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Push-Down Trees:
Optimal Self-Adjusting Complete Trees
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Abstract—This paper studies a fundamental algorithmic prob-
lem related to the design of demand-aware networks: networks
whose topologies adjust toward the traffic patterns they serve,
in an online manner. The goal is to strike a tradeoff between
the benefits of such adjustments (shorter routes) and their costs
(reconfigurations). In particular, we consider the problem of
designing a self-adjusting tree network which serves single-
source, multi-destination communication. The problem is a central
building block for more general self-adjusting network designs
and has interesting connections to self-adjusting datastructures.
We present two constant-competitive online algorithms for this
problem, one randomized and one deterministic. Our approach
is based on a natural notion of Most Recently Used (MRU) tree,
maintaining a working set. We prove that the working set is a
cost lower bound for any online algorithm, and then present
a randomized algorithm RANDOM-PUSH which approximates
such an MRU tree at low cost, by pushing less recently used
communication partners down the tree, along a random walk. Our
deterministic algorithm MOVE-HALF does not directly maintain
an MRU tree, but its cost is still proportional to the cost of an
MRU tree, and also matches the working set lower bound.

Index Terms—Reconfigurable networks, Online algorithms,
Self-adjusting datastructures, Competitive analysis

I. INTRODUCTION

While datacenter networks traditionally rely on a fixed
topology, recent optical technologies enable reconfigurable
topologies which can adjust to the demand (i.e., traffic pattern)
they serve in an online manner, e.g. [[15], [27], [30], [32], [|33],
[42]]. Indeed, the physical topology is emerging as the next
frontier in an ongoing effort to render networked systems more
flexible.

In principle, such topological reconfigurations can be used
to provide shorter routes between frequently communicating
nodes, exploiting structure in traffic patterns [6]], [37], [42], and
hence to improve performance. However, the design of self-
adjusting networks which dynamically optimize themselves
toward the demand introduces an algorithmic challenge: an
online algorithm needs to be devised which guarantees an
efficient tradeoff between the benefits (i.e., shorter route
lengths) and costs (in terms of reconfigurations) of topological
optimizations.

This paper focuses on the design of a self-adjusting complete
tree (CT) network: a network of nodes (e.g., top-of-rack
switches) that forms a complete tree (i.e., the tree is balanced
and each internal node has degree 3), and we measure the
routing cost in terms of the path length between two nodes in
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the tree. Trees are not only a most fundamental topological
structure of their own merit, but also a crucial building block for
more general self-adjusting network designs: it is known that
multiple tree networks (optimized individually for a single
source node, hence called ego-trees) can be combined to
build general networks which provide low degree and low
distortion [7], [9]], [45]]. The design of a dynamic single-source
multi-destination communication tree, as studied in this paper,
is hence a stepping stone. Indeed, reconfigurable networks such
as ReNets [12] leverage dynamic ego-trees to efficiently serve
sparse traffic matrices which can evolve over time, as it is
typically the case in practice [6], [37].

The focus on trees is further motivated by a relation-
ship of our problem to problems arising in self-adjusting
datastructures [[11]]: self-adjusting datastructures such as self-
adjusting search trees [53]] have the appealing property that
they optimize themselves to the workload, leveraging temporal
locality, but without knowing the future. Ideally, self-adjusting
datastructures store items which will be accessed (frequently)
in the future, in a way that they can be accessed quickly (e.g.,
close to the root, in case of a binary search tree), while also
accounting for reconfiguration costs. However, in contrast to
most datastructures, in a network, the search property is not
required: the network supports routing. Accordingly our model
can be seen as a novel flavor of such self-adjusting binary search
tree where lookup is supported by a source routing: source
routing simplifies the control plane of a reconfigurable network,
as it avoids complex re-computations of the paths under
topological changes. In datastructure terminology, the source
maintains a map about the locations of possible destinations on
the tree, and adds the corresponding path to the packet header.
More details will follow.

We present a formal model for this problem later, but a
few observations are easy to make. If we restrict ourselves
to the special case of a line network (a “linear tree”), the
problem of optimally arranging the destinations of a given
single communication source is equivalent to the well-known
dynamic list update problem: for such self-adjusting (un-
ordered) lists, constant-competitive online algorithms (known
as dynamically optimal [23]]) have been known for a long
time [52]. In particular, the simple move-to-front algorithm
which immediately promotes the accessed item to the front
of the list, fulfills the Most-Recently Used (MRU) property:
the i*" furthest away item from the front of the list is the i*"
most recently used item. In the list (and hence on the line),
this property is enough to guarantee optimality. The MRU

'In binary search trees, each internal node stores a value greater than all
the values in the node’s left subtree and smaller than all the values in its right
subtree, and hence searching a value is easy.
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property is related to the so called working set property: the
cost of accessing item z at time ¢ depends on the number of
distinct items accessed since the last access of x prior to time ¢,
including z. Naturally, we wonder whether the MRU property
is enough to guarantee optimality also in our case. The answer
turns out to be non-trivial.

A first contribution of this paper is the observation that if we
count only access cost (ignoring any rearrangement cost, see
Definition |1] for details), the answer is affirmative: the most-
recently used tree is what is called access optimal. Furthermore,
we show that the corresponding access cost is a lower bound
for any algorithm which is dynamically optimal. But securing
this property, i.e., maintaining the most-recently used items
close to the root in the tree, introduces a new challenge: how to
achieve this at low cost? In particular, assuming that swapping
the locations of items comes at a unit cost, can the property be
maintained at cost proportional to the access cost? As we show,
strictly enforcing the most-recently used property in a tree is
too costly to achieve optimality. But, as we will show, when
turning to an approximate most-recently used property, we are
able to show two important properties: i) such an approximation
is good enough to guarantee access optimality; and ii) it can
be maintained in expectation using a randomized algorithm:
less recently used communication partners are pushed down
the tree along a random walk.

While the most-recently used property is sufficient, it is
not necessary: we provide a deterministic algorithm which
is dynamically optimal but does not even maintain the MRU
property approximately. However, its cost is still proportional
to the cost of an MRU tree (Definition [6).

Succinctly, we make the following contributions. First we
show a working set lower bound for our problem. We do so by
proving that an MRU tree is access optimal. In the following
theorem, let W S(o) denote the working set of o (a formal
definition will follow later).

Theorem 1: Consider a request sequence o. Any algorithm
ALG serving o using a self-adjusting complete tree, has cost
at least cost(ALG(0)) > WS(o)/4, where WS(co) is the
working set of o.

Our main contribution is a deterministic online algorithm
MOVE-HALF which maintains a constant competitive self-
adjusting Complete Tree (CT) network.

Theorem 2: MOVE-HALF algorithm is dynamically optimal.

Interestingly, MOVE-HALF does not require the MRU
property and hence does not need to maintain MRU tree.
This implies that maintaining a working set on CT's is not a
necessary condition for dynamic optimality, although it is a
sufficient one.

Furthermore, we present a dynamically optimal, i.e., constant
competitive (on expectation) randomized algorithm for self-
adjusting CT's called RANDOM-PUSH. RANDOM-PUSH relies
on maintaining an approximate MRU tree.

Theorem 3: The RANDOM-PUSH algorithm is dynamically
optimal on expectation.

II. MODEL AND PRELIMINARIES

We first present our formal model in an abstract form.
Subsequently, we will put the model into perspective with

regards to demand-aware reconfigurable network topologies.

