
Online Tree Caching

SPAA 2017

Marcin  
Bieńkowski

University  
of Wrocław

Jan  
Marcinkowski

Maciej 
Pacut

Stefan  
Schmid

Aleksandra  
Spyra

University  
of Wrocław

University  
of Wrocław GoogleUniversity  

of Aalborg

Motivation: routers

Router

For each incoming packet, a router:

❖ takes a packet destination address (bit string of length w),

❖ finds a matching rule in its forwarding table (FIB),

❖ the rule defines outgoing port for a packet.

3

stream of packets

outgoing ports

Router

For each incoming packet, a router:

❖ takes a packet destination address (bit string of length w),

❖ finds a matching rule in its forwarding table (FIB),

❖ the rule defines outgoing port for a packet.

3

32 bits for IPv4, 128 bits for IPv6

stream of packets

outgoing ports

Forwarding table (FIB)

4

If packet’s destination address  
starts with prefix Forward it via port …

ε port gray
0 port yellow

011 port green
1 port red
… …

1010 port blue

stream 
of packets

ports

Forwarding table (FIB)

4

If packet’s destination address  
starts with prefix Forward it via port …

ε port gray
0 port yellow

011 port green
1 port red
… …

1010 port blue

If many rules match, choose  
the one that “matches best“  
= has longest prefix.stream 

of packets
ports

Alternative representation of FIB

5

1

00 100 101 111

ε

011

10101000 1001

0

Rule lookup = start from the root and proceed as deep as possible.

Trie storing prefixes

Alternative representation of FIB

5

One of possible implementations,  
we do not assume it.

1

00 100 101 111

ε

011

10101000 1001

0

Rule lookup = start from the root and proceed as deep as possible.

Trie storing prefixes

The problem: FIB size

❖ Many routers operate at the edge of their memory capacity.

❖ Upgrading memory expensive (specialized TCAM chips for fast lookups).

6

FI
B

si
ze

 a
t A

S6
50

00
.  

R
ep

or
t f

ro
m

 h
t
t
p
:
/
/
b
g
p
.
p
o
t
a
r
o
o
.
n
e
t
/
a
s
1
2
2
1
/

Solution: FIB offloading

7

Idea: store only subset of rules in the router

❖ What rules should be kept?

❖ How to handle remaining rules?

Next-slide setup proposed and tested experimentally by  
Kim, Caesar, Gerber, Rexford (PAM’09); Sarrar, Uhlig, Feldmann, Sherwood, Huang,
(SIGCOMM ’12); Liu, Lehman, Wang (Comp. Netw. ’15); Katta, Alipourfard,
Rexford, Walker (SOSR ’16); …

FIB offloading setup

8

1

00 100 101 111

ε

011

10101000 1001

0

router: small and fast memory

FIB offloading setup

8

1

00 100 101 111

ε

011

10101000 1001

0

controller: large and slow memory router: small and fast memory

FIB offloading setup

8

1

00 100 101 111

ε

011

10101000 1001

0

controller: large and slow memory router: small and fast memory

stores whole FIB

FIB offloading setup

8

1

00 100 101 111

ε

011

10101000 1001

0

controller: large and slow memory router: small and fast memory

stores whole FIB

rule updates

FIB offloading setup

8

1

00 100 101 111

ε

011

10101000 1001

0

controller: large and slow memory router: small and fast memory

stores whole FIB stores chosen ``bottom part’’ of FIB

rule updates

FIB offloading setup

8

1

00 100 101 111

ε

011

10101000 1001

0

controller: large and slow memory router: small and fast memory

stores whole FIB stores chosen ``bottom part’’ of FIB

rule updates

FIB offloading setup

8

1

00 100 101 111

ε

011

10101000 1001

0

controller: large and slow memory router: small and fast memory

stores whole FIB stores chosen ``bottom part’’ of FIB

100 111

1000 1001

00 011

0

rule updates

FIB offloading setup

8

1

00 100 101 111

ε

011

10101000 1001

0

controller: large and slow memory router: small and fast memory

stores whole FIB stores chosen ``bottom part’’ of FIB

100 111

1000 1001

00 011

0

ε

artificial rule forwarding  
unmatched packets to controller

rule updates

Arriving packet (case 1)

9

1

00 100 101 111

ε

011

10101000 1001

0

controller: stores whole FIB router: stores chosen ``bottom part’’ of FIB

100 111

1000 1001

00 011

0

ε

If packet was matched by BOTTOM rules (e.g., destination = 111111…)

… it is still matched by bottom rules and processed at router.

