
1

Robust Routing Made Easy:
Reinforcing Networks Against Non-Benign Faults

Christoph Lenzen1 Moti Medina2 Mehrdad Saberi3 Stefan Schmid4
1CISPA Helmholtz Center for Information Security, Germany 2Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel

3University of Maryland, College Park, USA 4TU Berlin, Germany

Abstract—With the increasing scale of communication net-
works, the likelihood of failures grows as well. Since these
networks form a critical backbone of our digital society, it is
important that they rely on robust routing algorithms which
ensure connectivity despite such failures. While most modern
communication networks feature robust routing mechanisms,
these mechanisms are often fairly complex to design and verify,
as they need to account for the effects of failures and rerouting
on communication.

This paper conceptualizes the design of robust routing mech-
anisms, with the aim to avoid such complexity. In particular,
we showcase simple and generic blackbox transformations that
increase resilience of routing against independently distributed
failures, which allows to simulate the routing scheme on the
original network, even in the presence of non-benign node
failures (henceforth called faults). This is attractive as the system
specification and routing policy can simply be preserved.

We present a scheme for constructing such a reinforced
network, given an existing (synchronous) network and a routing
scheme. We prove that this algorithm comes with small constant
overheads, and only requires a minimal amount of additional
node and edge resources; in fact, if the failure probability is
smaller than 1/n, the algorithm can come without any overhead
at all. At the same time, it allows to tolerate a large number
of independent random (node) faults, asymptotically almost
surely. We complement our analytical results with simulations
on different real-world topologies.

I. INTRODUCTION

Communication networks have become a critical back-
bone of our digital society. For example, many datacentric
applications related to entertainment, social networking, or
health, among others, are distributed and rely on the high
availability and dependability of the interconnecting network
(e.g., a datacenter network or a wide-area network). At the
same time, with the increasing scale of today’s distributed
and networked systems (often relying on commodity hardware
as a design choice [2], [7], [26]), the number of failures is
likely to increase as well [27], [28], [32], [45], [46]. It is
hence important that communication networks can tolerate
such failures and remain operational despite the failure of
some of their components.

Robust routing mechanisms aim to provide such guaran-
tees: by rerouting traffic quickly upon failures, reachability
is preserved. Most communication networks readily feature
robust routing mechanisms, in the control plane (e.g. [24],

Research supported by the Federal Ministry of Education and Research
(BMBF), grant 16KISK020K, 2021-2025. This article extends work presented
at SSS 2017 [42].

[25], [29], [48]), in the data plane (e.g. [6], [33], [44], [49]),
as well as on higher layers (e.g. [4]). However, the design
of such robust routing mechanisms is still challenging and
comes with tradeoffs, especially if resilience should extend to
multiple failures [12].

Besides a fast reaction time and re-establishing connectivity,
the resulting routes typically need to fulfill certain additional
properties, related to the network specification and policy. En-
suring such properties however can be fairly complex, as pack-
ets inevitably follow different paths after failures. Interestingly,
while the problem of how to re-establish reachability after
failures is well explored, the problem of providing specific
properties on the failover paths is much less understood.

This paper conceptualizes the design of robust routing,
presenting a new approach to robust routing which concep-
tually differs significantly from existing literature by relying
on proactive reinforcement (rather than reaction to failures).
In particular, our approach aims to overcome the complexities
involved in designing robust routing algorithms, by simply
sticking to the original network and routing specification. To
achieve this, our approach is to mask the effects of failures us-
ing redundancy: in the spirit of error correction, we proactively
reinforce networks by adding a minimal number of additional
nodes and links, rather than coping with failed components
when they occur. The latter is crucial for practicability: sig-
nificant refactoring of existing systems and/or accommodating
substantial design constraints is rarely affordable.

In this paper, to ensure robustness while maintaining the
network and routing specification, we aim to provide a high
degree of fault-tolerance, which goes beyond simple equip-
ment and failstop failures, but accounts for more general faults
which include non-benign failures of entire nodes.

While our approach presented in this paper will be general
and applies to any network topology, we are particularly inter-
ested in datacenter networks (e.g., based on low-dimensional
hypercubes or d-dimensional tori [30], [41]) as well as in wide-
area networks (which are typically sparse [59]). We will show
that our approach works especially well for these networks.

A. The Challenge
More specifically, we are given a network G = (V,E) and a

routing scheme, i.e., a set of routes in G. We seek to reinforce
the network G by allocating additional resources, in terms
of nodes and edges, and to provide a corresponding routing
strategy to simulate the routing scheme on the original network
despite non-benign node failures.

2

The main goal is to maximize the probability that the
network withstands failures (in particular, random failures of
entire nodes), while minimizing the resource overhead. Fur-
thermore, we want to ensure that the network transformation is
simple to implement, and that it interferes as little as possible
with the existing system design and operation, e.g., it does not
change the reinforced system’s specification.

Toward this goal, in this paper, we make a number of
simplifying assumptions. First and most notably, we assume
independent failures, that is, we aim at masking faults with
little or no correlation among each other. Theoretically, this
is motivated by the fact that guaranteeing full functionality
despite having f adversarially placed faults trivially requires
redundancy (e.g., node degrees) larger than f . There is also
practical motivation to consider independent faults: many
distributed systems proactively avoid fault clusters [19], [58]
and there is also empirical evidence that in certain scenarios,
failures are only weakly correlated [40].

Second, we treat nodes and their outgoing links as fault-
containment regions (according to [37]), i.e., they are the basic
components our systems are comprised of. This choice is made
for the sake of concreteness; similar results could be obtained
when considering, e.g., edge failures, without changing the
gist of results or techniques. With these considerations in
mind, the probability of uniformly random node failures that
the reinforced system can tolerate is a canonical choice for
measuring resilience.

Third, we focus on synchronous networks, for several
reasons: synchrony not only helps in handling faults, both
on the theoretical level (as illustrated by the famous FLP
theorem [21]) and for ensuring correct implementation, but
it also simplifies presentation, making it easier to focus on
the proposed concepts. In this sense, we believe that our
approach is of particular interest in the context of real-time
systems, where the requirement of meeting hard deadlines
makes synchrony an especially attractive choice.

B. Contributions and Techniques

This paper proposes a novel and simple approach to robust
routing, which decouples the task of designing a reinforced
network from the task of designing a routing scheme over
the input network. By virtue of this decoupling, our approach
supports arbitrary routing schemes and objectives, from load
minimization to throughput maximization and beyond, in
various models of computation, e.g., centralized or distributed,
randomized or deterministic, online or offline, or oblivious.

We first consider a trivial approach: we simply replace each
node by ℓ ∈ N copies and for each edge we connect each pair
of copies of its endpoints, where ℓ is a constant.1 Whenever
a message would be sent over an edge in the original graph,
it should be sent over each copy of the edge in the reinforced
graph. If not too many copies of a given node fail, this enables
each receiving copy to recover the correct message. Thus, each
non-faulty copy of a node can run the routing algorithm as if it
were the original node, guaranteeing that it has the same view

1Choosing concreteness over generality, we focus on the, in our view, most
interesting case of constant ℓ. It is straightforward to generalize the analysis.

of the system state as its original in the corresponding fault-
free execution of the routing scheme on the original graph.

When analyzing this approach, we observe that asymptoti-
cally almost surely (a.a.s., with probability 1− o(1)) and with
ℓ = 2f + 1, this reinforcement can sustain an independent
probability p of f Byzantine node failures [51], for any
p ∈ o(n−1/(f+1)), i.e., f nodes may violate the protocol in
any arbitrary way (and may hence also collude). This threshold
is sharp up to (small) constant factors: for p ∈ ω(n−1/(f+1)),
a.a.s. there is some node for which all of its copies fail. If we
restrict the fault model to omission faults (faulty nodes may
skip sending some messages but otherwise act according to the
protocol), ℓ = f + 1 suffices. The cost of this reinforcement
is that the number of nodes and edges increase by factors of ℓ
and ℓ2, respectively. Therefore, already this simplistic solution
can support non-crash faults of probability p ∈ o(1/

√
n) at a

factor-4 overhead.
We note that the simulation introduces no large computa-

tional overhead and does not change the way the system works,
enabling to use it as a blackbox. Also randomized algorithms
can be simulated in a similar fashion, provided that all copies
of a node have access to a shared source of randomness. Note
that this requirement is much weaker than globally shared
randomness: it makes sense to place the copies of a node in
physical proximity to approximately preserve the geometrical
layout of the physical realization of the network topology.

Our approach above raises the question whether we can
reduce the involved overhead further. In this paper, we will
answer this question positively: We propose to apply the above
strategy only to a small subset E′ of the edge set. Denoting
by v1, . . . , vℓ the copies of node v ∈ V , for any remaining
edge {v, w} ∈ E \ E′ we add only edges {vi, wi}, i ∈ [ℓ],
to the reinforced graph. The idea is to choose E′ in a way
such that the connected components induced by E \ E′ are
of constant size, yet |E′| = ε|E|. This results in the same
asymptotic threshold for p, while the number of edges of
the reinforced graph drops to ((1 − ε)ℓ + εℓ2)|E|. For any
constant choice of ε, we give constructions with this property
for grids or tori of constant dimension and minor-free graphs
of bounded degree. Again, we consider the case of f = 1 of
particular interest: in many typical network topologies, we can
reinforce the network to boost the failure probability that can
be tolerated from Θ(1/n) to Ω(1/

√
n) by roughly doubling

(omission faults) or tripling (Byzantine faults) the number of
nodes and edges.

The redundancy in this second construction is near-optimal
under the constraint that we want to simulate an arbitrary
routing scheme in a blackbox fashion, as it entails that we
need a surviving copy of each edge, and thus in particular
each node. In many cases, the paid price will be smaller than
the price for making each individual component sufficiently
reliable to avoid this overhead. Furthermore, we will argue that
the simplicity of our constructions enables us to re-purpose the
redundant resources in applications with less strict reliability
requirements.

Our results show that while approach is general and can be
applied to any existing network topology (we will describe
and analyze valid reinforcements for our faults models on

3

general graphs), it can be refined and is particularly interesting
in the context of networks that admit suitable partitionings.
Such networks include sparse, minor-free graphs, which are
practically relevant topologies in wide-area networks, as well
as torus graphs and low-dimensional hypercubes, which arise
in datacenters and parallel architectures.

