V,E) can be reduced to an equivalent instance on a
graph Gp = (Vp, Ep) with Vp ⊆ V , such that Vp contains
only core nodes, i.e., V cp = Vp holds.

Proof. Given the initial graph G = (V,E), the idea is that any
non-core node u ∈ V \V c does not offer any routing decisions
and can therefore be removed from the instance. Specifically,
consider a node u ∈ V only having a single incoming edge
e− or only one outgoing edge e+: the edge e− will only be
used by commodities whose target was mapped on u while
the edge e+ will only be used by commodities whose source
was mapped on u. Furthermore, these commodities have to
use the respective edges. When the number of commodities
using such an edge lies above the congestion c, then clearly
no solution can exist, while otherwise the respective node u
can be removed, while reassigning the source or the target
of the respective commodities from u to the node incident to
u. By iterating this process, equivalent DIREDPWC instances
are obtained until no non-core nodes exist anymore and the
graph Gp = (Vp, Ep) is obtained with Vp = V cp . �

Theorem 33. Solving the β-approximate D-VNEP un-
der restrictions 〈VE | - 〉 is not possible in polynomial-
time for β ∈ Θ(log n/ log log n) with n = |V cS |, unless
NP ⊆ BP-TIME(

⋃
d≥1 n

d log logn) holds.

Proof. We essentially use the same argumentation as in the
proof of Theorem 31, but employ a different reduction from
DIREDPWC to D-VNEP to fix the source and target map-
pings of commodities. Our reduction again takes as input a
DIREDPWC instance on the graph G = (V,E) with l ∈ N
commodities (sk, tk)k∈[l] and outputs an equivalent D-VNEP
instance consisting of a substrate GS(dir) and a request Gr(dir).

To construct the D-VNEP instance, we first introduce
some additional notation. We denote by O+ : V → N and
O− : V → N the function that counts the number of times a
node v ∈ V occurs as source or as sink in the commodities,
i.e., O+(v) =

∑
k∈[l]:sk=v 1 and O−(v) =

∑
k∈[l]:tk=v 1. To

construct the substrate graph GS(dir) the original graph G is
extended as follows. For each node v ∈ V , we add O+(v)
many copies V +,v

S(dir) = {v+1 , v+2 , . . . , v+O+(v)} and O−(v) many
copies V −,vS(dir) = {v−1 , v−2 , . . . , v−O−(v)}. For each copy v+k
an edge (v+k , v) is added while for any sink node v−k the
edge (v, v−k ) is introduced. Additionally using the function
U : V → [|V |] assigning each vertex a unique numeric
identifier, we define substrate node capacities according to
the following rule: all original nodes, v ∈ VS(dir) ∩ V , are
assigned a capacity of 0, while setting cS(v+k ) = U(v) and
cS(v−l ) = U(v) for v ∈ V and k ∈ [O+(v)] and l ∈ [O−(v)].

The request graph Gr(dir) = (Vr(dir), Er(dir)) is constructed
as in the proof of Theorem 31: Vr(dir) consists of two virtual
nodes per commodity, Vr(dir) = {ik, jk|k ∈ [l]}, and we set
Er(dir) = {(ik, jk)|k ∈ [l]}. Using again σ : Vr(dir) → VS(dir)
to denote the function indicating the original substrate node
location of the respective virtual nodes, the demand of virtual
nodes is set to match the capacity of the respective endpoints
they are to be mapped on: cr(dir)(i) = U(σ(i)) is set for
i ∈ Vr(dir). Given these capacities, we now prove that for
any feasible embedding m = (mV ,mE) any virtual node
i ∈ Vr(dir) must indeed be mapped on a copy corresponding
to σ(i). Specifically, we show that for ik ∈ Vr(dir) and
jk ∈ Vr(dir), corresponding to the source and the target of
commodity k, mV (ik) ∈ V

+,σ(ik)
S(dir) and mV (jk) ∈ V

+,σ(jk)
S(dir)

must hold.
We show the above statement by using an inductive argu-

ment and start off by first considering only the mappings of
virtual nodes which shall be mapped on the (unique) substrate
node u ∈ V of highest value U(u). Clearly, any virtual
node ik ∈ Vr(dir) with σ(ik) = u or any virtual node jk
with σ(jk) = u can only be mapped on substrate nodes
of capacity U(u). As only the substrate nodes contained in
V +,u
r(dir) ∪ V

−,u
r(dir) offer this capacity, mV (ik) ∈ V +,u

S(dir) ∪ V
−,u
S(dir)

and mV (jk) ∈ V +,u
S(dir) ∪ V

−,u
S(dir) must hold. Furthermore, as

the virtual node ik induces a flow towards jk and not both
virtual nodes can be placed on the same copy of u, the
virtual node must be mapped on a node contained in V +,u