A. Abstract Model

Our problem can be formalized using the following simple
model. We consider a single source that needs to communicate
with a set of n nodes V. = {vy,...,v,}. The nodes are
arranged in a complete binary tree and the source is connected
to the root of the tree. While the tree describes a reconfigurable
network, we will use terminology from datastructures, to
highlight this relationship and avoid the need to introduce
new terms.

We consider a complete tree 7' connecting m servers
S = {s1,...,8,}. We will denote by s;1(T) the root of
the tree T', or s; when 7' is clear from the context, and by
s;.left (resp. s;.right) the left (resp. right) child of server
s;. We assume that the n servers store n items (nodes)
V = {v1,...,v,}, one item per server. For any i € [1,n)]
and any time ¢, we will denote by s;.guest® € V the item
mapped to s; at time ¢. Similarly, v;.host € S denotes
the server hosting item v;. Note that if vi.host(t) = s; then
sj.guest® = v,

The depth of a server s; is fixed and describes the distance
from the root; it is denoted by s;.dep, and s;.dep = 0. The
depth of an item v; at time t is denoted by vi.dep(t), and is
given by the depth of the server to which v; is mapped at time
t. Note that vi.dep(t) = vi.host.dep(t).

To this end, we interpret communication requests from the
source as accesses to items stored in the (unordered) tree.
All access requests (resp. communication requests) to items
(resp. nodes) originate from the root s;. If an item (resp. node)
is frequently requested, it can make sense to move this item
(node) closer to the root of T': this is achieved by swapping
items which are neighboring in the tree (resp. by performing
local topological swaps).

Access requests occur over time, forming a (finite or infinite)
sequence 0 = (o), c@ ..}, where ¢ = v; € V denotes
that item v; is requested, and needs to be accessed at time ¢. The
sequence o (henceforth also called the workload) is revealed
one-by-one to an online algorithm ON. The working set of an
item v; at time t is the set of distinct items accessed since the
last access of v; prior to time ¢, including v;. We define the
rank of item v; at time ¢ to be the size of the working set of v;
at time ¢ and denote it as vi.rank(t). When ¢ is clear of context,
we simply write v;.rank. The working set bound of sequence
o of m requests is defined as WS(o) = 1" | log(c().rank).

Both serving (i.e., routing) the request and adjusting the
configuration comes at a cost. We will discuss the two cost
components in turn. Upon a request, i.e., whenever the source
wants to communicate to a partner, it routes to it via the tree 7.
To this end, a message passed between nodes can include, for
each node it passes, a bit indicating which child to forward the
message next (requires O(logn) bits). Such a source routing
header can be built based on a dynamic global map of the tree
that is maintained at the source node. As mentioned, the source
node is a direct neighbor of the root of the tree, aware of all
requests, and therefore it can maintain the map. The access
cost is hence given by the distance between the root and the
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Fig. 1. (a) Our complete tree model: a source with a map, a tree of servers that host items (nodes) and a swap operation between neigboring items. (b) The
node’s tree network implied by the tree 7" from (a) and the set of swaps needed to interchange the location of ve and wv4. (c) The tree network after the

interchange and swap operations of (b).

requested item, which is basically the depth of the item in the
tree.

The reconfiguration cost is due to the adjustments that an
algorithm performs on the tree. We define the unit cost of
reconfiguration as a swap: a swap means changing position of
an item with its parent. Note that, any two items wu, v in the tree
can be interchanged using a number of swaps equal to twice
the distance between them. This can be achieved by u first
swapping along the path to v and then v swapping along the
same path to initial location of u. This interchange operation
results in the tree staying the same, but only v and v changing
locations. We assume that to interchange items, we first need
to access one of them. See Figure [I] for an example of our
model and interchange operation.

Definition 1 (Cost): The cost incurred by an algorithm ALG
to serve a request o(*) = v; is denoted by cost(ALG(c("))),
short cost(!). It consists of two parts, access cost, denoted
acc-cost®, and adjustment cost, denoted adj-cost(t). We
define access cost simply as acc-cost®) = vi.dep(t) since
ALG can maintain a global map and access v; via the shortest
path. Adjustment cost, adj-cost®, is the total number of swaps,
where a single swap means changing position of an item with
its parent or a child. The total cost, incurred by ALG is then

cost(ALG(a)) = Y _ cost(ALG(c"))
t
= Z cost® = Z(acc-cost(t) + adj-cost®)
¢ ¢

Our main objective is to design online algorithms that perform
almost as well as optimal offline algorithms (which know o
ahead of time), even in the worst-case. In other words, we want
to devise online algorithms which minimize the competitive
ratio:
Definition 2 (Competitive Ratio p): We consider the standard
definition of (strict) competitive ratio p, i.e.,
p = max, cost(ON)/cost(OPT) where o is any input sequence
and where OPT denotes the optimal offline algorithm.
If an online algorithm is constant competitive, independently
of the problem input, it is called dynamically optimal.
Definition 3 (Dynamic Optimality): An (online) algorithm
ON achieves dynamic optimality if it asymptotically matches
the offline optimum on every access sequence. In other words,
the algorithm ON is O(1)-competitive.

We also consider a weaker form of competitivity (similarly
to the notion of search-optimality in related work [14]]), and say
that ON is access-competitive if we consider only the access
cost of ON (and ignore any adjustment cost) when comparing
it to OPT (which needs to pay both for access and adjustment).
For a randomized algorithm, we consider an oblivious online
adversary which does not know the random bits of the online
algorithm a priori.

The Self-adjusting Complete Tree Problem considered in
this paper can then be formulated as follows: Find an online
algorithm which serves any (finite or infinite) online request
sequence o with minimum cost (including both access and
rearrangement costs), on a self-adjusting complete binary tree.

B. Putting the Model into Perspective

Our model above revolves around a single tree, where
requests originate from a root. The practical motivation behind
this model is threefold. First, (dynamic) trees can easily
be realized with optical switches that support (dynamic)
matchings, for example optical spine switches that connect Top-
of-Rack (ToR) switches in dynamic topologies [30]. Second
and most importantly, it has been shown by Avin et al. [7]]
that efficient more general demand-aware networks can be
built from such trees which are optimized toward an individual
source: given the individual trees of the different sources in
a demand matrix (called ego-trees in the literature), rooted
at the source, it is possible to construct a constant-degree
topology which interconnects all sources with their destinations,
without significantly distorting the route lengths. Essentially, the
demand-aware network is simply the union of these ego-trees,
where the degree is reduced in a postprocessing step. Since
the original work by Avin et al., this network design principle
has been successfully employed to design a variety of static
and dynamic demand-aware networks, e.g., [7], [9], [10], [12],
[45]. For example, it has been shown that the approach cannot
only be used to minimize route lengths, but also to optimize
other network metrics such as congestion [9]. However, so far,
dynamic demand-aware networks such as ReNets [12]] do not
provide any non-trivial competitive guarantees against offline
algorithms, only against static algorithms.

The third motivation behind our model arises in the context
of datastructures. In particular, self-adjusting binary search
trees are rooted trees whose topology dynamically adjusts to
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optimally serve requests originating at the tree’s root. A key
difference is that while datastructures need to be searchable,
networks generally do not have this constraint due to the
presence of routing protocols. That said, it is important to
ensure that routing protocols are implemented efficiently, as in
dynamic topologies there are frequent updates. Accordingly,
we in this paper employ source routing, which we model with
a map at each source node: the map allows us to trivially
access a node (or item) at distance k£ from the front at a
cost k. Interestingly, while the quest for constant competitive
online algorithms for binary search trees remains a major open
problem [53]], we will show in this paper that, under our cost
model, dynamically optimal algorithms for tree networks existE]

Finally, for simplicity of terminology and due to the con-
nection of our model to datastructure literature, we presented
our abstract model above in terms of servers and items.