To complement our theoretical findings and investigate the
reinforcement cost in real networks, we conducted experiments
on the Internet Topology Zoo [36]. We find that our approach
achieves robustness at significantly lower cost compared to
the naive replication strategy often employed in dependable
networks.

C. Putting Things Into Perspective

In contrast to much existing robust routing literature on
reactive approaches to link failures [11] (which come with
a delay), we consider a proactive approach by enhancing the
network with redundancy. Our proactive approach also allows
us to replicate the routing scheme (and hence the network
policy) on the new network. In particular, we show that if
the failure probability is smaller than 1/n, there is a good
probability that our approach works even without any overhead
at all. Furthermore, there are two ways in which our system
can be used. One approach is to replicate the entire node
(including the compute part), and then forward the traffic to
its two associated peers. Alternatively, traffic can also simply
be replicated to multiple NICs, without additional compute
requirements, depending on the failure model. More generally,
our contribution can also be seen more abstractly and the
robust routing happen on a logical level, depending on the
failure scenario. Also, we show that in the absence of a valid
message, it can simply be ignored, as the rest of the system
continues to perform

The most closely related work to ours is NetCo [20], which
also relies on network reinforcement and can handle malicious
behavior. NetCo is is based on a robust combiner concept
known from cryptography, and complements each router with
two additional routers. Using software-defined networking,
traffic is replicated across the three (untrusted) devices and
then merged again, using a consensus algorithm. While a
high degree of robustness is achieved, the three-fold overhead
is significant. More importantly, however, in contrast to our
approach, Netco requires special hardware for splitting and
merging the traffic; while the functionality of this hardware
can be simple, it still needs to be trusted. The consensus
requirement dramatically reduces the throughput, as shown in
the empirical evaluation of NetCo in [20].

Our solution does not require such components and is hence
not only more practical but also significantly more performant.

D. Organization

In § II, we sketch the properties of our approach and state
a number of potential applications. In § III, we formalize
the fault models that we tackle in this article alongside the
notion of a valid reinforcement and its complexity measures.
In § IV and § V, we study valid reinforcements on general
graphs, and in § VI, we study more efficient reinforcements

for specific graphs. We complement our analytical results with
an empirical simulation study in § VII. In § VIII we raise a
number of points in favor of the reinforcement approach. We
review related work in § IX, and we conclude and present a
number of interesting follow-up questions in § X.

II. HIGH-LEVEL OVERVIEW: REINFORCING NETWORKS

Let us first give an informal overview of our blackbox trans-
formation for reinforcing networks (for formal specification
see § III), as well as its guarantees and preconditions.

a) Assumptions on the Input Network: We have two main
assumptions on the network at hand: (1) We consider syn-
chronous routing networks, and (2) each node in the network
(alongside its outgoing links) is a fault-containment region,
i.e., it fails independently from other nodes. We do not make
any assumptions on the network topology, but will provide
specific optimizations for practically relevant topologies (such
as sparse, minor-free networks or hypercubes) in § VI.

b) Valid Reinforcement Simulation Guarantees: Our re-
inforcements create a number of copies of each node. We have
each non-faulty copy of a node run the routing algorithm as
if it were the original node, guaranteeing that it has the same
view of the system state as its original in the corresponding
fault-free execution of the routing scheme on the original
graph. Moreover, the simulation fully preserves all guarantees
of the schedule, including its timing, and introduces no big
computational overhead. This assumption is simple to meet in
stateless networks, while it requires synchronization primitives
in case of stateful network functions.

c) Unaffected Complexity and Cost Measures: Routing
schemes usually revolve around objective functions such as
load minimization, maximizing the throughput, minimizing the
latency, etc., while aiming to minimize complexity related to,
e.g., the running time for centralized algorithms, the number
of rounds for distributed algorithms, the message size, etc.
Moreover, there is the degree of uncertainty that can be sus-
tained, e.g., whether the input to the algorithm is fully available
at the beginning of the computation (offline computation) or
revealed over time (online computation). Our reinforcements
preserve all of these properties, as they operate in a blackbox
fashion. For example, our machinery readily yields various
fault-tolerant packet routing algorithms in the Synchronous
Store-and-Forward model by Aiello et. al [1]. More specif-
ically, from [16] we obtain a centralized deterministic online
algorithm on unidirectional grids of constant dimension that
achieves a competitive ratio which is polylogarithmic in the
number of nodes of the input network w.r.t. throughput maxi-
mization. Using [17] instead, we get a centralized randomized
offline algorithm on the unidirectional line with constant
approximation ratio w.r.t. throughput maximization. In the
case that deadlines need to be met the approximation ratio is,
roughly, O(log∗ n) [56]. As a final example, one can obtain
from [5] various online distributed algorithms with sublinear
competitive ratios w.r.t. throughput maximization.

d) Cost and Gains of the Reinforcement: The price of
adding fault-tolerance is given by the increase in the network
size, i.e., the number of nodes and edges of the reinforced

4

network in comparison to the original one. Due to the assumed
independence of node failures, it is straightforward to see that
the (uniform) probability of sustainable node faults increases
roughly like n−1/(f+1) in return for (i) a linear-in-f increase
in the number of nodes and (ii) an increase in the number of
edges that is quadratic in f . We then proceed to improve the
construction for grids and minor-free constant-degree graphs
to reduce the increase in the number of edges to being roughly
linear in f . Based on this information, one can then assess the
effort in terms of these additional resources that is beneficial,
as less reliable nodes in turn are cheaper to build, maintain,
and operate. We also note that, due to the ability of the
reinforced network to ensure ongoing unrestricted operability
in the presence of some faulty nodes, faulty nodes can be
replaced or repaired before communication is impaired or
breaks down.

e) Preprocessing: Preprocessing is used, e.g., in com-
puting routing tables in Oblivious Routing [55], [57]. The
reinforcement simply uses the output of such a preprocessing
stage in the same manner as the original algorithm. In other
words, the preprocessing is done on the input network and its
output determines the input routing scheme. In particular, the
preprocessing may be randomized and does not need to be
modified in any way.

f) Randomization: Randomized routing algorithms can
be simulated as well, provided that all copies of a node have
access to a shared source of randomness. We remark that,
as our scheme locally duplicates the network topology, it is
natural to preserve the physical realization of the network
topology in the sense that all (non-faulty) copies of a node are
placed in physical proximity. This implies that this constraint
is much easier to satisfy than globally shared randomness.

III. PRELIMINARIES

We consider synchronous routing networks. Formally, the
network is modeled as a directed graph G = (V,E), where
V is the set of n ≜ |V | vertices, and E is the set of m ≜
|E| edges (or links). Each node maintains a state, based on
which it decides in each round for each of its outgoing links
which message to transmit. We are not concerned with the
inner workings of the node, i.e., how the state is updated;
rather, we assume that we are given a scheduling algorithm
performing the task of updating this state and use it in our
blackbox transformations. In particular, we allow for online,
distributed, and randomized algorithms.

a) Probability-p Byzantine Faults Byz(p): The set of
faulty nodes F ⊆ V is determined by sampling each v ∈ V
into F with independent probability p. Nodes in F may
deviate from the protocol in arbitrary ways, including delaying,
dropping, or forging messages, etc.

b) Probability-p Omission Faults Om(p): The set of
faulty nodes F ⊆ V is determined by sampling each v ∈ V
into F with independent probability p. Nodes in F may deviate
from the protocol by not sending a message over an outgoing
link when they should. We note that it is sufficient for this
fault model to be satisfied logically. That is, as long as a
correct node can identify incorrect messages, it may simply

drop them, resulting in the same behavior of the system at all
correct nodes as if the message was never sent.

c) Simulations and Reinforcement: For a given network
G = (V,E) and a scheduling algorithm A, we will seek
to reinforce (G,A) by constructing G′ = (V ′, E′) and
scheduling algorithm A′ such that the original algorithm A
is simulated by A′ on G′, where G′ is subject to random node
failures. We now formalize these notions. First, we require that
there is a surjective mapping P : V ′ → V ; fix G′ and P , and
choose F ′ ⊆ V ′ randomly as specified above.

Definition 1 (Simulation under Byz(p)). Assume that in each
round r ∈ N, each v′ ∈ V ′ \F ′ is given the same input by the
environment as P (v′). A′ is a simulation of A under Byz(p),
if for each v ∈ V , a strict majority of the nodes v′ ∈ V ′ with
P (v′) = v computes in each round r ∈ N the state of v in
A in this round. The simulation is strong, if not only for each
v ∈ V there is a strict majority doing so, but all v′ ∈ V ′ \F ′

compute the state of P (v′) in each round.

Definition 2 (Simulation under Om(p)). Assume that in each
round r ∈ N, each v′ ∈ V ′ is given the same input by the
environment as P (v′). A′ is a simulation of A under Om(p),
if for each v ∈ V , there is v′ ∈ V ′ with P (v′) = v that
computes in each round r ∈ N the state of v in A in this
round. The simulation is strong, if each v′ ∈ V ′ computes the
state of P (v′) in each round.

Definition 3 (Reinforcement). A (strong) reinforcement of a
graph G = (V,E) is a graph G′ = (V ′, E′), a surjective
mapping P : V ′ → V , and a way of determining a scheduling
algorithm A′ for G′ out of scheduling algorithm A for G. The
reinforcement is valid under the given fault model (Byz(p) or
Om(p)) if A′ is a (strong) simulation of A a.a.s.

Resources and Performance Measures.: We use the fol-
lowing performance measures.

(i) The probability p of independent node failures that can
be sustained a.a.s.

(ii) The ratio ν ≜ |V ′|/|V |, i.e., the relative increase in the
number of nodes.

(iii) The ratio η ≜ |E′|/|E|, i.e., the relative increase in the
number of edges.

We now briefly discuss, from a practical point of view, why we
do not explicitly consider further metrics that are of interest.

Other Performance Measures

• Latency: As our reinforcements require (time-preserving)
simulation relations, in terms of rounds, there is no
increase in latency whatsoever. However, we note that
(i) we require all copies of a node to have access to the
input (i.e., routing requests) of the simulated node and (ii)
our simulations require to map received messages in G′ to
received messages of the simulated node in G. Regarding
(i), recall that it is beneficial to place all copies of a node
in physical vicinity, implying that the induced additional
latency is small. Moreover, our constructions naturally
lend themselves to support redundancy in computations
as well, by having each copy of a node perform the

5

tasks of its original; in this case, (i) comes for free.
Concerning (ii), we remark that the respective operations
are extremely simple; implementing them directly in
hardware is straightforward and will have limited impact
on latency in most systems.