Arriving packet (case 2)

10

1

00 100 101 111

ε

011

10101000 1001

0

controller: stores whole FIB router: stores chosen ``bottom part’’ of FIB

100 111

1000 1001

00 011

0

ε

If packet was matched by TOP rules (e.g., destination = 1100000…)

… it is matched by default route, and forwarded to the controller.

Arriving packet (case 2)

10

1

00 100 101 111

ε

011

10101000 1001

0

controller: stores whole FIB router: stores chosen ``bottom part’’ of FIB

100 111

1000 1001

00 011

0

ε

If packet was matched by TOP rules (e.g., destination = 1100000…)

… it is matched by default route, and forwarded to the controller.

Controller finds a port and returns
TAGGED packet to router

Arriving packet (case 2)

10

1

00 100 101 111

ε

011

10101000 1001

0

controller: stores whole FIB router: stores chosen ``bottom part’’ of FIB

100 111

1000 1001

00 011

0

ε

If packet was matched by TOP rules (e.g., destination = 1100000…)

… it is matched by default route, and forwarded to the controller.

Controller finds a port and returns
TAGGED packet to router

Same forwarding behavior  
but SLOWER.

Abstraction: caching

Tree caching

12

1

00 100 101 111

ε

011

10101000 1001

0

controller:  
tree T of all items

router (cache):  
subforest of T, at most k items

100 111

1000 1001

00 011

0

❖ Input = sequence of requests to items.

❖ Cache hit → cost 0, cache miss → cost 1.

❖ Changing cache (single item fetch or eviction) → cost α ≥ 1.

Tree caching

12

1

00 100 101 111

ε

011

10101000 1001

0

controller:  
tree T of all items

router (cache):  
subforest of T, at most k items

100 111

1000 1001

00 011

0

❖ Input = sequence of requests to items.

❖ Cache hit → cost 0, cache miss → cost 1.

❖ Changing cache (single item fetch or eviction) → cost α ≥ 1.

“Caching with bypassing  
and tree dependencies

between items“

External updates to rule

13

1

00 100 101 111

ε

011

10101000 1001

0

controller:  
all FIB rules

Other routers

External updates to rule

13

1

00 100 101 111

ε

011

10101000 1001

0

controller:  
all FIB rules

Other routers

“Port fo
r prefix 100 has to

be changed to yellow“.

External updates to rule

❖ If the updated rule is also stored at router (is cached), it needs to be
updated → cost α ≥ 1.

13

1

00 100 101 111

ε

011

10101000 1001

0

controller:  
all FIB rules

Other routers

“Port fo
r prefix 100 has to

be changed to yellow“.

Tree caching (final version)

14

1

00 100 101 111

ε

011

10101000 1001

0

controller:  
tree T of all items

router (cache):  
sub-forest of T, at most k items

100 111

1000 1001

00 011

0

❖ Input = sequence of requests to items

✦ Positive request: cost 1 iff item is not cached.

✦ Negative request: cost 1 iff item is cached.

❖ Changing cache (single item fetch or eviction) → cost α ≥ 1.

Tree caching (final version)

14

1

00 100 101 111

ε

011

10101000 1001

0

controller:  
tree T of all items

router (cache):  
sub-forest of T, at most k items

100 111

1000 1001

00 011

0

❖ Input = sequence of requests to items

✦ Positive request: cost 1 iff item is not cached.

✦ Negative request: cost 1 iff item is cached.

❖ Changing cache (single item fetch or eviction) → cost α ≥ 1.

Actual costs can be
simulated by these.

Algorithm

Our results

Performance measure

❖ Online problem.

❖ Goal: minimize the competitive ratio (maxI ALG(I) / OPT(I)).  
 

16

Our results

Performance measure

❖ Online problem.

❖ Goal: minimize the competitive ratio (maxI ALG(I) / OPT(I)).  
 