III. WARM UP: OPTIMAL FIXED TREES

The key difference between binary search trees and binary
trees is that the latter provides more flexibilities in how items
can be arranged on the tree. Accordingly, one may wonder
whether more flexibilities will render the optimal data structure
design problem algorithmically simpler or harder.

In this section, we consider the static problem variant, and
investigate offline algorithms to compute optimal trees for a
fixed frequency distribution over the items. To this end, we
assume that for each item v, we are given a frequency v.freq,
where ) . v.freq = 1.

Definition 4 (Optimal Fixed Tree): We call a tree op-
timal static tree if it minimizes the expected path length
Zie[l,n] (v;.freq - v;.dep).

Our objective is to design an optimal static tree according
to Definition E} Now, let us define the following notion of
Most Frequently Used (MFU) tree which keeps items of larger
empirical frequencies closer to the root:

Definition 5 (MFU Tree): A tree in which for every pair
of items v;,v; € V, it holds that if v;.freq > v;.freq then
v;.dep < v;.dep, is called MFU tree.

Observe that MFU trees are not unique but rather, there are
many MFU trees. In particular, the positions of items at the
same depth can be changed arbitrarily without violating the
MFU properties.

Theorem 4 (Optimal Fixed Trees): Any MFU tree is an
optimal fixed tree.

Proof: Recall that by definition, MFU trees have the property
that for all node pairs v;,v;: v;.freq > v;.freq = v;.dep <
v;.dep. For the sake of contradiction, assume that there is
a tree 1" which achieves the minimum expected path length
but for which there exists at least one item pair v;, v; which
violates our assumption, i.e., it holds that v;.freq > v;.freq but
v;.dep > v;.dep. From this, we can derive a contradiction to
the minimum expected path length: by swapping the positions

>There are self-adjusting binary search trees that are known to be access
optimal [[14], but their rearrangement cost it too high.

of items v; and v;, we obtain a tree 7" with an expected path
length which is shorter by

cost(T, o) — cost(T”,0) = (v;.freq - v;.dep + v;.freq - vj.dep)
— (v;.freq - v;.dep + v;.freq - v;.dep)
>0

|

MFU trees can also be constructed very efficiently, e.g.,

by performing the following ordered insertion: we insert the

items into the tree 7" in a top-down, left-to-right manner, in

descending order of their frequencies (i.e., item v; is inserted
before item v; if v;.freq > v;.freq).

IV. ACCESS OPTIMALITY: A WORKING SET LOWER BOUND

For fixed trees, it is easy to see that keeping frequent
items close to the root, i.e., using a Most-Frequently Used
(MFU) policy, is optimal (cf. Appendix). The design of online
algorithms for adjusting trees is more involved. In particular,
it is known that MFU is not optimal for lists [52]. A natural
strategy could be to try and keep items close to the root which
have been frequent “recently”. However, this raises the question
over which time interval to compute the frequencies. Moreover,
changing from one MFU tree to another one may entail high
adjustment costs.

This section introduces a natural pendant to the MFU
tree for a dynamic setting: the Most Recently Used (MRU)
tree. Intuitively, the MRU tree tries to keep the “working set”
resp. recently accessed items close to the root. In this section
we consider online request sequences and show a working set
lower bound for any self-adjusting complete binary tree.

While the move-to-front algorithm, known to be dynamically
optimal for self-adjusting lists [52]], naturally provides such a
“most recently used” property, generalizing move-to-front to the
tree is non-trivial. We therefore first show that any algorithm
that maintains an MRU tree is access-competitive. With this
in mind, let us first formally define the MRU tree.

Definition 6 (MRU Tree): For a given time ¢, a tree T is
an MRU tree if and only if,

(D

Accordingly the root of the tree (level zero) will always
host an item of rank one. More generally, servers in level i
will host items that have a rank between (2¢,2¢*1 —1). Upon
a request of an item, say v; with rank r, the rank of v; is
updated to one, and only the ranks of items with rank smaller
than r are increased, each by 1. Therefore, the rank of items
with rank higher than r do not change and their level (i.e.,
depth) in the MRU tree remains the same (but they may switch
location within the same level).

Definition 7 (MRU algorithm): An online algorithm ON has
the MRU property (or the working set property) if for each
time ¢, the tree T® that ON maintains, is an MRU tree.

The working set lower bound will follow from the following
theorem (Theorem [5) which states that any algorithm that
has the MRU property is access competitive. Recall that an
analogous statement of Theorem [5] is known to be true for a
list [52]]. As such, one would hope to find a simple proof that

v;.dep = |log v;.rank |
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holds for complete trees, but it turns out that this is not trivial,
since OPT has more freedom in trees. We therefore present a
direct proof based on a potential function, similar in spirit to
the list case.

Theorem 5: Any online algorithm ON that has the MRU
property is 4 access-competitive.

Proof: Consider the two algorithms ON and OPT. We
employ a potential function argument which is based on
the difference in the items’ locations between ON’s tree and
OpT’s tree. For any server s;, we define a pair (s;,s;) as
bad on a tree of some algorithm A if s;,.dep < s;.dep but
si.guest.rank(A) > s;.guest.rank(A), i.e., s; is at a lower
level although s;.guest(A) has been accessed more recently.
We observe that any bad pair (s;,s;) for s; is an ordered
pair, i.e., this pair is not bad for s;. Also note that, for any
server s;, s;.dep is same on any tree for any algorithm, what
may differ is s;.guest resp. s;.guest.rank. Since ON has the
MRU property it follows by definition that none of its pairs
are bad. Hence bad pairs appear only on OPT’s tree. Let, for
any algorithm A, «;(A) denote the number of bad pairs for
s; in A’s tree. Let B;(A) be equal to one plus «;(A) divided
by the number of items at level s;.dep. More formally,

ai(4)

Bi(A) =1+ 5s,dep
Define B(A) = []!_, Bi(A). Now we define the potential
function ® = log B(OPT) — log B(ON) which is based on the

difference in the number of bad pairs between ON’s tree and
OPT’s tree. According to our definition, B(ON) = 1 and hence
® = log B(OPT). Therefore, from now onwards, we use B
resp. log B instead of B(OPT) resp. log B(OPT). We consider
the occurrence of events in the following order. Upon a request,
ON adjusts its tree, then OPT performs the rearrangements it
requires.

Let the potential at time ¢ be ® (i.e., before ON’s adjustment,
after serving request o(*), and before OPT’s rearrangements
between requests ¢t and ¢ + 1) and the potential after ON
adjusted to its tree be ®’. Then the potential change due to
ON’s adjustment is
!

loE
B

We assume that the initial potential is 0 (i.e., no item
was accessed). Since the potential is always positive by
definition, we can use it to bound the amortized cost of
ON, amortized(ON). Consider a request at time ¢ to an
item at depth k£ in the tree of ON. The access-cost is
cost (ON) = k and we would like to have the following
bound: amortized®™ (ON) < cost!) (ON) + A®. Assume that
the requested item o(*) is at server s, at depth j in OPT’s tree,
so OPT must pay at least an access cost of j. Let k be the
depth of o(*) in ON tree. First we assume that j < k.