• Bandwidth/link capacities. We consider the uniform set-
ting in this work. Taking into account how our simula-
tions operate, one may use the ratio η as a proxy for this
value.

• Energy consumption. Regarding the energy consumption
of links, the same applies as for bandwidth. The energy
nodes use for routing computations is the same as in the
original system, except for the overhead induced by Point
(ii) we discussed for latency. Neglecting the latter, the
energy overhead is in the range [min{ν, η},max{ν, η}].

• Hardware cost. Again, neglecting the computational over-
head of the simulation, the relative overhead lies in the
range [min{ν, η},max{ν, η}]

In light of these considerations, we focus on p, ν, and η as key
metrics for evaluating the performance of our reinforcement
strategies.

IV. STRONG REINFORCEMENT UNDER BYZ(p)

We now present and analyze valid reinforcements under
Byz(p) for our faults model on general graphs. Given are the
input network G = (V,E) and scheduling algorithm A. Fix a
parameter f ∈ N and set ℓ = 2f + 1.

a) Reinforced Network G′: We set V ′ ≜ V × [ℓ], where
[ℓ] ≜ {1, . . . , ℓ}, and denote vi ≜ (v, i). Accordingly, P (vi) ≜
v. We define E′ ≜ {(v′, w′) ∈ V ′×V ′ | (P (v′), P (w′)) ∈ E}.

b) Strong Simulation A′ of A: Consider node v′ ∈ V ′ \
F ′. We want to maintain the invariant that in each round, each
such node has a copy of the state of v = P (v′) in A. To this
end, v′

(1) initializes local copies of all state variables of v as in A,
(2) sends on each link (v′, w′) ∈ E′ in each round the

message v would send on (P (v′), P (w′)) when executing
A, and

(3) for each neighbor w of P (v′) and each round r, updates
the local copy of the state of A as if v received the message
that has been sent to v′ by at least f + 1 of the nodes w′

with P (w′) = w (each one using edge (w′, v′)).
Naturally, the last step requires such a majority to exist;
otherwise, the simulation fails. We show that A′ can be
executed and simulates A provided that for each v ∈ V , no
more than f of its copies are in F ′.

Lemma 1. If for each v ∈ V , |{vi ∈ F ′}| ≤ f , then A′

strongly simulates A.

Proof. We show the claim by induction on the round number
r ∈ N, where we consider the initialization to anchor the
induction at r = 0. For the step from r to r+ 1, observe that
because all v′ ∈ V ′ \ F ′ have a copy of the state of P (v′)
at the end of round r by the induction hypothesis, each of
them can correctly determine the message P (v′) would send
over link (v, w) ∈ E in round r + 1 and send it over each
(v′, w′) ∈ E with P (w′) = w. Accordingly, each v′ ∈ V ′ \F ′

receives the message A would send over (w, v) ∈ E from each
w′ ∈ V ′ \ F ′ with P (w′) = w (via the link (w′, v′)). By the
assumption of the lemma, we have at least ℓ−f = f +1 such
nodes, implying that v′ updates the local copy of the state of
A as if it received the same messages as when executing A in
round r + 1. Thus, the induction step succeeds and the proof
is complete.

c) Resilience of the Reinforcement: We now examine
how large the probability p can be for the precondition of
Lemma 1 to be satisfied a.a.s.

Theorem 1. If p ∈ o(n−1/(f+1)), the above construction
is a valid strong reinforcement for the fault model Byz(p).
If G contains Ω(n) nodes with non-zero outdegree, p ∈
ω(n−1/(f+1)) implies that the reinforcement is not valid.

Proof. By Lemma 1, A′ strongly simulates A if for each v ∈
V , |{vi ∈ F ′}| ≤ f . If p ∈ o(n−1/(f+1)), using ℓ = 2f + 1
and a union bound we see that the probability of this event is
at least

1− n

2f+1∑
j=f+1

(
2f + 1

j

)
pj(1− p)2f+1−j

≥ 1− n

2f+1∑
j=f+1

(
2f + 1

j

)
pj

≥ 1− n

(
2f + 1

f + 1

)
pf+1

f∑
j=0

pj

≥ 1− n(2e)f · p
f+1

1− p
= 1− o(1).

Here, the second to last step uses that
(
a
b

)
≤ (ae/b)b and the

final step exploits that p ∈ o(n−1/(f+1)).
For the second claim, assume w.l.o.g. p ≤ 1/3, as increasing

p further certainly increases the probability of the system to
fail. For any v ∈ V , the probability that |{vi ∈ F ′}| > f is
independent of the same event for other nodes and larger than(

2f + 1

f + 1

)
pf+1(1− p)f ≥

(
3

2

)f

pf+1(1− p)f ≥ pf+1,

since
(
a
b

)
≥ (a/b)b and 1 − p ≥ 2/3. Hence, if G contains

Ω(n) nodes v with non-zero outdegree, p ∈ ω(n−1/(f+1))
implies that the probability that there is such a node v for
which |{vi ∈ F ′}| > f is at least

1−
(
1− pf+1

)Ω(n) ⊆ 1−
(
1− ω

(
1

n

))Ω(n)

= 1− o(1).

If there is such a node v, there are algorithms A and inputs
so that A sends a message across some edge (v, w) in some
round. If faulty nodes do not send messages in this round,
the nodes wi ∈ V ′ \ F ′ do not receive the correct message
from more than f nodes vi and the simulation fails. Hence,
the reinforcement cannot be valid.

Remark 1. For constant p, one can determine suitable values
of f ∈ Θ(log n) using Chernoff’s bound. However, as our
focus is on small (constant) overhead factors, we refrain from
presenting the calculation here.

6

d) Efficiency of the Reinforcement: For f ∈ N, we have
that ν = ℓ = 2f + 1 and η = ℓ2 = 4f2 + 4f + 1, while
we can sustain p ∈ o(n−1/(f+1)). In the special case of
f = 1, we improve from p ∈ o(1/n) for the original network
to p ∈ o(1/

√
n) by tripling the number of nodes. However,

η = 9, i.e., while the number of edges also increases only by
a constant, it seems too large in systems where the limiting
factor is the amount of links that can be afforded.

V. STRONG REINFORCEMENT UNDER OM(p)

The strong reinforcement from the previous section is,
trivially, also a strong reinforcement under Om(p). However,
we can reduce the number of copies per node for the weaker
fault model. Given are the input network G = (V,E) and
scheduling algorithm A. Fix a parameter f ∈ N and, this
time, set ℓ = f + 1.

a) Reinforced Network G′: We set V ′ ≜ V × [ℓ] and
denote vi ≜ (v, i). Accordingly, P (vi) ≜ v. We define E′ ≜
{(v′, w′) ∈ V ′ × V ′ | (P (v′), P (w′)) ∈ E}.

b) Strong Simulation A′ of A: Each node2 v′ ∈ V ′

(1) initializes local copies of all state variables of v as in A,
(2) sends on each link (v′, w′) ∈ E′ in each round the

message v would send on (P (v′), P (w′)) when executing
A, and

(3) for each neighbor w of P (v′) and each round r, updates
the local copy of the state of A as if v received the (unique)
message that has been sent to v′ by some of the nodes w′

with P (w′) = w (each one using edge (w′, v′)).
Naturally, the last step assumes that some such neighbor
sends a message and all w′ with P (w′) send the same such
message; otherwise, the simulation fails. We show that A′ can
be executed and simulates A provided that for each v ∈ V ,
no more than f of its copies are in F ′.

Lemma 2. If for each v ∈ V , |{vi ∈ F ′}| ≤ f , A′ strongly
simulates A.

Proof. Analogous to the one of Lemma 1, with the difference
that faulty nodes may only omit sending messages and thus a
single correct copy per node is sufficient.

c) Resilience of the Reinforcement: We now examine
how large the probability p can be for the precondition of
Lemma 1 to be satisfied a.a.s.

Theorem 2. The above construction is a valid strong rein-
forcement for the fault model Om(p) if p ∈ o(n−1/(f+1)).
If G contains Ω(n) nodes with non-zero outdegree, p ∈
ω(n−1/(f+1)) implies that the reinforcement is not valid.

Proof. By Lemma 2, A′ strongly simulates A if for each v ∈
V , |{vi ∈ F ′}| ≤ f = ℓ− 1. For v ∈ V ,

Pr [{vi | i ∈ [ℓ]} ∩ F ′ = ℓ] = pf+1.

By a union bound, A′ thus simulates A with probability 1 −
o(1) if p ∈ o(n−1/(f+1)).

Conversely, if there are Ω(n) nodes with non-zero outdegree
and p ∈ ω(n−1/(f+1)), with probability 1− o(1) all copies of

2Nodes suffering omission failures still can simulate A correctly.

at least one such node v are faulty. If v sends a message
under A, but all corresponding messages of copies of v are
not sent, the simulation fails. This shows that in this case the
reinforcement is not valid.

d) Efficiency of the Reinforcement: For f ∈ N, we have
that ν = ℓ = f + 1 and η = ℓ2 = f2 + 2f + 1, while we
can sustain p ∈ o(n−1/(f+1)). In the special case of f = 1,
we improve from p ∈ o(1/n) for the original network to p ∈
o(1/

√
n) by doubling the number of nodes and quadrupling

the number of edges.

VI. MORE EFFICIENT REINFORCEMENT

In this section, we reduce the overhead in terms of edges at
the expense of obtaining reinforcements that are not strong. We
stress that the obtained trade-off between redundancy (ν and
η) and the sustainable probability of faults p is asymptotically
optimal: as we require to preserve arbitrary routing schemes
in a blackbox fashion, we need sufficient redundancy on
the link level to directly simulate communication. From this
observation, both for Om(p) and Byz(p) we can readily
derive trivial lower bounds on redundancy that match the
constructions below up to lower-order terms.