16

has cache of size kALG

Our results

Performance measure

❖ Online problem.

❖ Goal: minimize the competitive ratio (maxI ALG(I) / OPT(I)).  
 

16

has cache of size kALG

has cache of size kOPT ≤ kALG

Our results

Performance measure

❖ Online problem.

❖ Goal: minimize the competitive ratio (maxI ALG(I) / OPT(I)).  
 

Tree caching

❖ O(kALG / (kALG - kOPT + 1) * height(T))-competitive algorithm.

❖ Lower bound of !(kALG / (kALG - kOPT + 1)).

16

has cache of size kALG

has cache of size kOPT ≤ kALG

Our results

Performance measure

❖ Online problem.

❖ Goal: minimize the competitive ratio (maxI ALG(I) / OPT(I)).  
 

Tree caching

❖ O(kALG / (kALG - kOPT + 1) * height(T))-competitive algorithm.

❖ Lower bound of !(kALG / (kALG - kOPT + 1)).

16

By a reduction to
caching problem

has cache of size kALG

has cache of size kOPT ≤ kALG

This talk

Algorithm for the infinite cache case

❖ Captures core difficulty of the problem

17

This talk

Algorithm for the infinite cache case

❖ Captures core difficulty of the problem

❖ Still non-trivial because of negative requests!

❖ O(depth(T))-competitive algorithm for this case.

17

Our counter-based algorithm
❖ Without loss of generality: all requests cost 1  

(positive at non-cached nodes, negative at cached ones)

❖ Counter = number of requests at node from the last fetch /
eviction of this node.

18

0

0 0 0 0

0

0

00 0

0

cached node

non-cached node

Assume: α = 2.

Our counter-based algorithm
❖ Without loss of generality: all requests cost 1  

(positive at non-cached nodes, negative at cached ones)

❖ Counter = number of requests at node from the last fetch /
eviction of this node.

18

0

0 0 0 0

0

0

00 0

0

cached node

non-cached node
1

Assume: α = 2.

Our counter-based algorithm
❖ Without loss of generality: all requests cost 1  

(positive at non-cached nodes, negative at cached ones)

❖ Counter = number of requests at node from the last fetch /
eviction of this node.

18

0

0 0 0 0

0

0

00 0

0

cached node

non-cached node
1

1

Assume: α = 2.

Our counter-based algorithm
❖ Without loss of generality: all requests cost 1  

(positive at non-cached nodes, negative at cached ones)

❖ Counter = number of requests at node from the last fetch /
eviction of this node.

18

0

0 0 0 0

0

0

00 0

0

cached node

non-cached node
1

12

Assume: α = 2.

Our counter-based algorithm
❖ Without loss of generality: all requests cost 1  

(positive at non-cached nodes, negative at cached ones)

❖ Counter = number of requests at node from the last fetch /
eviction of this node.

18

0

0 0 0 0

0

0

00 0

0

cached node

non-cached node
1

12

Assume: α = 2.

1

Our counter-based algorithm
❖ Without loss of generality: all requests cost 1  

(positive at non-cached nodes, negative at cached ones)

❖ Counter = number of requests at node from the last fetch /
eviction of this node.

18

0

0 0 0 0

0

0

00 0

0

cached node

non-cached node
1

1

12

Assume: α = 2.

1

Our counter-based algorithm
❖ Without loss of generality: all requests cost 1  

(positive at non-cached nodes, negative at cached ones)

❖ Counter = number of requests at node from the last fetch /
eviction of this node.

18

0

0 0 0 0

0

0

00 0

0

cached node

non-cached node
1

1

2

12

Assume: α = 2.

1

Our counter-based algorithm
❖ Without loss of generality: all requests cost 1  

(positive at non-cached nodes, negative at cached ones)

❖ Counter = number of requests at node from the last fetch /
eviction of this node.

18

0

0 0 0 0

0

0

00 0

0

cached node

non-cached node
1

1

2

12

Assume: α = 2.
1

1

Our counter-based algorithm
❖ Without loss of generality: all requests cost 1  

(positive at non-cached nodes, negative at cached ones)

❖ Counter = number of requests at node from the last fetch /
eviction of this node.