Let us compute the potential after ON updated its MRU
tree. For any server s; at depth lower than j i.e., for which
s;.dep < 7, it holds that

B; =14+ a;/QSi‘dep =14+ (Oéi 4 1)/2Si~d8p =B, + 1/28i.dep

AP, = —P=logB —logB =

This is true since the rank of the guest of the last accessed
server, s,, changed (to 1) and hence «; increases by 1 for each

server server s; s.t. s;.dep < j. Additionally, for all servers
for which s;.dep > j (excluding s,.), Bi = B;. The potential
of the accessed server, s,, will be B.. = 1, since its guest’s
rank becomes 1. Although due to the access, the rank of some
other items increase by 1, that does not affect the number of
bad pairs. Let the rank of the requested item o(*) before it was
accessed be o(®) rank. After the access at time ¢, the rank of
all the items with rank lesser than o(*) rank will increase by 1.
Consider any pair (s;, s;) before the access of o). We have
already seen what happens if either s; or s; is s,.. Otherwise
a pair (s;, s;) cannot change from bad to good (resp. good to
bad) since if only s;.rank (resp. s;.rank) increases by 1, it
cannot be more than that of s; (resp. s;).
To compute B’, we use the following inequality.

n

1_[(:102 +1/n) < eHmi

i=1 i=1

ZT; 2 1V4

We prove it below.

n

= [[ @ +1/n))

=1
n
<]~
=1

< e, n € N. Now

ﬁgcz—i—l/n ﬁxl—l—x/n
i=1 i=1

=1+ 1/n)" [ (i

i=1

where we used the inequality (1 + 1/n)"
we compute B’

/ /
HB ( 2g dep) H Bi | By
1 s;.dep<j s;.dep>j
iET
j—1 /2P 1
— . /
- (H (H(B + 2p)>> II B|B
p=0 \i=1 si.dep>j
i#ET
j—1
< ( €Bi> H B; | B,
p=0 s;.dep>j
i#Er
el & el
= — B, =—B

The last line results from multiplying and dividing by B,
and recalling that B, = 1. Note that s,.dep = j and j < k.
Since s,-.guest is at depth k before the last access in ON’s tree,
its rank is at least 2%. But in the OPT’s tree, at most 2711 — 1
elements among those 2* elements are at depth j or less as
OPT’s tree contains no more than 27! — 1 many elements in
the top j levels. So, there are at least (2%) — (29+1 — 1) many
elements whose rank is more than that of s,..guest and the
depth is more than j in OPT’s tree. Hence,

(2 — (2 - 1)

k—j
B.>1+ > >Z 9

2k’
2
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B’ e’B el
Ad = logf = log BB —logE
el ) . .
<log gp—y = jlogae— (k—j) = j(1+logye) —k

Now we consider j > k. In this case also, for any server
for which s;.dep = j/ < j, it holds that B, < B; + 1 and
for all servers for which s;.dep > j (excluding s,.), B} = B;.
Again B =1 but B, > 1 since j > k. By similar calculations,
we get B’2 B and then, A®; < log2/ = j < 2j — k. To
complete the proof we need to compute the potential change
due to OPT’s rearrangements between accesses. Consider the
potential after OPT adjusted its tree, ®”. Then the potential
change due to OPT’s adjustment is

1
Ady =" — @/ :logp

=log B” —log B’

The only operation OPT performs is swap i.e., changing
positions between parent and a child. OPT may need to change
positions of items during rearrangement between accesses.
These can always be done using multiple number of swaps,
upwards or downwards or both. Below we compute potential
difference due to such a swap. Let OPT access an item z at s,
from depth %/, raising it to depth k¥’ — 1 by swapping it with
its parent z, at s),.

For all servers with s;.dep = k' — 1, except s,, B! <
B!+ 1/2F=1 holds, as z, goes to level &’ from k' — 1 and
may become bad to all the servers at level k' — 1. For s,
By < 2B, + 21»’% = 2B/ 4+ 2 < 4B/, as all the items in
layer K may become bad w.r.t. z. Also Bé’ < Bj, Notice that
changes only occur at depth k&’ — 1, nothing will change above
or below that.

The computation of B” is shown in Table

Now we compute the potential change due to OPT’s single
swap:

1

B
Ady = logﬁ <logde < 4

The potential change is less than 4 per swap where OPT
must pay one for that swap. If the number of swaps is m
for the rearrangement of OPT between any two accesses, the
potential change is bounded by 4m. Putting it all together, we
get

) < COSt(t) (ON) + Ad; + Ady
<k+(j(1+logye) —k)+4m
< 4(j 4+ m) = 4cost? (OPT)

amortized® (ON

Finally,
cost(ON) Zcost(f) (ON)

= Zamortlzed( )(ON) — (@1 — &)

¢ ¢
< Z amortized® (ON) < Z 4cost®) (OPT)
= 4cost(OPT)

]

Based on Theorem [5 we can now show our working set
lower bound:

Theorem 1: Consider a request sequence o. Any algorithm
ALG serving ¢ using a self-adjusting complete tree, has cost
at least cost(ALG(c)) > WS(o0)/4, where WS(o) is the
working set of o.

Proof: The sum of the access costs of items from an MRU
tree is exactly W.S(o). For the sake of contradiction assume
that there is an algorithm ALG with cost cost(ALG(c)) less
than WS(c)/4. If follows that Theorem [5| is not true. A
contradiction.

V. DETERMINISTIC ALGORITHM
A. Efficiently Maintaining an MRU Tree

It follows from the previous section that if we can maintain
an MRU tree at the cost of accessing an MRU tree, we will
have a dynamically optimal algorithm. So we now turn our
attention to the problem of efficiently maintaining an MRU tree.
To achieve optimality, we need that the tree adjustment cost
will be proportional to the access cost. In particular, we aim to
design a tree which on one hand achieves a good approximation
of the MRU property to capture temporal locality, by providing
fast access (resp. routing) to items; and on the other hand is
also adjustable at low cost over time.

Let us now assume that a certain item o(*) = u is accessed at
some time ¢. In order to re-establish the (strict) MRU property,
u needs to be promoted to the root. This however raises the
question of where to move the item currently located at the
root, let us call it v. A natural idea to make space for u at
the root while preserving locality, is to push down items from
the root, including item v. However, note that simply pushing
items down along the path between u and v (as done in lists)
will result in a poor performance in the tree. To see this, let
us denote the sequence of items along the path from « to v
by P = (u,wy,ws, ..., ws,v), where £ = u.dep, before the
adjustment. Now assume that the access sequence o is such
that it repeatedly cycles through the sequence P, in this order.
The resulting cost per request is in the order of O(¥), i.e., could
reach O(log n) for £ = O(log n). However, an algorithm which
assigns (and then fixes) the items in P to the top log ¢ levels of
the tree, will converge to a cost of only ©(log ¢) € O(loglogn)
per request: an exponential improvement.