A. A Toy Example

Before we give the construction, we give some intuition on
how we can reduce the number of required edges. Consider
the following simple case. G is a single path of n vertices
(v1, . . . , vn), and the schedule requires that in round i, a
message is sent from vi to vi+1. We would like to use
a “budget” of only n additional vertices and an additional
(1 + ε)m = (1 + ε)(n − 1) links, assuming the fault model
Om(p). One approach is to duplicate the path and extend
the routing scheme accordingly. We already used our entire
budget apart from εm links! This reinforcement is valid as
long as one of the paths succeeds in delivering the message
all the way. The probability that one of the paths “survives”
is 1 − (1 − (1 − p)n)2 ≤ 1 − (1 − e−pn)2 ≤ e−2pn, where
we used that 1 − x ≤ e−x for any x ∈ R. Hence, for any
p = ω(1/n), the survival probability is o(1). In contrast, the
strong reinforcement with ℓ = 2 (i.e., f = 1) given in § V
sustains any p ∈ o(1/

√
n) with probability 1−o(1); however,

while it adds n nodes only, it requires 3m additional edges.
We need to add some additional edges to avoid that the

likelihood of the message reaching its destination drops too
quickly. To this end, we use the remaining εm edges to “cross”
between the two paths every h ≜ 2/ε hops (assume h is an
integer), cf. Figure 1. This splits the path into segments of h
nodes each. As long as, for each such segment, in one of its
copies all nodes survive, the message is delivered. For a given
segment, this occurs with probability 1−(1−(1−p)h)2 ≥ 1−
(ph)2. Overall, the message is thus delivered with probability
at least (1− (ph)2)n/h ≥ 1− nhp2. As for any constant ε, h
is a constant, this means that the message is delivered a.a.s.
granted that p ∈ o(1/

√
n)!

Remark 2. The reader is cautioned to not conclude from this
example that random sampling of edges will be sufficient for

7

our purposes in more involved graphs. Since we want to handle
arbitrary routing schemes, we have no control over the number
of utilized routing paths. As the latter is exponential in n, the
probability that a fixed path is not “broken” by F would have
to be exponentially small in n. Moreover, trying to leverage
Lovász Local Lemma for a deterministic result runs into the
problem that there is no (reasonable) bound on the number of
routing paths that pass through a single node, i.e., the relevant
random variables (i.e., whether a path “survives”) exhibit lots
of dependencies.

ℎℎ ℎ

Fig. 1: On the right: our toy example with n = 9, m = 8, ε =
1/2, and h = 4. The number of additional edges is (1+ ε)m,
instead of 3m as in the strong reinforcement construction. On
the left: a 6-ary 2-dimensional hypercube. The subdivision of
the node set into 2-ary 2-dimensional subcubes is illustrated
by dotted lines.

B. Partitioning the Graph

To apply the above strategy to other graphs, we must take
into account that there can be multiple intertwined routing
paths. However, the key point in the above example was not
that we had path segments, but rather that we partitioned the
nodes into constant-size regions and added few edges inside
these regions, while fully connecting the copies of nodes at
the boundary of the regions.

In general, it is not possible to partition the nodes into
constant-sized subsets such that only a very small fraction
of the edges connects different subsets; any graph with good
expansion is a counter-example. Fortunately, many network
topologies used in practice are good candidates for our ap-
proach. In the following, we will discuss grid networks and
minor free graphs, and show how to apply the above strategy
in each of these families of graphs.

a) Grid Networks: We can generalize the above strategy
to hypercubes of dimension d > 1.

Definition 4 (Hypercube Networks). A q-ary d-dimensional
hypercube has node set [q]d and two nodes are adjacent if they
agree on all but one index i ∈ [d], for which |vi − wi| = 1.

Lemma 3. For any h, d ∈ N, assume that h divides q ∈ N
and set ε = 1/h. Then the q-ary d-dimensional hypercube can
be partitioned into (q/h)d regions of hd nodes such that at
most an ε-fraction of the edges connects nodes from different
regions.

Proof. We subdivide the node set into h-ary d-dimensional
subcubes; for an example of the subdivision of the node set
of a 6-ary 2-dimensional hypercube into 2-ary 2-dimensional
subcubes see Figure 1. There are (q/h)d such subcubes. The
edges crossing the regions are those connecting the faces of

adjacent subcubes. For each subcube, we attribute for each
dimension one face to each subcube (the opposite face being
accounted for by the adjacent subcube in that direction). Thus,
we have at most dhd−1 crossing edges per subcube. The total
number of edges per subcube are these crossing edges plus the
d(h− 1)hd−1 edges within the subcube. Overall, the fraction
of crossedges is thus at most 1/(1 + (h − 1)) = 1/h, as
claimed.

Note that the above result and proof extend to tori, which
also include the “wrap-around” edges connecting the first and
last nodes in any given dimension.

b) Minor free Graphs: Another general class of graphs
that can be partitioned in a similar fashion are minor free
bounded-degree graphs.

Definition 5 (H-Minor free Graphs). For a fixed graph H ,
H is a minor of G if H is isomorphic to a graph that can be
obtained by zero or more edge contractions on a subgraph of
G. We say that a graph G is H-minor free if H is not a minor
of G.

For any such graph, we can apply a corollary from [43,
Coro. 2], which is based on [3], to construct a suitable
partition.

Theorem 3 ([43]). Let H be a fixed graph. There is a constant
c(H) > 1 such that for every ε ∈ (0, 1] and every H-minor
free graph G = (V,E) with degree bounded by ∆ a partition
R1, . . . , Rk ⊆ V with the following properties can be found
in time O(|V |3/2):

(i) ∀i : |Ri| ≤ c(H)∆2

ε2 ,
(ii) ∀i the subgraph induced by Ri in G is connected.

(iii) |{(u, v) | u ∈ Ri, v ∈ Rj , i ̸= j}| ≤ ε · |V |.

Remark 3. Grids and tori of dimension d > 2 are not minor-
free.

We note that this construction is not satisfactory, as it
involves large constants. It demonstrates that a large class
of graphs is amenable to the suggested approach, but it
is advisable to search for optimized constructions for more
specialized graph families before applying the scheme.

C. Reinforcement

Equipped with a suitable partition of the original graph G =
(V,E) into disjoint regions R1, . . . , Rk ⊆ V , we reinforce as
follows. As before, we set V ′ ≜ V × [ℓ], denote vi ≜ (v, i),
define P (vi) ≜ v, and set ℓ ≜ f + 1. However, the edge set
of G′ differs. For e = (v, w) ∈ E,

E′
e ≜

{
{(vi, wi) | i ∈ [ℓ]} if ∃k′ ∈ [k] : v, w ∈ Rk′

{(vi, wj) | i, j ∈ [ℓ]} else,

and we set E′ ≜
⋃

e∈E E′
e.

a) Simulation under Om(p): Consider v ∈ V . We want
to maintain the invariant that in each round, some vi has a
copy of the state of v in A. To this end, v′ ∈ V ′

(1) initializes local copies of all state variables of v as in A
and sets knowv′ = true;

8

a

b

c d

e

(a) Initial Network

a1

b1

c1 d1

e1

a2

b2

c2 d2

e2

(b) Naive Duplication

a1

b1

c1 d1

e1

a2

b2

c2 d2

e2

R1 R2

(c) Partitioned Reinforcement

Fig. 2: Comparison between a sample network, its naive duplication, and its reinforcement using two replications (ℓ = 2) and
two partitions (k = 2). The node overhead, edge overhead, and maximum node fault probability tolerance (p) under omission
fault for 99% network reliability for these three networks are (a) 1, 1, ∼0.002; (b) 2, 2, ∼0.02; and (c) 2, 2.67, ∼0.028,
respectively. Note that both the naive duplication and the reinforced networks are guaranteed to be robust to one faulty node.
However, the latter can handle some additional cases, like c1 and d2 nodes being faulty.

a1

b1

c1 d1

e1

a2

b2

c2 d2

e2

(a)

aaa1

b1

c1 d1

e1

aaa2

b2

ccc2 d2

e2

(b)

a1

b1

c1 ddd1

e1

a2

b2

ccc2 ddd2

e2

(c)

a1

b1

c1 ddd1

eee1

a2

b2

c2 ddd2

eee2

(d)

Fig. 3: An illustration of a sample routing in the partitioned reinforced network from Figure 2. (a) Consider the case when
node c1 is faulty, under the omission fault assumption, and a message was to be sent along the a − c − d − e route in the
initial network. The goal is to track this message in the reinforced network. (b) The message is sent from a1 to c1, and from
a2 to c2. (c) Node c1 is not able to send the message to the next node. On the other hand, node c2 sends the message to both
d1 and d2. (d) d1 and d2 both receive a message, and therefore, send it to e1 and e2, respectively. At this point, the routing is
successful, as only one of e1 or e2 receiving the message is sufficient. While this is an example of routing a single message,
the reinforced network is able to operate for any algorithm that is runnable on the initial network. More detail can be found
in Section VI-C.

(2) sends on each link (v′, w′) ∈ E′ in each round
• message M , if P (v′) would send M via (P (v′), P (w′))

when executing A and knowv′ = true,
• a special symbol ⊥ if knowv′ = true, but v would not

send a message via (P (v′), P (w′)) according to A, or
• no message if knowv′ = false;

(3) if, in a given round, knowv′ = true and v′ receives for
each neighbor w of P (v′) a message from some wj ∈ V ′,
it updates the local copy of the state of v in A as if P (v′)
received this message (interpreting ⊥ as no message); and

(4) if this is not the case, v′ sets knowv′ = false.

We claim that as long as knowv′ = true at v′, v′ has indeed
a copy of the state of P (v′) in the corresponding execution
of A; therefore, it can send the right messages and update its
state variables correctly.

Lemma 4. Suppose that for each k′ ∈ [k], there is some i ∈ [ℓ]
so that {vi | v ∈ Rk′} ∩ F ′ = ∅. Then A′ simulates A.

Proof. Select for each Rk′ , k′ ∈ [k], some i such that {vi | v ∈
Rk′}∩F ′ = ∅ and denote by C the union of all these nodes. As
P (C) = V , it suffices to show that each v′ ∈ C successfully
maintains a copy of the state of P (v′) under A. However,

we also need to make sure that all messages, not only the
ones sent by nodes in c, are “correct,” in the sense that a
message sent over edge (v′, w′) ∈ E′ in round r would be
sent by A over (P (v′), P (w′)) (where ⊥ means no message
is sent). Therefore, we will argue that the set of nodes Tr ≜
{v′ ∈ V ′ | knowv′ = true in round r} knows the state of their
counterpart P (v′) under A up to and including round r ∈ N.
As nodes v′ with knowv′ = false do not send any messages,
this invariant guarantees that all sent messages are correct in
the above sense.