18

0

0 0 0 0

0

0

00 0

0

cached node

non-cached node
1

1

2

123

Assume: α = 2.
1

1

Our counter-based algorithm
❖ Without loss of generality: all requests cost 1  

(positive at non-cached nodes, negative at cached ones)

❖ Counter = number of requests at node from the last fetch /
eviction of this node.

18

0

0 0 0 0

0

0

00 0

0

cached node

non-cached node
1

1

2

123

Sum of counters at X nodes = X ⋅ α.
AND

If fetched, the cache remains valid.

Assume: α = 2.
1

1

Our counter-based algorithm
❖ Without loss of generality: all requests cost 1  

(positive at non-cached nodes, negative at cached ones)

❖ Counter = number of requests at node from the last fetch /  
last eviction of this node.

19

0 0 1 0

0

0

10 0

0

cached node

non-cached node

Assume: α = 2.

0

Our counter-based algorithm
❖ Without loss of generality: all requests cost 1  

(positive at non-cached nodes, negative at cached ones)

❖ Counter = number of requests at node from the last fetch /  
last eviction of this node.

19

0 0 1 0

0

0

10 0

0

cached node

non-cached node

Assume: α = 2.

0

2

Our counter-based algorithm
❖ Without loss of generality: all requests cost 1  

(positive at non-cached nodes, negative at cached ones)

❖ Counter = number of requests at node from the last fetch /  
last eviction of this node.

19

0 0 1 0

0

0

10 0

0

cached node

non-cached node

Assume: α = 2.

0

2

1

Our counter-based algorithm
❖ Without loss of generality: all requests cost 1  

(positive at non-cached nodes, negative at cached ones)

❖ Counter = number of requests at node from the last fetch /  
last eviction of this node.

19

0 0 1 0

0

0

10 0

0

cached node

non-cached node

Assume: α = 2.

0

23

1

Our counter-based algorithm
❖ Without loss of generality: all requests cost 1  

(positive at non-cached nodes, negative at cached ones)

❖ Counter = number of requests at node from the last fetch /  
last eviction of this node.

19

0 0 1 0

0

0

10 0

0

cached node

non-cached node

Assume: α = 2.

0

23

1

Sum of counters at X nodes = X ⋅ α.
AND

If evicted, the cache remains valid.

Our counter-based algorithm
❖ Without loss of generality: all requests cost 1  

(positive at non-cached nodes, negative at cached ones)

❖ Counter = number of requests at node from the last fetch /  
last eviction of this node.

19

0 0 0

0

0

10 0

0

cached node

non-cached node

Assume: α = 2.

0

0

Glimpse of analysis

The plan

Analysis when tree T is a line

❖ Nicer geometry.

❖ Omits gory details of the general case.

21

Bounding cost of ALG

22

time

Bounding cost of ALG

22

time

Bounding cost of ALG

22

+

time

Bounding cost of ALG

22

+

time

Bounding cost of ALG

22

+

-

time

Bounding cost of ALG

22

+

-

time

Bounding cost of ALG

22

+

-

+

time

Bounding cost of ALG

22

+

-

+

time

Bounding cost of ALG

22

+

-

+

+

time

Bounding cost of ALG

22

+

-

+

+

time

Bounding cost of ALG

22

+

-

+

+

time

Bounding cost of ALG

22

+

-

+

+

time

Bounding cost of ALG

22

+

-

+

+ -

time

Bounding cost of ALG

22

+

-

+

+ -

time

Bounding cost of ALG

22

+

-

+

+ -

- time

Bounding cost of ALG

22

+

-

+

+ -

- time

Bounding cost of ALG

22

+

-

+

+ -

-

-

time

Bounding cost of ALG

22

+

-

+

+ -

-

-

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

+

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

+

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

+ +

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

+ +

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

+ + +

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

+ + +

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

+ + +
+

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

+ + +
+

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

+ + +
+

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

+ + +
+

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

+ + +
+ -

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

+ + +
+ -

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

+ + +
+ - -

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

+ + +
+ - -

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

+ + +
+ - -

time

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

+ + +
+ - -

time

 For any field F, ALG pays:
 * height(F) ⋅ α for requests inside F and 
 * height(F) ⋅ α for cache change at the end of F

Bounding cost of ALG

22

+

-

+

+ -

-

- -

+

+

+ + +
+ - -

time

On average: ALG pays O(α) for each arrow (or)

 For any field F, ALG pays:
 * height(F) ⋅ α for requests inside F and 
 * height(F) ⋅ α for cache change at the end of F

Ideal fields

23

+ +

+

+

+

+

Ideal field = each node receives exactly α requests.