Another basic idea is to try and keep the MRU property
at every step. Let us call this strategy MAX-PUSH. Consider
a request to item u which is at depth u.dep = k. Initially
u is moved to the root. Then the MAX-PUSH strategy
chooses for each depth ¢ < w.dep, the least recently ac-
cessed (and with maximum rank) item from level ¢: formally,
w; = argmaXyev:y.dep—i v-Tank. We then push w; to the
host of w;4;. It is not hard to see that this strategy will
actually maintain a perfect MRU tree. However, items with the
maximum rank in different levels, i.e., w;.host and w;;.host,
may not be in a parent-child relation. So to push w; to
w;41.host, we may need to travel all the way from w;.host to
the root and then from the root to w;1.host, resulting in a cost
proportional to ¢ per level ¢. This accumulates a rearrangement
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TABLE 1
COMPUTATION OF B”

Algorithm 1: MOVE-HALF (Upon request to u in tree)

1: access u = s.guest along the tree branches (cost: u.dep)

2: let v be the item with the highest rank at depth
|u.dep/2]

3: swap u along tree branches to node v

4: swap v along tree branches to server s

(cost: 2 su.dep)

cost of ¥ i > k2/2 to push all the items with maximum
rank at each layer, up to layer k. This is not proportional to
the original access cost k of the requested item and therefore,
leads to a non-constant competitive ratio as high as Q(logn).

Later, in Section we will present a randomized algorithm
that maintains a tree that approximates an MRU tree at a low
cost. But first, we will present a simple deterministic algorithm
that does not directly maintain an MRU tree, but has cost that
is proportional to the MRU cost and is hence dynamically
optimal.

B. The MOVE-HALF Algorithm

In this section we propose a simple deterministic algorithm,
MOVE-HALF, that is proven to be dynamically optimal. Inter-
estingly MOVE-HALF does not maintain the MRU property
but its cost is shown to be competitive to the access cost on
an MRU tree, and therefore, to the working set lower bound.

MOVE-HALF is described in Algorithm [I] Initially,
MOVE-HALF and OPT start from the same tree (which is
assumed w.l.o.g. to be an MRU tree). Then, upon a request to an
item u, MOVE-HALF first accesses u and then interchanges its
position with node v that is the highest ranked item positioned
at half of the depth of u in the tree. After the interchange the
tree remains the same, only v and v changed locations. See
Figure |1} (b) for an example of MOVE-HALF operation where
vg at depth 3 is requested and is then interchanged with v, at
depth 1 (assuming it is the highest rank node in level 1).

(cost: ’s su.dep)

The access cost of MOVE-HALF is proportional to the access
cost of an MRU tree.

Theorem 6: Algorithm MOVE-HALF is 4 access-competitive
to an MRU algorithm.

Before going to the proof of Theorem [6} we discuss several
properties of MOVE-HALF. First, we show that whenever any
item v moves down in MOVE-HALF’s tree, its depth is at most
twice plus one when compared to its depth in an MRU tree.

Lemma 1: Whenever some item v moves down to depth

h in MOVE-HALF’s tree, it is at least at depth |h/2] in an
MRU tree.
Proof: Upon a request of some item u, say, from depth h, let v
replace u at depth h in MOVE-HALF’s tree, from depth |h/2].
At the time of this request, v must be the highest ranked item
at depth |h/2| and accordingly, is replaced by u. As the depth
of the root is zero, the total number of items in depth |h/2] is
exactly 2L7/2] . So v.rank > 2L7/2] at the time u is requested.
Accordingly the position of v in an MRU tree is at least at
depth |h/2] (see Equation [1). Therefore, the depth of v in
MOVE-HALF’s tree is at most twice plus one when compared
to its depth in an MRU tree. [0 Next, let ¢t = 0 or a time
where an item v was moved down in MOVE-HALF’s tree. Let
t' > t be the first time that v was requested in o after time t.
Then we can claim the following:

Claim 1: If the depth of v in MOVE-HALF’s tree is h at
time ¢/, then its depth in an MRU tree at time ¢’ is at least
[h/2].

Proof: For the case ¢t = 0, since initially v is at the same depth
in both trees, the claim follows trivially. If £ > 0, then let
t" be the most recent time before ¢’ that v was moved down.
Then at time ¢”, item v was moved from some depth |h/2]
to h. At time ¢, according to Lemma [1} the depth of v in
an MRU tree was at least |h/2]. Clearly v’s depth remains
unchanged in MOVE-HALF’s tree at time ¢/, since time ¢ was
the most recent move down of v. Also since we consider the
first request of v after time ¢, it means that the rank of v could
only increase between ¢ and t’. So its depth in an MRU tree
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could not decrease from |h/2]. O

We can now prove Theorem [6]

Proof:[Proof of Theorem [f]] We analyze the access costs for
an arbitrary item v during the entire run of the algorithm. Let
t, be the time of the first request to u during the execution
of 0. Let dy be the first time that v was moved down by
MOVE-HALF. Then define ¢;, ¢ > 1 to be the first time after
time d;_; that u is requested. And let d; be the first time
after ¢; that v is moved down by MOVE-HALF. Assume that
the depth of w at time ¢; is L. Then according to Claim [T] its
depth at an MRU tree is |L/2]. Let t},t2,... ¢} denote all
the requests for u between ¢; and d;. A total of j requests to u
without any move down of v by MOVE-HALF. We can bound
the access cost of MOVE-HALF on these requests as follows.

If j=1itis L, if j > 1 then:

access(u, t,t))(MOVE-HALF) < L+ |L/2] + ... + | L/27 7]
<2L

On the other hand the access cost of an MRU algorithm for

the same set of requests is bounded as follows. If 7 =1 it is

|L/2], if j > 1 then,
access(u,t}, t7)(MRU)

IR RRLS

|L/2) +1+1+..+1

>
>|L/2]+j—-1>1L/2

Therefore, for each ¢ we have
access(u, t},t))(MOVE-HALF) <

access(u, t}, /) (MRU)

1Y Ve

This leads to the results that the total access cost for u in
MOVE-HALF is 4-competitive to the total access for u in an
MRU tree. Since this is true for each item in the sequence,
MOVE-HALF is 4-access competitive compared to an M RU
tree. O

Theorem 2: MOVE-HALF algorithm is dynamically optimal.

Proof:[Proof of Theorem 2]] Using Theorem [5] and Theo-
rem [0] MOVE-HALF is 16-access competitive. It is easy to
see from Algorithm |1 that total cost of MOVE-HALF’s tree
is 4 times the access cost. Considering these, MOVE-HALF is
64-competitive. (]

In the coming section we show techniques to maintain
MRU trees cheaply. This is another way to maintain dynamic
optimality.

VI. RANDOMIZED MRU TREES

The question of how, and if at all possible, to maintain
an MRU tree deterministically (where for each request o(*),
o). depth = |logo® .rank]) at low cost is still an open
problem. But, in this section we show that the answer is
affirmative with two relaxations: namely by using randomiza-
tion and approximation. We believe that the properties of the
algorithm we describe next may also find applications in other
settings, and in particular data structures like skip lists [22].

At the heart of our approach lies an algorithm to maintain a
constant approximation of the MRU tree at any time. First we
define MRU((3) trees for any constant £.

Definition 8 (MRU(B) Tree): A tree T is called an MRU(S3)
tree if it holds for any item u and any time that, u.dep =
|log u.rank| + 3.

Note that, any MRU(0) tree is also an MRU tree. In particular,
we prove in the following that a constant additive approximation
is sufficient to obtain dynamic optimality.