We now show by induction on the round number r ∈ N
that (i) each v′ ∈ Tr knows the state of P (v′) under A and
(ii) C ⊆ Tr. Due to initialization, this is correct initially, i.e.,
in “round 0;” we use this to anchor the induction at r = 0,
setting T0 ≜ V ′.

For the step from r to r + 1, note that because all v′ ∈ Tr

have a copy of the state of P (v′) at the end of round r by
the induction hypothesis, each of them can correctly determine
the message P (v′) would send over link (v, w) ∈ E in round
r + 1 and send it over each (v′, w′) ∈ E′ with P (w′) = w.
Recall that v′ ∈ Tr+1 if and only if v′ ∈ Tr and for each
(w,P (v′)) ∈ E there is at least one w′ ∈ V ′ with P (w′) = w

9

from which v′ receives a message. Since under Om(p) nodes
in F ′ may only omit sending messages, it follows that v′ ∈
Tr+1 correctly updates the state variables of P (v′), just as
P (v′) would in round r + 1 of A.

It remains to show that C ⊆ Tr+1. Consider vi ∈ C and
(w, v) ∈ E. If v, w ∈ Rk′ for some k′ ∈ [k], then wi ∈ C by
definition of C. Hence, by the induction hypothesis, wi ∈ Tr,
and wi will send the message w would send in round r+1 of
A over (w, v) ∈ E to vi, using the edge (wi, vi) ∈ E′. If this
is not the case, then there is some j ∈ [ℓ] such that wj ∈ C and
we have that (wj , vi) ∈ E′. Again, vi will receive the message
w would send in round r+1 of A from wj . We conclude that
vi receives at least one copy of the message from w for each
(w, v) ∈ E, implying that v ∈ Tr+1 as claimed. Thus, the
induction step succeeds and the proof is complete.

Figure 2 provides an example of a comparison between a
network, a naive duplication of that network, and its reinforce-
ment. The simulation process of sending a message in the same
sample network is shown in Figure 3.

b) Resilience of the Reinforcement: We denote R ≜
maxk′∈[k]{|Rk′ |} and r ≜ mink′∈[k]{|Rk′ |}.

Theorem 4. The above construction is a valid reinforcement
for Om(p) if p ∈ o((n/r)−1/(f+1)/R). Moreover, if G
contains Ω(n) nodes with non-zero outdegree and R ∈ O(1),
p ∈ ω(n−1/(f+1)) implies that the reinforcement is not valid.

Proof. By Lemma 4, A′ simulates A if for each k′ ∈ [k], there
is some i ∈ [ℓ] so that {vi | v ∈ Rk′} ∩ F ′ = ∅. For fixed k′

and i ∈ [ℓ],

Pr [{vi | v ∈ Rk′} ∩ F ′ = ∅] = (1− p)|Rk′ | ≥ 1−Rp.

Accordingly, the probability that for a given k′ the precondi-
tion of the lemma is violated is at most (Rp)f+1. As k ≤ n/r,
taking a union bound over all k′ yields that with probability
at least 1 − n/r · (Rp)f+1, A′ simulates A. Therefore, the
reinforcement is valid if p ∈ o((n/r)−1/(f+1)/R).

Now assume that r ≤ R ∈ O(1) and also that p ∈
ω(n−1/(f+1)) ⊆ ω((n/r)−1/(f+1)/R). Thus, for each v ∈ V ,
all v′ ∈ V ′ with P (v′) = v simultaneously end up in F ′

with probability ω(1/n). Therefore, if Ω(n) nodes have non-
zero outdegree, with a probability in 1− (1− ω(1/n))Ω(n) =
1 − o(1) for at least one such node v all its copies end up
in F ′. In this case, the simulation fails if v sends a message
under A, but all copies of v′ suffer omission failures in the
respective round.

c) Efficiency of the Reinforcement: For f ∈ N, we have
that ν = ℓ = f+1 and η = (1−ε)ℓ+εℓ2 = 1+(1+ε)f+εf2,
while we can sustain p ∈ o(n−1/(f+1)). In the special case
of f = 1 and ε = 1/5, we improve from p ∈ o(1/n) for the
original network to p ∈ o(1/

√
n) by doubling the number of

nodes and multiplying the number of edges by 2.4.

Remark 4. For hypercubes and tori, the asymptotic notation
for p does not hide huge constants. Lemma 3 shows that h
enters the threshold in Theorem 4 as h−d+1/2. For the cases
of d = 2 and d = 3, which are the most typical (for d > 3
grids and tori suffer from large distortion when embedding

them into 3-dimensional space), the threshold on p degrades
by factors of 11.2 and 55.9, respectively.

D. Simulation under Byz(p)

The same strategy can be applied for the stronger fault
model Byz(p), if we switch back to having ℓ = 2f +1 copies
and nodes accepting the majority message among all messages
from copies of a neighbor in the original graph.

Consider node v ∈ V . We want to maintain the invariant
that in each round, a majority among the nodes vi, i ∈ [ℓ], has
a copy of the state of v in A. For v′ ∈ V ′ and (w,P (v′)) ∈ E,
set Nv′(w) ≜ {w′ ∈ V ′ | (w′, v′) ∈ E′}. With this notation,
v′ behaves as follows.
(1) It initializes local copies of all state variables of v as in

A.
(2) It sends in each round on each link (v′, w′) ∈ E′ the

message v would send on (P (v′), P (w′)) when executing
A (if v′ cannot compute this correctly, it may send an
arbitrary message).

(3) It updates its state in round r as if it received, for each
(w,P (v′)) ∈ E, the message the majority of nodes in
Nv′(w) sent.

Lemma 5. Suppose for each k′ ∈ [k], there are at least f +1
indices i ∈ [ℓ] so that {vi | v ∈ Rk′} ∩ F ′ = ∅. Then A′

simulates A.

Proof. Select for each Rk′ , k′ ∈ [k], f + 1 indices i such
that {vi | v ∈ Rk′} ∩ F ′ = ∅ and denote by C the union
of all these nodes. We claim that each v′ ∈ C successfully
maintains a copy of the state of P (v′) under A. We show this
by induction on the round number r ∈ N, anchored at r = 0
due to initialization.

For the step from r to r+1, observe that because all v′ ∈ C
have a copy of the state of P (v′) at the end of round r by the
induction hypothesis, each of them can correctly determine the
message P (v′) would send over link (v, w) ∈ E in round r+1
and send it over each (v′, w′) ∈ E with P (w′) = w. For each
v′ ∈ C and each (w,P (v′)), we distinguish two cases. If P (v′)
and w are in the same region, let i be such that v′ = vi. In this
case, Nv′(w) = {wi} and, by definition of C, wi ∈ C. Thus,
by the induction hypothesis, wi sends the correct message in
round r+1 over the link (w′, v′). On the other hand, if P (v′)
and w are in different regions, Nv′(w) = {wi | i ∈ [ℓ]}. By
the definition of C and the induction hypothesis, the majority
of these nodes (i.e., at least f + 1 of them) sends the correct
message w would send over (w,P (v′)) in round r + 1 when
executing A. We conclude that v′ correctly updates its state,
completing the proof.

a) Resilience of the Reinforcement: As before, denote
R ≜ maxk′∈[k]{|Rk′ |} and r ≜ mink′∈[k]{|Rk′ |}.

Theorem 5. The above construction is a valid reinforcement
for the fault model Byz(p) if p ∈ o((n/r)−1/(f+1)/R).
Moreover, if G contains Ω(n) nodes with non-zero outdegree,
p ∈ ω(n−1/(f+1)) implies that the reinforcement is not valid.

10

Proof. By Lemma 5, A′ simulates A if for each k′ ∈ [k], there
are at least f+1 indices i ∈ [ℓ] so that {vi | v ∈ Rk′}∩F ′ = ∅.
For fixed k′ and i ∈ [ℓ],

Pr [{vi | v ∈ Rk′} ∩ F ′ = ∅] = (1− p)|Rk′ | ≥ 1−Rp.

Thus, analogous to the proof of Theorem 1, the probability
that for a given k′ the condition is violated is at most

2f+1∑
j=f+1

(
2f + 1

j

)
(Rp)j(1−Rp)2f+1−j

=(2e)f (Rp)f+1(1 + o(1)).

By a union bound over the at most n/r regions, we conclude
that the precondition p ∈ o((n/r)−1/(f+1)/R) guarantees that
the simulation succeeds a.a.s.

For the second statement, observe that for each node v ∈ V
of non-zero outdegree,

Pr [|{vi} ∩ F ′| ≥ f + 1] ≥ pf+1 = ω

(
1

n

)
.

Thus, a.a.s. there is such a node v. Let (v, w) ∈ E and assume
that A sends a message over (v, w) in some round. If v and w
are in the same region, the faulty nodes sending an incorrect
message will result in a majority of the 2f + 1 = |{w′ ∈
V ′ |P (w′) = w}| copies of w attaining an incorrect state (of
the simulation), i.e., the simulation fails. Similarly, if w is in
a different region than v, for each copy of w the majority
message received from Nw′(v) will be incorrect, resulting in
an incorrect state.

Remark 5. Note that the probability bounds in Theorem 5 are
essentially tight in case R ∈ O(1). A more careful analysis
establishes similar results for r ∈ Θ(R)∩ω(1), by considering
w.l.o.g. the case that all regions are connected and analyzing
the probability that within a region, there is some path so that
for at least f + 1 copies of the path in G′, some node on
the path is faulty. However, as again we consider the case
R ∈ O(1) to be the most interesting one, we refrain from
generalizing the analysis.

b) Efficiency of the Reinforcement: For f ∈ N, we have
that ν = ℓ = 2f +1 and η = (1−ε)ℓ+εℓ2 = 1+(2+2ε)f +
4εf2, while we can sustain p ∈ o(n−1/(f+1)). In the special
case of f = 1 and ε = 1/5, we improve from p ∈ o(1/n) for
the original network to p ∈ o(1/

√
n) by tripling the number

of nodes and multiplying the number of edges by 4.2.

VII. EMPIRICAL EVALUATION

We have shown that our approach from § VI works partic-
ularly well for graphs that admit a certain partitioning, such
as sparse graphs (e.g., minor-free graphs) or low-dimensional
hypercubes. To provide some empirical motivation for the
relevance of these examples, we note that the topologies
collected in the Rocketfuel [59] and Internet Topology Zoo
[36] projects are all sparse: almost a third (namely 32%) of
the topologies even belong to the family of cactus graphs, and
roughly half of the graphs (49%) are outerplanar [53].