OPT cost for ideal fields

24

+

-

+

+ -

-

-

-

+

+

+

+

+

+

- -

OPT cost for ideal fields

24

+

-

+

+ -

-

-

-

+

+

+

+

+

+

- -

Look at the history of any node

OPT cost for ideal fields

24

+ + - - + +

OPT cost for ideal fields

25

+ + - - + +

❖ Recall: ALG pays O(α) for each arrow (or)  
 
 
 
 

OPT cost for ideal fields

25

+ + - - + +

❖ Recall: ALG pays O(α) for each arrow (or)  
 
 
 
 

❖ OPT pays at least α here  
(for fetch, eviction, for positive or for negative requests)

OPT cost for ideal fields

25

+ + - - + +

❖ Recall: ALG pays O(α) for each arrow (or)  
 
 
 
 

❖ OPT pays at least α here  
(for fetch, eviction, for positive or for negative requests)

OPT cost for ideal fields

25

ALG is O(1)-competitive for input that induces ideal fields.

+ + - - + +

Arbitrary (non-ideal) fields

26

+

+ +

+ ++ + +

+

+

It is possible to shift requests in each field, so that:

❖ the resulting sequence is not more difficult for OPT,

❖ the resulting field is ``almost ideal’’, i.e.,  
Ω(1 / height(T)) of all nodes have Ω(α) requests.

Arbitrary (non-ideal) fields

26

+

+ +

+ ++ + +

+

+

It is possible to shift requests in each field, so that:

❖ the resulting sequence is not more difficult for OPT,

❖ the resulting field is ``almost ideal’’, i.e.,  
Ω(1 / height(T)) of all nodes have Ω(α) requests.

ALG is O(height(T))-competitive for any input

Arbitrary (non-ideal) fields

26

+

+ +

+ ++ + +

+

+

It is possible to shift requests in each field, so that:

❖ the resulting sequence is not more difficult for OPT,

❖ the resulting field is ``almost ideal’’, i.e.,  
Ω(1 / height(T)) of all nodes have Ω(α) requests.

ALG is O(height(T))-competitive for any input

“Requests density“ is higher on the top of
the field. We shift requests down.

Outlook

❖ Tree caching problem = abstraction for FIB offloading.

❖ Simple, competitive counter-based algorithm.

❖ Algorithm can be implemented efficiently at the controller.

27

Thank you!

Alternative solution: FIB compression
❖ Replacing the set of rules by smaller and equivalent set.

 Draves, King, Venkatachary, Zill (INFOCOM ’99);  
 Suri, Sandholm, Warkhede (Algorithmica ’03)  

29

Alternative solution: FIB compression
❖ Replacing the set of rules by smaller and equivalent set.

 Draves, King, Venkatachary, Zill (INFOCOM ’99);  
 Suri, Sandholm, Warkhede (Algorithmica ’03)  

❖ Problematic in presence of updates (thousands rule updates / sec.)

✦ Systems-oriented approaches

Liu, Zhao, Nam, Wang, Zhang (GLOBECOM ’10); Zhao, Liu, Wang, Zhang
(INFOCOM ’10); Uzmi, Nebel, Tariq, Jawad, Chen, Shaikh, Wang, Francis
(CoNEXT ’11); Karpilovsky, Caesar, Rexford, Shaikh, Merwe (Trans. Netw Serv.
Manag. ’12); Liu, Zhang, Wang (INFOCOM ’13); Luo, Xie, Salamatian, Uhlig,
Mathy, Xie (INFOCOM ’13); Rétvári, Tapolcai, Korösi, Majdán, Heszberger
(SIGCOMM ’13), …  

✦ Analytic (competitive-ratio based) approaches

B., Schmid (SIROCCO ’13); B., Sarrar, Schmid, Uhlig. (ICDCS ’14)
29