S(dir)
as only these have outgoing edges. Analogously, the virtual
node jk must be mapped on a node contained in V −,uS(dir), as
only these nodes have an incoming edge. As the demanded
capacities and the substrate capacities of node u are equal, all
virtual nodes can be mapped, while having to use all available
capacities on the copies of node u. The above proof scheme
can now be iteratively applied for substrate nodes offering
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the second most capacity etc., thus concluding our proof that
mV (ik) ∈ V

+,σ(ik)
S(dir) and mV (jk) ∈ V

+,σ(jk)
S(dir) holds for any

ik, jk ∈ Vr(dir).
We now argue that by the above construction a solution

to the DIREDPWC instance exists if and only if a solution
to the respective D-VNEP instance exists. To this end, we
set the edge capacities to the congestion value c for original
edges contained in E and to 1 to any newly introduced
edges towards copies of substrate nodes. Clearly, any em-
bedding of the virtual edge (ik, jk) ∈ Er(dir) must start at
mV (ik) ∈ V

+,σ(ik)
S(dir) and therefore must traverse σ(ik) = sk

as the second node. Analogously, the virtual edge must end in
mV (jk) ∈ V −,σ(jk)S(dir) and therefore must traverse σ(jk) = tk
as second last node. By the same argument any solution to
the DIREDPWC instance yields a solution to the D-VNEP:
considering commodity k ∈ [l] first suitable (unused) source
and target nodes v+ ∈ V +,sk

S(dir) and v− ∈ V −,tkS(dir) are chosen
and afterwards the embedding is extended by mV (ik) = v+,
mV (jk) = v−, and mE(ik, jk) = 〈(v+, sk), Pk, (tk, v

−)〉.
Similar to the proof of Theorem 31 it remains to show

that the above equivalence is preserved when considering
β-approximate embeddings, which may exceed edge capacities
by the factor β. This indeed remains true, as the above argu-
ment that the endpoints of each virtual edge (ik, jk) ∈ Er(dir)
must correctly be mapped on any of the respective source
nodes V +,sk

S(dir) and sink nodes V −,tkS(dir) only relied on (i) the cho-
sen node capacities and demands and (ii) the orientation of the
respective incident edges. Thus, a β-approximate embedding
increases the congestion of the corresponding DIREDPWC
solution by a factor of exactly β.

Lastly, using the same argument as in the proof of The-
orem 31, assuming the existence of a DIREDPWC instance
having a solution with congestion c = 1, it is impossi-
ble for any algorithm to find a β-approximate embedding
with β ∈ o(log n/ log log n) with n = |VS(dir)|, unless
NP ⊆ BP-TIME(

⋃
d≥1 n

d log logn) holds. Notably, VS(dir)

contains the additional nodes V +,v
S(dir) and V −,vS(dir), v ∈ V ,

introduced for the reduction. However, by Lemma 32 we may
exclude these additional non-core nodes, hence strengthening
the result to hold for n = |V | = |V cS(dir)|. �

VI. NP -COMPLETENESS UNDER GRAPH RESTRICTIONS

Given the hardness of computing even approximate
D-VNEP solutions, we now turn towards another type of
problem relaxation, namely request graph restrictions. This
is motivated as, e.g., Virtual Clusters, an undirected star
network, can be optimally embedded in polynomial time [7]
and efficient approximations for service chains are known [14].
We show that the D-VNEP remains NP-complete when re-
stricting requests to planar and degree-bounded graphs. Before
showing this, we make the observation that acyclicity does not
render the D-VNEP simpler.

Observation 34. Theorems 22 - 28 still hold when restricting
the request and the substrate to acyclic graphs, as the con-
structed substrate and request graphs are acyclic by construc-
tion (cf. Definitions 17 and 18).

v1 v3v2

u1 u2 u4u3 u1 u2 u4u3

u1 u2 u4u3

planar graph Gφ

planar graph Gr(φ)

v1 v3v2 v1 v3v2

v1 v3v2

Fig. 3. Depicted is the transformation process of a planar graph Gφ
(cf. Theorem 35) to the planar graph Gr(φ). Concretely, the example formula
of Figure 2 is revisited, i.e., φ = C1 ∧ C2 ∧ C3, with C1 = x1 ∨ x2 ∨ x3,
C2 = x̄1∨x2∨x4, and C3 = x2∨ x̄3∨x4. The solid edges connect clause
nodes and literal nodes, while the dashed edges link the clause nodes.
In the first step the edge {v3, v1} is removed and all remaining edges are
directed: edges between clause nodes and literal nodes are oriented towards
literal nodes iff. the literal occurs in the respective clause for the first time
(according to the ordering of clause nodes) and edges between clause nodes
are oriented towards the clause with the higher index. In the second step,
each outgoing edge of a literal node is joined with the single incoming edge
(duplicating it when necessary), hence allowing to remove the literal nodes. In
the last step, duplicate edges are removed, yielding the request graph Gr(φ).
Each step of this transformation process safeguards the graph’s planarity.