To complement our analytical results and study the re-
inforcement cost of our approach in realistic networks, we
conducted simulations on the around 250 networks from
the Internet Topology Zoo. While we have a fairly good
understanding of the different network topologies deployed in
practice, unfortunately, little is known about the state-of-the-
art protection mechanisms used by network operators today.
Network operators are typically reluctant to share details about
their infrastructure for security reasons, rendering a compar-
ative evaluation difficult. That said, it seems relatively safe
to assume that the most robust solutions rely on an one-by-
one (“A/B”) replication strategy which allows to completely
reroute traffic to a backup network; this baseline requires
doubling resources and can hence be fairly costly.

In the following, we will report on our main insights. Due
to space constraints, we focus on the case of omission faults;
the results for Byzantine faults follow the same general trends.

Recall that we replace each node by f+1 of its copies, and
each edge with endpoints in different regions of the partition
with (f + 1)2 copies; every other edge is replaced by f + 1
copies. Our goal is to do this partitioning such that it mini-
mizes the edge overhead of the new network and maximizes
the probability of the network’s resilience. The fault probabil-
ity of the network for given p, f and partitions with l1, l2, ..., lk
nodes is calculated as 1−

∏k
i=1[1− (1− (1− p)li)f+1].

In the following, as a case study, we fix a target network
failure probability of at most 0.01. That is, the reinforced
network is guaranteed to operate correctly with a probability of
99%, and we aim to maximize the probability p with which
nodes independently fail subject to this constraint. For this
fixed target resilience of the network, we determine the value
of p matching it using the above formula. We remark that the
qualitative behavior for smaller probabilities of network failure
is the same, where the more stringent requirement means that
our scheme outperforms naive approaches for even smaller
network sizes.

For the examined topologies, it turned out that no spe-
cialized tools were needed to find good partitionings. We
considered a Spectral Graph Partitioning tool [31] and Metis
[35], a partitioning algorithm from a python library. For small
networks (less than 14 nodes), we further implemented a brute-
force algorithm, which provides an optimal baseline.

Figure 4 shows the resulting edge overheads for the different
partitioning algorithms as a function of p and for f = 3, at
hand of a specific example. For reference, we added the value
of p for the original graph (f = 0) to the plot, which has an
overhead factor of 1 (no redundancy).

As to be expected, for each algorithm and the fixed value of
f = 3, as the number of components in partitionings increases,
the edge overhead and p increase as well. The “Singleton
partition” point for f = 3 indicates the extreme case where the
size of the components is equal to 1 and the approach becomes
identical to strong reinforcement (see § V); hence, it has an
edge overhead of (f + 1)2 = 16. The leftmost points of the
f = 3 curves correspond to the other extreme of “partitioning”
the nodes into a single set, resulting in naive replication of the
original graph, at an edge overhead of f + 1 = 4.

We observed this general behavior for networks of all sizes

11

Fig. 4: Edge overhead for f = 3 and different partitioning
algorithms as a function of p.

Fig. 5: Edge overhead for f ∈ [1, 10] as a function of p.

under varying f , where the spectral partitioning consistently
outperformed Metis, and both performed very close to the
brute force algorithm on networks to which it was applica-
ble. We concluded that the spectral partitioning algorithm is
sufficient to obtain results that are close to optimal for the
considered graphs, most of which have fewer than 100 nodes,
with only a handful of examples with size between 100 and
200. Accordingly, in the following we confine the presentation
to the results obtained using the spectral partitioning algorithm.

In Figure 5, we take a closer look on how the edge overhead
depends on f , at hand of a network of 33 nodes. Note that
the partitionings do not depend on f , causing the 10 curves to
have similar shape. As f increases, the node overhead, edge
overhead, and p for the reinforced networks increase. We can
see that it is advisable to use larger values of f only if the
strong reinforcement approach for smaller f cannot push p to
the desired value. We also see that f = 1 is sufficient to drive
p up to more than 6%, improving by almost two orders of

Fig. 6: Study of p for all Topology Zoo networks and f = 1,
sorted by size.

magnitude over the roughly 0.01/33 ≈ 0.03% the unmodified
network can tolerate with probability 99%. While increasing
f further does increase resilience, the relative gains are much
smaller, suggesting that f = 1 is the most interesting case.

Following up on this, in Figure 6 we plot p for all
existing networks in the Topology Zoo using the spectral
graph partitioning algorithm and f = 1. Specifically, for each
network, we calculated the value of p on a set of reinforced
networks with different node and edge overheads. Naturally,
with increasing network size, the value of p that can be
sustained at a given overhead becomes smaller. Note, however,
that naive replication quickly loses ground as n becomes
larger. In particular, already for about 20 nodes, an edge
overhead of 3 with our approach is better than adding two
redundant copies of the original network, resulting in more
nodes, but the same number of edges. Beyond roughly 50
nodes, our approach outperforms two independent copies of
the network using fewer edges, i.e., an edge overhead of 2.5.

To show more clearly when our approach outperforms naive
network replication, Figure 7 plots the relative gain in the
probability p of node failure that can be sustained compared
to the original network.

This plot is similar to the previous one. The y-axis now
represents p divided by the value of p for the original graph.
We now see that naive replication provides an almost constant
improvement across the board. This is due to the fact that
under this simple scheme, the reinforcement fails as soon as
in each copy of the graph at least one node fails, as it is
possible that a routing path in the original graph involves all
nodes corresponding to failed copies.

Denote by pk the probability of node failure that can be
sustained with 99% reliability when simply using k copies of
the original graph (in particular p1 ≈ 0.01/n). For small k, the
probability (1−pk)

n that a single copy of the original graph is
fault-free needs to be close to 1. Hence, we can approximate
(1 − pk)

n ≈ 1 − pkn. The probability that all copies contain
a failing node is hence approximately (pkn)

k. Thus, p1n ≈

12

Fig. 7: Relative improvement over baseline for all Topology
Zoo networks.

0.01 ≈ (pkn)
k, yielding that

pk
p1

=
pkn

p1n
≈ 0.011/k

0.01
= 1001−1/k.

In particular, we can expect ratios of roughly 10 for k = 2
and 21.5 for k = 3, respectively. The small discrepancy to
the actual numbers is due to the approximation error, which
would be smaller for higher target resilience.

As the plot clearly shows, our method achieves a relative
improvement that increases with n, as predicted by Theorem 4.
In conclusion, we see that our approach promises substantial
improvements over the naive replication strategy, which is
commonly employed in mission-critical networks (e.g., using
dual planes as in RFC 7855 [54]).

VIII. DISCUSSION

In the previous sections, we have established that constant-
factor redundancy can significantly increase reliability of the
communication network in a blackbox fashion. Our construc-
tions in § VI are close to optimal. Naturally, one might argue
that the costs are still too high. However, apart from pointing
out that the costs of using sufficiently reliable components may
be even higher, we would like to raise a number of additional
points in favor of the approach.

a) Node Redundancy: When building reliable large-scale
systems, fault-tolerance needs to be considered on all system
levels. Unless nodes are sufficiently reliable, node replication
is mandatory, regardless of the communication network. In
other words, the node redundancy required by our construction
may not be an actual overhead to begin with. When taking
this point of view, the salient question becomes whether the
increase in links is acceptable. Here, the first observation is
that any system employing node redundancy will need to
handle the arising additional communication, incurring the
respective burden on the communication network. Apart from
still having to handle the additional traffic, however, the
system designer now needs to make sure that the network

is sufficiently reliable for the node redundancy to matter.
Our simple schemes then provide a means to provide the
necessary communication infrastructure without risking to
introduce, e.g., a single point of failure during the design of the
communication network; at the same time, the design process
is simplified and modularized.

b) Dynamic Faults: Because of the introduced fault-
tolerance, faulty components do not impede the system as a
whole, so long as the simulation of the routing scheme can
still be carried out. Hence, one may repair faulty nodes at
runtime. If T is the time for detecting and fixing a fault, we can
discretize time in units of T and denote by pT the (assumed
to be independent) probability that a node is faulty in a given
time slot, which can be bounded by twice the probability to
fail within T time. Then the failure probabilities we computed
in our analysis directly translate to an upper bound on the
expected fraction of time during which the system is not (fully)
operational.

c) Adaptivity: The employed node- and link-level redun-
dancy may be required for mission-critical applications only,
or the system may run into capacity issues. In this case, we
can exploit that the reinforced network has a very simple
structure, making various adaptive strategies straightforward
to implement.

(i) One might use a subnetwork only, deactivating the re-
maining nodes and links, such that a reinforced network
for smaller f (or a copy of the original network, if f = 0)
remains. This saves energy.

(ii) One might subdivide the network into several smaller
reinforced networks, each of which can perform different
tasks.

(iii) One might leverage the redundant links to increase the
overall bandwidth between (copies of) nodes, at the
expense of reliability.

(iv) The above operations can be applied locally; e.g., in a
congested region of the network, the link redundancy
could be used for additional bandwidth. Note that if only
a small part of the network is congested, the overall
system reliability will not deteriorate significantly.

Note that the above strategies can be refined and combined
according to the profile of requirements of the system.

IX. RELATED WORK

Robust routing is an essential feature of dependable com-
munication networks, and has been explored intensively in the
literature already.

Resilient Routing on the Network Layer: In contrast to
our approach, existing resilient routing mechanisms on the
network layer are typically reactive. They can be categorized
according to whether they are supported in the control plane,
e.g., [8], [14], [24], [25], [29], [48], or in the data plane,
e.g., [13], [23], [39], [44], [60], [62], see also the recent
survey [11]. These mechanisms are usually designed to cope
with link failures. Resilient routing algorithms in the control
plane typically rely on a global recomputation of paths (either
centralized [61], distributed [24] or both [47]), or on tech-
niques based on link reversal [25], and can hence re-establish

13

policies relatively easily; however, they come at the price
of a relatively high restoration time [24]. Resilient routing
algorithms in the dataplane can react to failures significantly
faster [18]; however, due to the local nature of the failover,
it is challenging to maintain network policies or even a high
degree of resilience [12]. In this line of literature, the network
is usually given and the goal is to re-establish routing paths
quickly, ideally as long as the underlying physical network is
connected (known as perfect resilience [18], [22]).