Theorem 7: Any online MRU(3) algorithm is 4(1 + (g})

access-competitive.
Proof: According to Theorem [5] MRU(0) trees are 4 access-
competitive. Here we only need to prove it for § > 0. Let
us consider an algorithm ON(S) that maintains an MRU(f3)
tree for some (3. For each request v that ON(/3) needs to serve,
if v.dep = k is an MRU tree, then ON(J) needs to pay, in
the worst case, k + 8 (while ON(0) will pay k). According to
ON(f3), the item of rank 1 is always at depth 0 and the item
of rank 2 is always at level 1. For every level k > 2, we have,
kE+8<(1+ [g])k For the special case of k = 1, the item
with rank 3 can also be at most at depth 2, so the formula
holds. Overall, using Theorem [5] we have:

cost(ON(B)) < (1 + [g])cost(ON(O)) <4(1+ (g})cost(OPT)

Hence ON is 4(1 + [g}) access-competitive. O

To efficiently achieve an MRU(f) tree, we propose the
RANDOM-PUSH strategy (see Algorithm [2)). This is a simple
randomized strategy which selects a random path starting at
the root, and then steps down the tree to depth k£ = wu.dep
(the accessed item depth), by choosing uniformly at random
between the two children of each server at each step. This
can be seen as a simple k-step random walk in a directed
version of the tree, starting from the root of the tree. Clearly,
the adjustment cost of RANDOM-PUSH is also proportional
to k and its actions are independent of any oblivious online
adversary. The main technical challenge of this section is
proving the following theorem.

Theorem 8: RANDOM-PUSH maintains an MRU(4) (Def-
inition [§) tree in expectation, i.e., the expected depth of the
item with rank r is less than logr + 3 < |logr]| + 4 for any
sequence o and any time ¢.

To analyze RANDOM-PUSH and eventually prove Theorem
[l we will define several random variables for an arbitrary o
and time ¢ (so we ignore them in the notation). W.l.o.g., let v
be the item with rank ¢ at time ¢ and let D (%) denote the depth
of v at time ¢. First we note that by induction, it can be shown
that the support of D(%) is the set of integers {0,1,...,7—1}.

To understand and upper bound D(i), we will use a Markov
chain M, over the integers 0,1,2...,¢7 — 1, which denote the
possible depths in the RANDOM-PUSH tree, see Figure [2] For
each depth in the chain 0 < j < i — 1, the probability to move
to depth j+1is 277, and the probability to stay at j, is 1—277,
for 7 =1 — 1; it is an absorbing state. This chain captures the
idea that the probability of an item at level j to be pushed
down the tree by a random walk (to level larger than j) is
277, The chain does not describe exactly our RANDOM-PUSH
algorithm and D(z), but we will use it to prove an upper bound
on D(3). First, we consider a random walk described exactly
by the Markov chain M; with an initial state 0. Let £(i, w)
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Fig. 2. The Markov chain M; that is used to prove Theorem [8] and Lemma [} possible depths for item of rank ¢ in the complete tree.

denote the random variable of the last state of a random walk
of length w on M;. Then we can show:

Lemma 2: The expected state of £(i,w) is such that
E[¢(i,w)] < [logw] + 1, and E[¢(i, w)] is concave in w.

To prove Lemma [2] we use the following corollary.

Corollary 1:

i=0
Proof:
2w\ w—1 - Y w\ w— 1 1
( )T (=) = )( )T (=)t
;<Z> w w ;(Z) w w
=2 (;m_ i)'(wz; 1)M(;)%
i=1 )
= w—1)! w—1 , ;1.
;(z—(l)! (w)—i)!( A

(substituting ¢ by 17 + 1)
1 1 w—1
_ ( N w) _1
w w
O

Proof:[Proof of Lemma [2]] First note that E[{(i,w)] is
strictly monotonic in w and can be shown to be concave using
the decreasing rate of increase: for wy < ws, E[¢(i,wq)] —
E[l(i, w1 — A)] > E[£(i,ws)] — E[£(i,wa — A)]. To bound
E[¢(i,w)], we consider the state of another random walk,
¢'(i,w), that starts on state k = [log w] in a modified chain
M. The modified chain M is identical to M; up to state k,
but for all states j > k, the probability to move to state j+1 is
< > 27" and the probability to stay at j is “=* < 1—-27%.So
clearly the walk on M/ makes faster progress than the walk on
M, from state £ onward. The expected progress of the walk on
M; which starts from state k, is now easier to bound and can
shown to be: E[¢/(i,w)] < Y77 (%) (55" () = 1.
But since £(i,w) starts at state 0, we have E[{(i,w)] <
Ell'(i,w)] <k+1=[logw] + 1. d

Next, in Lemma E], we bound the expected number of times
that v could potentially be pushed down by a random push,
i.e., the number of requests to items at a lower depth than v.
Later we will use this as the length w of the random walk on
M,;. But, to do so we first state the following lemma.

Lemma 3: For every o,t and i > j, we have that in
RANDOM-PUSH, E[D(i)] > E[D(j)].
Proof: Let u be an item with rank j < . Hence, it was
requested more recently than v (which has rank ). The
inequality follows from the fact that conditioning that v and
first reached the same depth (after the last request of u) then
by symmetry their expected progress of depth will be the same
from that point. More formally, let D,,,, be a random variable
that denotes the depth when «’s depth equals the depth of v
for the first time (since the last request of u where its depth is
set to 0); and —1 if this never happens. Then by the law of
total probability,

E[D(i)] = Ep,, [E[D(i) | Duv]]
i—1 i—1
= Y P(Duy=k) D> _L-P(D(i) =L | Dyy = k)
k=—1 £=0
(and similar for D(35)). But since the random walk (i.e., push)
is independent of the servers’ ranks, we have for k£ > 0 that
E[D(i) | Dyy = k] > E[D(j) | Dys = k]. But additionally
there is the possibility that they will never be at the same
depth (after the last request of u) and that v will always have a
higher depth, so E[D(i) | Dy, = —1] > E[D(j) | Dy» = —1].
The claim follows. O

Now, let WW; be a random variable that denotes the number
of requests for items with higher depth than v, since v’s last
request until time ¢. The following lemma bounds the number
of such requests.

Lemma 4: The expected number of requests for items with
higher depth than v, since v was last requested, is bounded by
E[W;] <2i—1.

Proof: We can divide WW; into two types of requests: W;”
requests for items with higher rank and depth than v at the
time of their request, and W, requests for items with lower
rank but higher depth than v at the time of their request. Then
W, =W; + WS=. Clearly W; < i since every such request
increases the rank of v and this happens ¢ times (note that
some of these requests may have lower depth than v). W< is
harder to analyze. How many requests for items are there that
have lower rank than v at the time of the request, but are below
v in the tree (i.e., have higher depth than v)? Note that such
requests do not increase v’s rank, but may increase its depth.
Let u be an item with rank j < 4, hence u was more recently
requested than v (maybe several times). Let X; denote the
number of requests for u (since v was last requested) in which
it had a higher depth than v. Then W = Z;;ll X;. We now
claim that E[X;] < 1. Assume by contradiction that E[X;] > 1.
But then this implies that we can construct a sequence o’ for
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which the expected depth of u will be larger than the expected
depth of v, contradicting Lemma |3} Putting it all together:

E(Wi] = E[W; + W-<]

—HEZX <z—|—ZIE ]<2i-1
(]

We recall some of the known results related to Stochastic
Domination [48]].

Definition 9 (Stochastic Domination): Let X and Y be two
random variables, not necessarily on the same probability space.
The random variable X is stochastically smaller than Y, denoted
by X X Y, if P[X > 2] < P[Y > 2] for every z € R. If
additionally P[X > z] < P[Y > z] for some z, then X is
stochastically strictly less than Y, denoted by X < Y.

