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Mouvaton: routers



Router
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stream of packets

outgoling ports

For each incoming packet, a router:
takes a packet destination address (bit string of length w),
finds a matching rule in its forwarding table (FIB),

the rule defines outgoing port for a packet.
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32 bits for IPv4, 128 bits for IPv6

For each incoming packet, a router:
takes a packet destination address (bit string of length w),
finds a matching rule in its forwarding table (FIB),

the rule defines outgoing port for a packet.
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Forwarding table (F1B)

If packet’s destination add TR
packets destination adaress Forward it via port ...

starts with prefix

€ port gray

0 port yellow
011 port green

1 port red
1010 port blue
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Forwarding table (F1B)

If packet’s destination address
starts with prefix

Forward it via port ...

2 port gray
0
UL port green
- port red
1010 port blue
o @ | If many rules match chooseg :
=T ~ = *‘the one that ”matches best” |
stream _
of packets = has longest preﬁx
i ports S |



Alternative representation of F1B

Trie storing prefixes




Alternative representation of F1B

Trie storing prefixes

One of possible implementations,
we do not assume it.
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The problem: FIB size
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+  Many routers operate at the edge of their memory capacity.

»  Upgrading memory expensive (specialized TCAM chips for fast lookups).
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Solution: FIB offloading

Idea: store only subset of rules in the router
* What rules should be kept?

* How to handle remaining rules?

Next-slide setup proposed and tested experimentally by

Kim, Caesar, Gerber, Rexford (PAM’09); Sarrar, Uhlig, Feldmann, Sherwood, Huang,
(SIGCOMM “12); Liu, Lehman, Wang (Comp. Netw. "15); Katta, Alipourfard,
Rexford, Walker (SOSR 16); ...



FIB offloading setup

router: small and fast memory
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rule updates
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FIB offloading setup

rule updates

—— B

controller: large and slow memory router: small and fast memory

artificial rule forwarding
unmatched packets to controller

stores whole FIB stores chosen ““bottom part” of FIB



Arriving packet (case 1)

router: stores chosen ““bottom part” of FIB

If packet was matched by BOTTOM rules (e.g., destination = 111111...)

... it is still matched by bottom rules and processed at router.
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Arriving packet (case 2)

controller: stores whole FIB router: stores chosen ““bottom part” of FIB

If packet was matched by TOP rules (e.g., destination = 1100000...)

... it is matched by default route, and forwarded to the controller.
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Arriving packet (case 2)

Controller finds a port and returns

TAGGED packet to router

controller: stores whole FIB

If packet was matched by TOP rules (e.g., destination = 1100000...)

... it is matched by default route, and forwarded to the controller.
10



Arriving packet (case 2)

Controller finds a port and returns

TAGGED packet to router

troller: st hole FIB . :
conrtroliier: stores wnoile Same forwardlng b@haVIOT

but SLOWER.

If packet was matched by TOP rules (e.g., destination = 1100000...)

... it is matched by default route, and forwarded to the controller.
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Abstraction: caching



T'ree caching

controller: & router (cache):
=

= tree T of all items subforest of T, at most k items

+ Input = sequence of requests to items.
+ Cache hit — cost 0, cache miss — cost 1.

+ Changing cache (single item fetch or eviction) — cost a > 1.
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T'ree caching

controller: & router (cache):
=

= tree T of all items subforest of T, at most k items

« Input = sequence of requests to items. s

and tree dependencies
between items”

+ Cache hit — cost 0, cache miss — cost 1.

+ Changing cache (single item fetch or eviction) — cost a > 1.
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External updates to rule

controller:
& » all FIB rules

Other routers
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External updates to rule

controller:
& » all FIB rules

Other routers
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External updates to rule

controller:
& » all FIB rules

Other routers

If the updated rule is also stored at router (is cached), it needs to be
updated — cost a = 1.
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Tree caching (final version)

l ‘ controller: router (cache):
= » tree T of all items W sub-forest of T, at most k items

o%

»  Input = sequence of requests to items
+ Positive request: cost 1 iff item is not cached.
+ Negative request: cost 1 iff item is cached.

+ Changing cache (single item fetch or eviction) — cost a > 1.
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Tree caching (final version)

l \ controller: router (cache):
= » tree T of all items W sub-forest of T, at most k items

o

»  Input = sequence of requests to items

Actual costs can be

+ Positive request: cost 1 itf item is not cached. simulated by these.

+ Negative request: cost 1 iff item is cached.

+ Changing cache (single item fetch or eviction) — cost a > 1.
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Our results

Performance measure
Online problem.

Goal: minimize the competitive ratio (max; ALG(I) / OPT(I)).
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Our results
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has cache of size kaig

Online problem.

Goal: minimize the competitive ratio (max; ALG(I) / OPT(I)).