In contrast, in this paper we ask the question of how to
proactively enhance the network in order to tolerate failures,
rather than reacting to them. In particular, we consider more
general failures, beyond link failures and benign faults. We
argue that such a re-enforced network simplifies routing as it
is not necessary to compute new paths. The resulting problems
are very different in nature, also in terms of the required
algorithmic techniques.

Local Faults: In this paper, we consider more general
failure models than typically studied in the resilient routing
literature above, as our model is essentially a local fault model.
Byzantine faults were studied in [15], [52] in the context of
broadcast and consensus problems. Unlike its global classical
counterpart, the f -local Byzantine adversary can control at
most f neighbors of each vertex. This more restricted adver-
sary gives rise to more scalable solutions, as the problems can
be solved in networks of degree O(f); without this restriction,
degrees need to be proportional to the total number of faults
in the network.

We also limit our adversary in its selection of Byzantine
nodes, by requiring that the faulty nodes are chosen inde-
pendently at random. As illustrated, e.g., by Lemma 1 and
Theorem 1, there is a close connection between the two set-
tings. Informally, we show that certain values of p correspond,
asymptotically almost surely (a.a.s), to an f -local Byzantine
adversary. However, we diverge from the approach in [15],
[52] in that we require a fully time-preserving simulation of a
fault-free routing schedule, as opposed to solving the routing
task in the reinforced network from scratch.

Fault-Tolerant Logical Network Structures: Our work is
reminiscent of literature on the design fault-tolerant network
structures. In this area (see [50] for a survey), the goal is
to compute a sub-network that has a predefined property,
e.g., containing minimum spanning tree. More specifically,
the sub-network should sustain adversarial omission faults
without losing the property. Hence, the sub-network is usually
augmented (with edges) from the input network in comparison
to its corresponding non-fault-tolerant counterpart. Naturally,
an additional goal is to compute a small such sub-network. In
contrast, we design a network that is reinforced (or augmented)
by additional edges and nodes so that a given routing scheme
can be simulated while facing randomized Byzantine faults.
As we ask for being able to “reproduce” an arbitrary routing
scheme (in the sense of a simulation relation), we cannot rely
on a sub-network.

The literature also considered random fault models. In the
network reliability problem, the goal is to compute the prob-
ability that the (connected) input network becomes discon-
nected under random independent edge failures. The reliability

of a network is the probability that the network remains
connected after this random process. Karger [34] gave a fully
polynomial randomized approximation scheme for the network
reliability problem. Chechik et. al [10] studied a variant of the
task, in which the goal is to compute a sparse sub-network that
approximates the reliability of the input network. We, on the
other hand, construct a reinforced network that increases the
reliability of the input network; note also that our requirements
are much stricter than merely preserving connectivity.

Self-healing systems: In the context of self-healing rout-
ing (e.g., Castañeda et al. [9]), researchers have studied a
model where an adversary removes nodes in an online fashion,
one node in each time step (at most n such steps). In turn,
the distributed algorithm adds links and sends at most O(∆)
additional messages to overcome the inflicted omission fault.
Ideally, the algorithm is “compact”: each node’s storage is
limited to o(n) bits. A nice property of the algorithm in [9] is
that the degrees are increased by at most 3. For our purposes,
an issue is that the diameter is increased by a logarithmic
factor of the maximum initial degree, and hence the same
holds for the latency of the routing scheme. Instead, we design
a network that is “oblivious” to faults in the sense that the
network is “ready” for independent random faults up to a
certain probability, without the need to reroute messages or any
other reconfiguration. Moreover, our reinforcements tolerate
Byzantine faults and work for arbitrary routing schemes. We
remark that compact self-healing routing schemes also deal
with the update time of the local data structures following the
deletion of a node; no such update is required in our approach.

Robust Peer-to-Peer Systems: Peer-to-peer systems are
often particularly dynamic and the development of robust
algorithms hence crucial. Kuhn et. al [38] study faults in
peer-to-peer systems in which an adversary adds and removes
nodes from the network within a short period of time (this
process is also called churn). In this setting, the goal is
to maintain functionality of the network in spite of this
adversarial process. Kuhn et al. [38] considered hypercube and
pancake topologies, with a powerful adversary that cannot be
“fooled” by randomness. However, it is limited to at most
O(∆) nodes, where ∆ is the (maximum) node degree, which
it can add or remove within any constant amount of time. The
main idea in [38] is to maintain a balanced partition of the
nodes, where each part plays the role of a supernode in the
network topology. This is done by rebalancing the nodes after
several adversarial acts, and increasing the dimensionality of
the hypercube in case the parts become too big.

Hypercubes were also of particular interest in this paper.
We employ two partitioning techniques to make sure that:
(1) the size of each part is constant and (2) the number of
links in the cut between the parts is at most ε · n, where n
is the number of nodes. These partitioning techniques help
us dial down the overheads within each part, and avoid a
failure of each part due to its small size. However, we note
that our motivation for considering these topologies is that
they are used as communication topologies, for which we can
provide good reinforcements, rather than choosing them to
exploit their structure for constructing efficient and/or reliable
routing schemes (which is of course one, but not the only

14

reason for them being used in practice).

X. CONCLUSION

In this paper, we proposed simple replication strategies
for improving network reliability. Despite being simple and
general, both in terms of their application and analysis, our
strategies can substantially reduce the required reliability on
the component level to maintain network functionality com-
pared the baseline, without losing messages or increasing
latencies. The presented transformations allow us to directly
reuse non-fault-tolerant routing schemes as a blackbox, and
hence avoid the need to refactor working solutions. We con-
sider this property highly useful in general and essential in
real-time systems.

Hence, being prepared for non-benign faults can be simple,
affordable, and practical, and therefore enables building larger
reliable networks. Interestingly, while our basic schemes may
hardly surprise, we are not aware of any work systematically
exploring and analyzing this perspective.

We understand our work as a first step and believe that
it opens several interesting avenues for future research. For
example:
(i) Which network topologies allow for good partitions as

utilized in § VI? Small constants here result in highly
efficient reinforcement schemes, which are key to practical
solutions.

(i) Is it possible to guarantee strong simulations at smaller
overheads?

(i) Can constructions akin to the one given in § VI be applied
to a larger class of graphs?

On the practical side, while our simulations indicate that
our approach can be significantly more efficient than a naive
one-by-one replication strategy to provision dependable ISP
networks, it will be interesting to extend these empirical stud-
ies and also consider practical aspects such as the incremental
deployment in specific networks.
Acknowledgments. This project has received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement 716562) and from the Vienna Science and
Technology Fund (WWTF), under grant number ICT19-045
(project WHATIF). This research was supported by the Israel
Science Foundation under Grant 867/19.

REFERENCES

[1] Aiello, W., Kushilevitz, E., Ostrovsky, R., Rosén, A.: Dynamic routing
on networks with fixed-size buffers. In: (SODA), pp. 771–780 (2003)

[2] Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data
center network architecture. ACM SIGCOMM computer communication
review 38(4), 63–74 (2008)

[3] Alon, N., Seymour, P., Thomas, R.: A separator theorem for graphs with
an excluded minor and its applications. In: (STOC), pp. 293–299. ACM
(1990)

[4] Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient
overlay networks. In: Proceedings of the eighteenth ACM symposium
on Operating systems principles, pp. 131–145 (2001)

[5] Angelov, S., Khanna, S., Kunal, K.: The network as a storage device:
Dynamic routing with bounded buffers. Algorithmica 55(1), 71–94
(2009)

[6] Atlas, A., Zinin, A.: Basic specification for ip fast reroute: Loop-free
alternates. In: Request for Comments (RFC) 5286 (2008)

[7] Barroso, L.A., Dean, J., Holzle, U.: Web search for a planet: The google
cluster architecture. IEEE micro 23(2), 22–28 (2003)

[8] Busch, C., Surapaneni, S., Tirthapura, S.: Analysis of link reversal
routing algorithms for mobile ad hoc networks. In: Proc. SPAA (2003)

[9] Castañedam, A., Dolev, D., Trehan, A.: Compact routing messages in
self-healing trees. Theoretical Computer Science (2016)

[10] Chechik, S., Emek, Y., Patt-Shamir, B., Peleg, D.: Sparse reliable graph
backbones. Information and Computation 210, 31–39 (2012)

[11] Chiesa, M., Kamisinski, A., Rak, J., Retvari, G., Schmid, S.: Fast
recovery mechanisms in the data plane. In: IEEE TechRxiv (2020)

[12] Chiesa, M., Nikolaevskiy, I., Mitrović, S., Gurtov, A., Madry, A.,
Schapira, M., Shenker, S.: On the resiliency of static forwarding tables.
IEEE/ACM Transactions on Networking 25(2), 1133–1146 (2016)

[13] Chiesa, M., Sedar, R., Antichi, G., Borokhovich, M., Kamisinski, A.,
Nikolaidis, G., Schmid, S.: Purr: A primitive for reconfigurable fast
reroute. In: Proc. ACM CoNEXT (2019)

[14] Corson, M.S., Ephremides, A.: A distributed routing algorithm for
mobile wireless networks. Wireless netw. 1(1), 61–81 (1995)

[15] Dolev, D., Hoch, E.N.: Constant-space localized byzantine consensus.
In: (DISC), pp. 167–181. Springer (2008)

[16] Even, G., Medina, M., Patt-Shamir, B.: Better deterministic online
packet routing on grids. In: (SPAA), pp. 284–293 (2015)

[17] Even, G., Medina, M., Rosén, A.: A constant approximation algorithm
for scheduling packets on line networks. In: (ESA), pp. 40:1–40:16
(2016)

[18] Feigenbaum, J., Godfrey, B., Panda, A., Schapira, M., Shenker, S.,
Singla, A.: Brief announcement: On the resilience of routing tables. In:
Proceedings of the 2012 ACM symposium on Principles of distributed
computing, pp. 237–238 (2012)

[19] Feldmann, A., Heyder, P., Kreutzer, M., Schmid, S., Seifert, J.P.,
Shulman, H., Thimmaraju, K., Waidner, M., Sieberg, J.: Netco: Reliable
routing with unreliable routers. In: 2016 46th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks Workshop
(DSN-W), pp. 128–135. IEEE (2016)

[20] Feldmann, A., Heyder, P., Kreutzer, M., Schmid, S., Seifert, J.P.,
Shulman, H., Thimmaraju, K., Waidner, M., Sieberg, J.: Netco: Reliable
routing with unreliable routers. In: Proc. IEEE/IFIP DSN Workshop on
Dependability Issues on SDN and NFV (DISN) (2016)