To obtain that the D-VNEP is NP-complete for planar and
degree-bounded request graphs, we consider reductions from
a planar variant of 3-SAT, namely Clause-Linked Planar 3-
Bounded 3-SAT (CP3B-3-SAT):

Theorem 35 (CP3B-3-SAT is NP-complete [27]).
Deciding the satisfiability of a 3-SAT formula remains
NP-complete under the following additional restrictions.
1) The undirected graph Gφ = (Vφ, Eφ) is planar, where

Vφ ={vi |Ci ∈ Cφ} ∪ {uk |xk ∈ Lφ}
Eφ ={{vi, uk} | Ci ∈ Cφ, xk ∈ xk : xk ∈ Ci}

∪ {vi, vi+1 | i ∈ [M − 1]} ∪ {{vM , v1}} .

2) Each clause Ci ∈ Cφ contains at most three literals.
3) Each variable xk ∈ Lφ occurs in exactly three clauses.

An example of a graph Gφ pertaining to a formula φ is
depicted in Figure 3.

The following lemma connects CP3B-3-SAT formulas φ
with the corresponding request graphs Gr(φ).

Lemma 36. Given a CP3B-3-SAT formula φ, the following
holds for the request graph Gr(φ) (cf. Definition 17):
1) The request graph Gr(φ) is planar.
2) The node-degree of Gr(φ) is bounded by 8.

Proof. We consider an arbitrary CP3B-3-SAT formula φ to
which the conditions of Theorem 35 apply. We first show that
the corresponding request graph Gr(φ) is planar by detailing
a transformation process leading from the planar graph Gφ to
Gr(φ) while preserving planarity (see Figure 3).

Starting with the undirected graph Gφ, first the edge
{vM , v1} is removed and all edges are oriented: an edge
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between a clause node and a variable node is oriented from
a clause node to a literal node iff. the literal occurs in the
respective clause for the first time according to the clauses’
ordering. The edges between clause nodes are always oriented
towards the clause with the higher index.

Given this directed graph, the literal nodes are now removed
by joining the single incoming edge of a literal node with each
of its outgoing edges. In particular, considering the literal node
u2 of Figure 3, the single incoming edge (v1, u2) is joined
with the outgoing edges (u2, v2) and (u2, v3) to obtain the
edges (v1, v2) and (v1, v3). As the duplication of the single
incoming edge cannot refute planarity and all incoming and
outgoing edges connect to the same node, the planarity of
the graph is preserved in this step. Lastly, duplicate edges are
removed to obtain the graph Gr(φ), which is, in turn, planar.

It remains to show, that the request graph Gr(φ) corre-
sponding to φ exhibits a bounded node-degree of 8 (in the
undirected interpretation of the graph Gr(φ)). To see this, we
note the following. Based on the second and third conditions of
CP3B-3-SAT (cf. Theorem 35) each clause node is connected
to at most two different other clauses via each literal node it
is connected to, yielding at most 6 neighbors. Furthermore,
any clause is directly connected to at most two further clause
nodes via the edges between clause nodes, yielding a node-
degree bound of 8. �

Given the above, we derive the following theorem:

Theorem 37. Theorems 22 - 28 hold when restricting the re-
quest graphs to be planar and degree 8-bounded. Theorems 31
and 33 hold for planar and degree 1-bounded graphs.

Proof. Our NP-completeness proofs in Section IV and Sec-
tion V (except for Theorems 31 and 33) relied solely on the
reduction from 3-SAT to D-VNEP using the base Lemma 20.
As formulas of CP3B-3-SAT are a strict subset of the
3-SAT formulas, the base Lemma 20 is still applicable for
CP3B-3-SAT formulas. However, due to the structure of
CP3B-3-SAT formulas, the corresponding requests in the
reductions are planar and exhibit a node-degree bound of 8
by Lemma 36. Hence, solving the D-VNEP is NP-complete,
even when restricting the requests to planar and / or degree-
bounded ones. Lastly, we note that Theorems 31 and 33 hold
for planar and degree 1-bounded request graphs, as in the
reduction only such requests were considered. �

VII. HARDNESS OF O-VNEP AND
DISCUSSION OF PRACTICAL IMPLICATIONS

In this section the results obtained for the D-VNEP are
translated into hardness results for the O-VNEP under any ob-
jective. Furthermore, an additional hardness result pertaining
to the computation of convex combinations of valid mappings
is discussed. This result sheds light on the recently discovered
first parametrized, i.e., non-polynomial, approximations of the
offline O-VNEP for general request graphs [16]. We begin by
showing that the hardness results for the D-VNEP translate
to the (NP-)hardness of the O-VNEP. Even more, we show
that the O-VNEP is inapproximable under any objective.