Theorem 9 (Stochastic Order): Let X and Y be two random
variables, not necessarily on the same probability space.

1) Suppose X < Y. Then E[U (X)] < E[U(Y)] for any strictly

increasing function U.

2) Suppose X; < Y; and X5 < Yo, for four random variables
X1,Y1,Xo and Ys. Then aX; + bY; < aXs + bY, for any
two constants a,b > 0.

3) Suppose U is a non-decreasing function and X < Y then
UX) <U(®).

4) Given that X and Y follow the binomial distribution, i.e.,
X ~ Bn(ny,p1) and Y ~ Bn(nz,ps2), then X <Y if and
only if the following two conditions holds: (1 —p;)™ >
(1 —p2)™ and ny < no.

We now have all we need to prove Theorem [§] The proof
follows by showing that E[D(7)] < logi + 3.

Proof:[Proof of Theorem Let D(i,w) be a random
variable that denotes the depth of v conditioning that there are
w requests of items with higher depth than v, since the last
request for v. Note that by the total probability law, we have
that

SR U

Next we claim that D(¢,w) is stochastically less [48] than
£(i,w), denoted by D(i,w) =< £(i,w).

This is true since the transition probabilities (to increase
the depth) in the Markov chain M, are at least as high as
in the Markov chain that describes D(i,w). The probability
that a random walk to depth higher than v’s depth visits v
(and pushes it down) is exactly 277 where j is the depth
of v. Since D(i,w) =< £(i,w), it will then follow from
Theorem [9) that E[D (i, w)] < E[¢(i, w)]. Clearly we also have
Ew,E[D(i, W;)] < Ew,E[€(i, W;)]. Let f;(W;) = E[¢(i, W;)]
be a random variable which is a function of the random
variable W;. Recall that f;() is concave, then by Jensen’s
inequality [21]] and Lemma [] we get:

E[D(#)] = Ew, [E[D(i, Wi)]] < Ew, [E[£(i, W3)]]

= Ew,[fi(Wi)] < fi(BEWi]) < fi(2i — 1)
=E[((:,2i — 1)] < [log2i] +1 <logi+ 3

E[D(:)] = Ew, [E[D [D(i, W; =

Algorithm 2: RANDOM-PUSH (Upon access to « in
tree)

1: access s = u.host along tree branches
(cost: u.dep)

2: let v = sy.guest be the item at the current root

3: move u to the root server sy, setting s;.guest = u
(cost: u.dep)

4: employ RANDOM-PUSH to shift down v to depth s.dep
(cost: u.dep)

5: let w be the item at the end of the push-down path,
where w.dep = s.dep

6: move w to s, i.e., setting s.guest = w
(cost: u.dep x 2)

It now follows almost directly from Theorems [7] and [§] that
RANDOM-PUSH is dynamically optimal.

Theorem 3: The RANDOM-PUSH algorithm is dynamically
optimal on expectation.

Proof: Let the ¢-th requested item have rank 7;, then
the access cost is D(r;). According to the RANDOM-PUSH
(Algorithm [2), the total cost is 5.D(r;) which is five times the
access cost on the MRU(4) tree. Formally, using Theorem
and Theorem [§] the expected total cost is:

> 5D(m)1

i=1

t t
=5 RE[D(r;)] Zlogrz ) +3)
=1 i=1

<5 (llog(r;)| +4) <5 Z cost) (MRU(4))
< 5 cost(MRU(4)) = 60 - cost(OPT)

E [cost(RANDOM-PUSH)| = E

VIL

In this section, we provide an example how our algorithms
work on actual requests. Recall the definition of the working
set and the rank of an item. We consider a complete binary
tree of 15 servers hosting 15 items such that initially server
7 hosts item 7. In our initial configuration item 1 is at the
root of the tree and for any internal item (node) i, its left
child is item 2¢ and right child is item 2¢ + 1. This initial
configuration is obtained by serving a request sequence of
items (1,2,---,15) . Accordingly the working set for item j
is {1,2,---,7 — 1,7} and hence the rank of item j is j. If
item ¢ has rank j, we denote it by (7, j). See Figure [3|(a)) for
the initial configuration of the tree. First we show an example
for MOVE-HALF (Algorithm [T)).

Working of MOVE-HALF (Algorithm [I): Consider the initial
configuration mentioned above and assume the next three
requests are for items 10, 15, 15. Consider the request 10. Note
that the ranks of items 1 to 9 increase by 1 each, as 10 is added
to the working set of each of them. As the working set of 10
becomes {10}, its rank becomes 1. Observe that, for items 11 to

WORKING EXAMPLES OF OUR ALGORITHMS
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15, the rank remains the same as 10 was already present in the
working sets according to our initial configuration. Before the
request, item 10 was at depth 3, so according to the algorithm,
it needs to swap place with the highest-ranked item at depth
L%J which is item 3. Figure [3| (b) shows the new configuration
after the swap, and the path between items 10 and 3. Next
item 15 is requested. The ranks of items 1 to 14 increase by 1
each, as 15 is added to the working set of each of them. The
working set of 15 becomes {15}, so its rank becomes 1. Item
15 was at depth 3 before the request and hence it changes
position with item 2 which was the highest-ranked item at
depth 1 as shown in Figure ] (a). Finally, item 15 is requested
again. Since no new item is added to any of the items’ working
sets, the rank remains the same for all items. However, item
15 changes position with item 1 by moving up from depth 1
to depth O (see Figure [] (b)).

Working of RANDOM-PUSH(Algorithm [2): We consider the
same initial configuration (see Figure E] (a)). Let us assume
that item 10 which is at depth 3, is the next request we need
to serve. As before, the rank of 10 becomes 1 and the ranks
of all items from 1 to 9 increase by 1. The other ranks remain
the same. Algorithm RANDOM-PUSHpushes the item that is
at the root (item 1 in this case) along a random path from
the root to depth 3. Figure [5] presents on example where the
random path ended at item 9 so item 1 moves down to depth
1, item 2 moves down to depth 2, item 4 moves down to depth
3 and item 4 occupies the server where item 9 was hosted.
Now item 9 moves to the server which hosted item 10 at the
same depth 3 (since the host server of item 10 is vacated) and
item 10 is moved to the root of the tree where item 1 was
hosted (shown using red curved lines in Figure [5). Note that,
the items position changes do not happen along the curved
paths in the figure; these changes happen along the tree edges
only using swaps.

VIII. RELATED WORK

Given the explosive growth of communication traffic, great
efforts have been made over the last years to improve the
efficiency and performance of networks, especially in the
context of datacenters. While traditionally, datacenter network
topologies are static and oblivious to the traffic they serve [1],
(3101, (38, (391, [41]], [49], [50], [57], emerging reconfigurable

optical technologies enable more dynamic topologies [27]], [32].

Dynamic but demand-oblivious topologies such as RotorNet,
Opera and Sirius [13]], [43], [44] provide periodic direct
connectivity which saves bandwidth and can significantly
improve throughput; dynamic and demand-aware topologies
such as ProjecToR [29]], [40], ReNets [[12]], SplayNets [46],
[47] as well as many others [8], [20], [25], [26], [29], [33],
[341], 1360, [S1], [54], [59] allow to optimize the topology even
further, e.g., to optimally serve elephant flows. It has recently
been demonstrated by the Cerberus architecture [[30] that the
best topology is often a combination of these technologies,
which depends on the traffic pattern.