[21] Fischer, M., Lynch, N., Paterson, N.: Impossibility of Distributed Con-
sensus with one Faulty Process. Journal of the ACM 32(2), 374–382
(1985)

[22] Foerster, K.T., Hirvonen, J., Pignolet, Y.A., Schmid, S., Tredan, G.: Brief
announcement: What can(not) be perfectly rerouted locally. In: Proc.
International Symposium on Distributed Computing (DISC) (2020)

[23] Foerster, K.T., Kamisinski, A., Pignolet, Y.A., Schmid, S., Tredan, G.:
Improved fast rerouting using postprocessing. In: Proc. SRDS (2019)

[24] Francois, P., Filsfils, C., Evans, J., Bonaventure, O.: Achieving sub-
second igp convergence in large ip networks. ACM SIGCOMM
Computer Communication Review 35(3), 35–44 (2005)

[25] Gafni, E., Bertsekas, D.: Distributed algorithms for generating loop-free
routes in networks with frequently changing topology. Trans. Commun.
29(1), 11–18 (1981)

[26] Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In:
Proceedings of the nineteenth ACM symposium on Operating systems
principles, pp. 29–43 (2003)

[27] Gill, P., Jain, N., Nagappan, N.: Understanding network failures in data
centers: measurement, analysis, and implications. ACM SIGCOMM
CCR 41, 350–361 (2011)

[28] González, A.J., Helvik, B.E.: Analysis of failures characteristics in the
uninett ip backbone network. In: 2011 IEEE Workshops of International
Conference on Advanced Information Networking and Applications
(2011)

[29] Greenberg, A., Hjalmtysson, G., Maltz, D.A., Myers, A., Rexford, J.,
Xie, G., Yan, H., Zhan, J., Zhang, H.: A clean slate 4d approach
to network control and management. ACM SIGCOMM Computer
Communication Review 35(5), 41–54 (2005)

[30] Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y.,
Lu, S.: Bcube: a high performance, server-centric network architecture
for modular data centers. In: Proceedings of the ACM SIGCOMM 2009
conference on Data communication, pp. 63–74 (2009)

[31] Hagen, L., Kahng, A.: New spectral methods for ratio cut partitioning
and clustering. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 11(9), 1074–1085 (1992)

[32] Iannaccone, G., Chuah, C.n., Mortier, R., Bhattacharyya, S., Diot, C.:
Analysis of link failures in an ip backbone. In: Proc. ACM SIGCOMM
Workshop on Internet Measurment (2002)

15

[33] Jensen, J.S., Krogh, T.B., Madsen, J.S., Schmid, S., Srba, J., Thorgersen,
M.T.: P-rex: Fast verification of mpls networks with multiple link
failures. In: Proc. ACM CoNEXT (2018)

[34] Karger, D.R.: A randomized fully polynomial time approximation
scheme for the all-terminal network reliability problem. SIAM review
43(3), 499–522 (2001)

[35] Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing
20(1), 359–392 (1998)

[36] Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The
internet topology zoo. IEEE Journal on Selected Areas in Communica-
tions 29(9), 1765–1775 (2011)

[37] Kopetz, H.: Fault containment and error detection in the time-triggered
architecture. In: (ISADS), pp. 139–146 (2003)

[38] Kuhn, F., Schmid, S., Wattenhofer, R.: Towards worst-case churn resis-
tant peer-to-peer systems. Distributed Computing 22(4), 249–267 (2010)

[39] Lakshminarayanan, K., Caesar, M., Rangan, M., Anderson, T., Shenker,
S., Stoica, I.: Achieving convergence-free routing using failure-carrying
packets. In: Proc. ACM SIGCOMM (2007)

[40] Lee, H.W., Modiano, E., Lee, K.: Diverse routing in networks with
probabilistic failures. IEEE/ACM Transactions on networking 18(6),
1895–1907 (2010)

[41] Leighton, F.T.: Introduction to parallel algorithms and architectures:
Arrays· trees· hypercubes. Elsevier (2014)

[42] Lenzen, C., Medina, M.: Robust routing made easy. In: Stabilization,
Safety, and Security of Distributed Systems - 19th International Sympo-
sium, SSS 2017, Boston, MA, USA, November 5-8, 2017, Proceedings,
pp. 187–202 (2017)

[43] Levi, R., Ron, D.: A quasi-polynomial time partition oracle for graphs
with an excluded minor. ACM Trans. Algorithms 11(3), 24:1–24:13
(2015)

[44] Liu, J., Panda, A., Singla, A., Godfrey, B., Schapira, M., Shenker, S.:
Ensuring connectivity via data plane mechanisms. In: Proc. USENIX
NSDI (2013)

[45] Markopoulou, A., Iannaccone, G., Bhattacharyya, S., Chuah, C.N., Diot,
C.: Characterization of failures in an ip backbone. In: Proc. IEEE
INFOCOM (2004)

[46] Markopoulou, A., Iannaccone, G., Bhattacharyya, S., Chuah, C.N.,
Ganjali, Y., Diot, C.: Characterization of failures in an operational ip
backbone network. IEEE/ACM Transactions on Networking 16(4), 749–
762 (2008)

[47] Markovitch, M., Schmid, S.: Shear: A highly available and flexible
network architecture: Marrying distributed and logically centralized
control planes. In: Proc. 23rd IEEE International Conference on Network
Protocols (ICNP) (2015)

[48] Oran, D.: Rfc1142: Osi is-is intra-domain routing protocol (1990)
[49] Pan, P., Swallow, G., Atlas, A.: Fast reroute extensions to RSVP-TE for

LSP tunnels. In: Request for Comments (RFC) 4090 (2005)
[50] Parter, M.: Fault-tolerant logical network structures. Bulletin of the

EATCS 118 (2016)
[51] Pease, M., Shostak, R., Lamport, L.: Reaching Agreement in the

Presence of Faults. Journal of the ACM 27, 228–234 (1980)
[52] Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults.

Information Processing Letters 93(3), 109–115 (2005)
[53] Pignolet, Y.A., Schmid, S., Tredan, G.: Tomographic node placement

strategies and the impact of the routing model. In: Proc. ACM
SIGMETRICS (2018)

[54] Previdi, S., Filsfils, C., Decraene, B., Litkowski, S., Horneffer, M.,
Shakir, R.: Source packet routing in networking (spring) problem
statement and requirements. In: Request for Comments (RFC) 7855
(2016)

[55] Räcke, H.: Survey on oblivious routing strategies. In: (CiE), pp. 419–
429. Springer (2009)

[56] Räcke, H., Rosén, A.: Approximation algorithms for time-constrained
scheduling on line networks. Theory Comput. Syst. 49(4), 834–856
(2011)

[57] Raecke, H., Schmid, S.: Compact oblivious routing. In: Proc. European
Symposium on Algorithms (ESA) (2019)

[58] Scheideler, C.: How to spread adversarial nodes? rotate! In: Proceedings
of the thirty-seventh annual ACM symposium on Theory of computing,
pp. 704–713 (2005)

[59] Spring, N., Mahajan, R., Wetherall, D.: Measuring isp topologies with
rocketfuel. ACM SIGCOMM Computer Communication Review 32(4),
133–145 (2002)

[60] Stephens, B., Cox, A.L., Rixner, S.: Scalable multi-failure fast failover
via forwarding table compression. In: Proc. ACM SOSR (2016)

[61] Vahdat, A., Clark, D., Rexford, J.: A purpose-built global network:
Google’s move to sdn. Queue 13(8), 100–125 (2015)

[62] Yang, B., Liu, J., Shenker, S., Li, J., Zheng, K.: Keep forwarding:
Towards k-link failure resilient routing. In: Proc. IEEE INFOCOM
(2014)

Christoph Lenzen received a diploma degree in
mathematics from the University of Bonn in 2007
and a Ph. D. degree from ETH Zurich in 2011.
After postdoc positions at the Hebrew University of
Jerusalem, the Weizmann Institute of Science, and
MIT, he became group leader at MPI for Informatics
in 2014. In 2021 he became faculty member at
CISPA. He received the best paper award at PODC
2009, the ETH medal for his dissertation, and in
2017 an ERC starting grant.

Moti Medina is a faculty member at the Engineering
Faculty at Bar-Ilan University since 2021. Previ-
ously, he was a faculty member at the Ben-Gurion
University of the Negev and a post-doc researcher
in MPI for Informatics and in the Algorithms and
Complexity group at LIAFA (Paris 7). He graduated
his Ph. D., M. Sc., and B. Sc. studies at the School
of Electrical Engineering at Tel-Aviv University, in
2014, 2009, and 2007 respectively. Moti is also a
co-author of a text-book on logic design “Digital
Logic Design: A Rigorous Approach”, Cambridge

Univ. Press, Oct. 2012.

Mehrdad Saberi is an undergraduate student in
Computer Engineering at Sharif University of Tech-
nology, Tehran, Iran. He achieved a silver medal in
International Olympiad in Informatics (2018, Japan)
during high school and is currently interested in
studying and doing research in Theoretical Com-
puter Science.

Stefan Schmid is a Professor at TU Berlin, Ger-
many. He received his MSc (2004) and PhD (2008)
from ETH Zurich, Switzerland. Subsequently, Stefan
Schmid worked as postdoc at TU Munich and the
University of Paderborn (2009). From 2009 to 2015,
he was a senior research scientist at the Telekom In-
novations Laboratories (T-Labs) in Berlin, Germany,
from 2015 to 2018 an Associate Professor at Aal-
borg University, Denmark, and from 2018 to 2021
a Professor at the University of Vienna, Austria.
His research interests revolve around algorithmic

problems of networked and distributed systems, currently with a focus on
self-adjusting networks (related to his ERC project AdjustNet) and resilient
networks (related to his WWTF project WhatIf).

	Introduction
	The Challenge
	Contributions and Techniques
	Putting Things Into Perspective
	Organization

	High-level Overview: Reinforcing Networks
	Preliminaries
	Strong Reinforcement under Byz(p)
	Strong Reinforcement under Om(p)
	More Efficient Reinforcement
	A Toy Example
	Partitioning the Graph
	Reinforcement
	Simulation under Byz(p)

	Empirical Evaluation
	Discussion
	Related Work
	Conclusion
	References
	Biographies
	Christoph Lenzen
	Moti Medina
	Mehrdad Saberi
	Stefan Schmid