Theorem 38. (i) The O-VNEP is NP-hard and inapprox-
imable (unless P =NP) under the following restrictions:
〈VE | - 〉, 〈E |N 〉, 〈V |R 〉, 〈 - |NR 〉, 〈 - |NL 〉, 〈V |L 〉.

(ii) The result (i) remains valid for acyclic substrates and
acyclic, planar, degree 8-bounded requests and when allowing
for α-, or γ-approximate embeddings for α < 2 or β < 2.

(iii) Theorems 31 and 33 remain true for the
O-VNEP under any objective. Hence, computing any
β-approximate O-VNEP solution within polynomial-
time is impossible for β ∈ Θ(log n/ log log n) with
n = |VS | for 〈E |N 〉 and n = |V cS | for 〈VE | - 〉, unless
NP ⊆ BP-TIME(

⋃
d≥1 n

d log logn).

Proof. Consider an O-VNEP instance consisting of request
graph Gr and substrate graph GS and denote by Mr the set
of all feasible embeddings. While the task of the respective
D-VNEP instance is to decide whether Mr = ∅ holds, the
task of the O-VNEP is not only to decide whether there
exists a feasible embedding but to return one optimizing the
objective (cf. Definition 5). Hence, all above results pertaining
to the NP-completeness of the D-VNEP translate into the
NP-hardness of the O-VNEP by the same reduction frame-
work used above. Specifically, any given 3-SAT formula φ is
satisfiable if and only if the respective O-VNEP algorithm re-
turns any (optimal) feasible embedding. Clearly, this reduction
still works when allowing the O-VNEP algorithm to return
any feasible solution only approximating the optimal objective,
as any feasible solution is proof of the satisfiability of the
formula φ. Hence, the O-VNEP is inapproximable under any
objective in polynomial-time unless P =NP holds. Hence,
due to Theorems 22 to 26, the first statement holds.

The second statement is a direct corollary of our above
observations and the Theorems 27, 28, and 37.

The third statement holds as the respective reductions
used in Theorem 31 and 33 can be easily adapted to the
O-VNEP: finding an optimal or approximate solution only
exceeding edge capacities by a factor β encompasses finding
such a β-approximate solution in the first place. Based on
the hardness of DIREDPWC, this remains impossible unless
NP ⊆ BP-TIME(

⋃
d≥1 n

d log logn). �

Notably, the above theorem also holds for O-VNEP variants
considering several requests instead of a single one: finding
feasible embeddings for several requests is at least as hard as
finding a feasible embedding for a single request.

In the following, the implications of our results are dis-
cussed in the light of recent approximation algorithms for
an offline variant of the O-VNEP under the restrictions
〈VE |NR 〉 and 〈VE |NRL 〉 [15], [16]. Specifically, the stud-
ied offline O-VNEP variant asks for deciding which of the
requests to feasibly embed to maximize the obtained profit,
while not exceeding resource capacities. As discussed above,
the O-VNEP is in general inapproximable. Hence, the authors
of [15], [16] consider a relaxed model, allowing for resource
augmentations both on the nodes and the edges. The obtained
approximations use Linear Programming to compute optimal
convex combinations of valid mappings for which the feasibil-
ity is not ensured. However, even computing valid mappings
of minimal cost, introduced as Valid Mapping Problem (VMP)
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in [16], is NP-hard and inapproximable in polynomial-time
under the restrictions 〈 - |NR 〉 and 〈 - |NRL 〉. While this
rules out polynomial-time algorithms in general, it was shown
in [16] that parametrized algorithms for the VMP exist, whose
runtime is exponential in the treewidth of the request graph. As
the treewidth of specific graph classes is bounded for example
for outer-planar graphs, the respective approximations have a
polynomial-runtime for these graph classes. Our results show
that such parametrized algorithms are the best we can hope
for. Specifically, by Theorem 38, solving the VMP or the
O-VNEP is impossible in polynomial-time for planar request
graphs, unless P =NP holds.

VIII. CONCLUSION

This work has presented a comprehensive set of hardness
results for several variants of the VNEP, which lie at the core
of many resource allocation problems in networks. Our results
are negative in nature: we show that the decision variants
are NP-complete and the respective optimization variants are
NP-hard and inapproximable (unless P =NP holds). This
remains true even when restricting request graphs to planar
graphs and when relaxing constraints within certain bounds.

As these results are proven for any combination of node
and edge mapping restrictions, our results are of general
importance and apply also to (sub-)problems encountered
for example in the contexts of service function chaining or
network function virtualization.
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