Our focus in this paper is on such dynamic demand-aware
topologies. In particular, we follow the approach by Avin et
al. who showed that efficient demand-aware networks can be

built from ego-trees [7], [9], [12], [45]. However, so far it
is only known how to build such demand-aware networks
that provide static optimality guarantees [12]. With this paper,
we presented a building block for competitive demand-aware
networks, a constant-competitive ego-tree, which can be used
to enhance existing systems such as ReNets [12].

The self-adjusting tree networks considered in this paper
feature an interesting connection to self-adjusting datastruc-
tures. Interestingly, while we have shown in this paper that
dynamically optimal algorithms for tree networks exist, the
quest for constant competitive online algorithms for binary
search trees remains a major open problem [53]. Nevertheless,
there are self-adjusting binary search trees that are known to be
access optimal [14]], but their rearrangement cost it too high.

In the following, we review this related work on datastruc-
tures in more details.

Dynamic List Update: Linked List (LL). The dynamically
optimal linked list datastructure is a seminal [52] result in the
area: algorithms such as Move-To-Front (MTF), which moves
each accessed item to the front of the list, are known to be
2-competitive, which is optimal [2]], [5], [52]. We note that the
Move-To-Front algorithm results in the Most Recently Used
property where items that were more recently used are closer
to the head of the list. The best known competitive ratio for
randomized algorithms for LLs is 1.6, which almost matches
the randomized lower bound of 1.5 [4]], [55].

Binary Search Tree (BST). In contrast to CTs, self-
adjustments in BSTs are based on rotations (which are
assumed to have unit cost). While BSTs have the working set
property, we are missing a matching lower bound: the Dynamic
Optimality Conjecture, the question whether splay trees [53|]
are dynamically optimal, continues to puzzle researchers even
in the randomized case [3]]. On the positive side, over the last
years, many deep insights into the properties of self-adjusting
BSTs have been obtained [[19], including improved (but non-
constant) competitive ratios [|16], regarding weaker properties
such as working sets, static, dynamic, lazy, and weighted,
fingers, regarding pattern-avoidance [18], and so on. It is also
known (under the name dynamic search-optimality) that if the
online algorithm is allowed to make rotations for free after
each request, dynamic optimality can be achieved [14]. Known
lower bounds are by Wilber [56], by Demaine et al. [23]’s
interleaves bound (a variation), and by Derryberry et al. [24]]
(based on graphical interpretations). It is not known today
whether any of these lower bounds is tight.

Unordered Tree (UT). We are not the first to consider
unordered trees and it is known that existing lower bounds
for (offline) algorithms on BSTs also apply to UTs that use
rotations: Wilber’s theorem can be generalized [28]]. However,
it is also known that this correspondance between ordered and
unordered trees no longer holds under weaker measures such
as key independent processing costs and in particular lacono’s
measure [35]: the expected cost of the sequence which results
from a random assignment of keys from the search tree to the
items specified in an access request sequence. lacono’s work is
also one example of prior work which shows that for specific
scenarios, working set and dynamic optimality properties are
equivalent. Regarding the current work, we note that the
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Fig. 3. (a) Initially each server ¢ hosts item ¢ with rank 7, denoted by (%,%). (b) Item 10 is requested in the sequence. The red path shows the exchange of the

position of item 10 with the highest-ranked item at depth 1, i.e., item 3.
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14,15 24 8,10 9,11 3,5

11,12 12,13 13,14
(b)

14,15 2.4

Fig. 4. (a) Item 15 is requested in the online sequence. The red path shows the exchange of position of item 15 with the highest ranked item at depth 1, i.e.,
item 2. (b) Again 15 comes up in the online sequence. The red path shows the exchange of position of item 15 with the highest-ranked item at depth 0, i.e.,

item 1.

88 9.9 10,10 11,11 12,12 13,13
(a)

14,14

15,15 8,9 4.5

9,10 11,11 12,12 13,13
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14,14 15,15

Fig. 5. (a) Initially each server ¢ hosts item 4 with rank ¢ and it is denoted by (¢, ). (b) Item 10 is requested in the online sequence. Red path along the tree
edges shows the random push and curve paths indicate movement of item 9 to the position of item 10 and of item 10 to the root.

reconfiguration operations in UTs are more powerful than the
swapping operations considered in our paper: a rotation allows
to move entire subtrees at unit costs, while the corresponding
cost in CTs is linear in the subtree size. We also note that in
our model, we cannot move freely between levels, but moves
can only occur between parent and child. In contrast to UTs,
CTs are bound to be balanced.

Skip List (SL) and B-Trees (BT). Intriguingly, although SLs
and BSTs can be transformed to each other [22], Bose et
al. [[17]] were able to prove dynamic optimality for (a restricted
kind of) SLs as well as BTs. Similarly to our paper, the authors
rely on a connection between dynamic optimality and working
set: they show that the working set property is sufficient for

their restricted SLs (for BSTs, it is known that the working
set is an upper bound, but it is not known yet whether it is
also a lower bound). However, the quest for proving dynamic
optimality for general skip lists remains an open problem: two
restricted types of models were considered in [17], bounded
and weakly bounded. In the bounded model, the adversary
can never forward more than B times on a given skip list
level, without going down in the search; and in the weakly
bounded model, the first ¢ highest levels contain no more than
Z;:o B items. Optimality only holds for constant B. The
weakly bounded model is related to a complete B-ary tree
(similar to our complete binary tree), but there is no obvious or
direct connection between our result and the weakly bounded
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optimality. Due to the relationship between SLs and BSTs,
a dynamically optimal SL would imply a working set lower
bound for BST. Moreover, while both in their model and ours,
proving the working set property is key, the problems turn out
to be fundamentally different. In contrast to SLs, CTs revolve
around unordered (and balanced) trees (that do not provide a
simple search mechanism), rely on a different reconfiguration
operation (i.e., swapping or pushing an item to its parent comes
at unit cost), and, as we show in this paper, actually provide
dynamic optimality for their general form. Finally, we note
that [[17] (somewhat implicitly) also showed that a random
walk approach can achieve the working set property; in our
paper, we show that the working set property can even be
achieved deterministically and without maintaining MRU.
Heaps and Paging. More generally, our work is also reminis-
cent of online paging models for hierarchies of caches [58]],
which aim to keep high-capacity nodes resp. frequently
accessed items close to each other, however, without accounting
for the reconfiguration cost over time. Similar to the discussion
above, self-adjusting CT's differ from paging models in that in
our model, items cannot move arbitrarily and freely between
levels (but only between parent and child at unit cost).

IX. CONCLUSION

Our paper opens interesting avenues for future research.
On the theoretical front, it remains to determine the (non-
asymptotical) optimal competitive ratio, either by closing the
gap with a matching lower bound, or by improving our upper
bound. On the practical front, it would be interesting to evaluate
the performance of our algorithms when used to support (as
ego-trees) existing networks such as ReNets. In this context
and also more generally, it would further be interesting to study
the empirical competitive ratio achieved by our algorithms for
existing benchmarks and under realistic workloads. The latter
will also require a methodological contribution, as the offline
problem is not well-understood and computing the optimal
offline solution seems computationally complex.
Acknowledgments. Research supported by the European
Research Council (ERC), grant agreement No. 864228 (Ad-
justNet), Horizon 2020, 2020-2025.
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