Tree caching
O( karc / (karc - kopr + 1) * height(T) )-competitive algorithm.

Lower bound of Q( karg / (karc - kopr + 1) ).
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Our results

he of siz <
Performance measure has cache of size korr < kaLc

has cache of size kaig

Online problem.

Goal: minimize the competitive ratio (max; ALG(I) / OPT(I)).

Tree caching
O( karc / (karc - kopr + 1) * height(T) )-competitive algorithm.

Lower bound of Q( karg / (karc - kopr + 1) ). By a reduction to

caching problem
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This talk

Algorithm for the infinite cache case

Captures core difficulty of the problem
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This talk

Algorithm for the infinite cache case
Captures core difficulty of the problem
Still non-trivial because of negative requests!

O(depth(T))-competitive algorithm for this case.
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Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
eviction of this node.

o
oﬂo )fz} @ coched node
oo

- non-cached node

Assume: o = 2.
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Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
eviction of this node.

Sum of counters at X nodes = X : «&.
AND

If fetched, the cache remains valid.

. cached node

@ non-cached node

Assume: o = 2.
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Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
last eviction of this node.

Sum of counters at X nodes = X : .
AND

If evicted, the cache remains valid.

. cached node

@ non-cached node

Assume: o = 2.
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Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
last eviction of this node.

- cached node

- non-cached node

Assume: o = 2.
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Glimpse of analysis



The plan

Analysis when tree T is a line
Nicer geometry.

Omits gory details of the general case.
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Bounding cost of ALG
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Bounding cost of ALG
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Bounding cost of ALG

For any field E ALG pays:
* height(F)  a for requests inside F and

* height(F) - « for cache change at the end of F

X
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Bounding cost of ALG

For any field E ALG pays:
* height(F)  a for requests inside F and
* height(F) - « for cache change at the end of F

o time




Ideal fields

Ideal field = each node receives exactly a requests.
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OPT cost for ideal fields
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OPT cost for ideal fields
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Look at the history of any node

24



OPT cost for ideal fields

24



OPT cost for ideal fields

25



OPT cost for ideal fields

* Recall: ALG pays O(at) for each arrow ( ? A ¢)
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(for fetch, eviction, for positive or for negative requests)
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* Recall: ALG pays O(a) for each arrow ( ? AL ¢)

* OPT pays at least a here
(for fetch, eviction, for positive or for negative requests)
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Arbitrary (non-ideal) fields

[t is possible to shift requests in each field, so that:
the resulting sequence is not more difficult for OPT,

the resulting field is “~almost ideal”, i.e.,
Q(1 / height(T)) of all nodes have Q(«x) requests.
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Arbitrary (non-ideal) fields

[t is possible to shift requests in each field, so that:
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the resulting sequence is not more difficult for OPT,

* the resulting field is “~~almost ideal”, i.e.,
Q(1 / height(T)) of all nodes have Q(«x) requests.
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Arbitrary (non-ideal) fields

It is possible to shift req “Requests density” is higher on the top ot

the field. We shift requests down.
* the resulting sequence 1s not m

7/

*  the resulting field is ““almost ideal”, i.e.
Q(1 / height(T)) of all nodes have Q(a) requests.
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Outlook

Tree caching problem = abstraction for FIB offloading.
Simple, competitive counter-based algorithm.

Algorithm can be implemented efficiently at the controller.
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Thank you!



Alternative solution: FIB compression

Replacing the set of rules by smaller and equivalent set.

Draves, King, Venkatachary, Zill INFOCOM ’99);
Suri, Sandholm, Warkhede (Algorithmica "03)
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Alternative solution: FIB compression

o,

» Replacing the set of rules by smaller and equivalent set.

Draves, King, Venkatachary, Zill INFOCOM ’99);
Suri, Sandholm, Warkhede (Algorithmica "03)

X/
L X4

Problematic in presence of updates (thousands rule updates / sec.)

+ Systems-oriented approaches

Liu, Zhao, Nam, Wang, Zhang (GLOBECOM ’10); Zhao, Liu, Wang, Zhang
(INFOCOM "10); Uzmi, Nebel, Tariq, Jawad, Chen, Shaikh, Wang, Francis
(CoNEXT "11); Karpilovsky, Caesar, Rexford, Shaikh, Merwe (Trans. Netw Serv.
Manag. '12); Liu, Zhang, Wang (INFOCOM "13); Luo, Xie, Salamatian, Uhlig,
Mathy, Xie (INFOCOM "13); Rétvari, Tapolcai, Korosi, Majdan, Heszberger
(SIGCOMM "13), ...

+ Analytic (competitive-ratio based) approaches

B., Schmid (SIROCCO “13); B., Sarrar, Schmid, Uhlig. (ICDCS "14)
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