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Motivation: routers



Router

For each incoming packet, a router:

❖ takes a packet destination address (bit string of length w),

❖ finds a matching rule in its forwarding table (FIB),

❖ the rule defines outgoing port for a packet. 
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Forwarding table (FIB)
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If packet’s destination address  
starts with prefix Forward it via port …

ε port gray
0 port yellow

011 port green
1 port red
… …

1010 port blue
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Forwarding table (FIB)

4

If packet’s destination address  
starts with prefix Forward it via port …

ε port gray
0 port yellow

011 port green
1 port red
… …

1010 port blue

If many rules match, choose  
the one that “matches best“  
= has longest prefix.stream 

of packets
ports



Alternative representation of FIB
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Alternative representation of FIB

5

One of possible implementations,  
we do not assume it.

1

00 100 101 111

ε

011

10101000 1001

0

Rule lookup = start from the root and proceed as deep as possible.

Trie storing prefixes



The problem: FIB size

❖ Many routers operate at the edge of their memory capacity.

❖ Upgrading memory expensive (specialized TCAM chips for fast lookups).
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Solution: FIB offloading

7

Idea: store only subset of rules in the router

❖ What rules should be kept? 

❖ How to handle remaining rules?

Next-slide setup proposed and tested experimentally by  
Kim, Caesar, Gerber, Rexford (PAM’09);  Sarrar, Uhlig, Feldmann, Sherwood, Huang, 
(SIGCOMM ’12);  Liu, Lehman, Wang  (Comp. Netw. ’15);  Katta, Alipourfard, 
Rexford, Walker (SOSR ’16); …



FIB offloading setup
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FIB offloading setup
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00 100 101 111

ε

011

10101000 1001

0

controller: large and slow memory router: small and fast memory

stores whole FIB stores chosen ``bottom part’’ of FIB

100 111
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ε

artificial rule forwarding  
unmatched packets to controller

rule updates



Arriving packet (case 1)
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If packet was matched by BOTTOM rules (e.g., destination = 111111…)

… it is still matched by bottom rules and processed at router.



Arriving packet (case 2)
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Arriving packet (case 2)
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controller: stores whole FIB router: stores chosen ``bottom part’’ of FIB
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If packet was matched by TOP rules (e.g., destination = 1100000…)

… it is matched by default route, and forwarded to the controller.

Controller finds a port and returns 
TAGGED packet to router

Same forwarding behavior  
but SLOWER.



Abstraction:  caching



Tree caching
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❖ Input = sequence of requests to items.

❖ Cache hit → cost 0,  cache miss → cost 1.

❖ Changing cache (single item fetch or eviction) → cost α ≥ 1.
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tree T of all items

router (cache):  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❖ Input = sequence of requests to items.

❖ Cache hit → cost 0,  cache miss → cost 1.

❖ Changing cache (single item fetch or eviction) → cost α ≥ 1.

“Caching with bypassing  
and tree dependencies 

between items“
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External updates to rule

❖ If the updated rule is also stored at router (is cached), it needs to be 
updated → cost α ≥ 1.
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Tree caching (final version)
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Tree caching (final version)
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tree T of all items

router (cache):  
sub-forest of T, at most k items
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❖ Input = sequence of requests to items

✦ Positive request: cost 1 iff item is not cached.

✦ Negative request: cost 1 iff item is cached.

❖ Changing cache (single item fetch or eviction) → cost α ≥ 1.

Actual costs can be 
simulated by these.



Algorithm



Our results

Performance measure

❖ Online problem.

❖ Goal: minimize the competitive ratio (maxI ALG(I) / OPT(I)).  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Our results

Performance measure

❖ Online problem.

❖ Goal: minimize the competitive ratio (maxI ALG(I) / OPT(I)).  
 

Tree caching

❖ O( kALG / (kALG  - kOPT + 1) * height(T) )-competitive algorithm.

❖ Lower bound of !( kALG / (kALG  - kOPT + 1) ).
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By a reduction to 
caching problem

has cache of size kALG

has cache of size kOPT ≤ kALG



This talk

Algorithm for the infinite cache case

❖ Captures core difficulty of the problem
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This talk

Algorithm for the infinite cache case

❖ Captures core difficulty of the problem

❖ Still non-trivial because of negative requests!

❖ O(depth(T))-competitive algorithm for this case.
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Our counter-based algorithm
❖ Without loss of generality: all requests cost 1  

(positive at non-cached nodes, negative at cached ones)

❖ Counter = number of requests at node from the last fetch / 
eviction of this node.
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Glimpse of analysis



The plan

Analysis when tree T is a line

❖ Nicer geometry.

❖ Omits gory details of the general case.
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 For any field F, ALG pays:
 *  height(F) ⋅ α  for requests inside F  and 
 *  height(F) ⋅ α  for cache change at the end of F
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 For any field F, ALG pays:
 *  height(F) ⋅ α  for requests inside F  and 
 *  height(F) ⋅ α  for cache change at the end of F



Ideal fields
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❖ OPT pays at least α here  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OPT cost for ideal fields
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26

+

+ +

+ ++ + +

+

+

It is possible to shift requests in each field, so that:

❖ the resulting sequence is not more difficult for OPT,

❖ the resulting field is ``almost ideal’’, i.e.,  
Ω(1 / height(T)) of all nodes have Ω(α) requests.



Arbitrary (non-ideal) fields

26

+

+ +

+ ++ + +

+

+

It is possible to shift requests in each field, so that:

❖ the resulting sequence is not more difficult for OPT,

❖ the resulting field is ``almost ideal’’, i.e.,  
Ω(1 / height(T)) of all nodes have Ω(α) requests.

ALG is O(height(T))-competitive for any input



Arbitrary (non-ideal) fields

26

+

+ +

+ ++ + +

+

+

It is possible to shift requests in each field, so that:

❖ the resulting sequence is not more difficult for OPT,

❖ the resulting field is ``almost ideal’’, i.e.,  
Ω(1 / height(T)) of all nodes have Ω(α) requests.

ALG is O(height(T))-competitive for any input

“Requests density“ is higher on the top of 
the field. We shift requests down.



Outlook

❖ Tree caching problem = abstraction for FIB offloading.

❖ Simple, competitive counter-based algorithm.

❖ Algorithm can be implemented efficiently at the controller.
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Thank you!



Alternative solution: FIB compression
❖ Replacing the set of rules by smaller and equivalent set.

   Draves, King, Venkatachary, Zill (INFOCOM ’99);    
   Suri, Sandholm, Warkhede (Algorithmica ’03)  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Alternative solution: FIB compression
❖ Replacing the set of rules by smaller and equivalent set.

   Draves, King, Venkatachary, Zill (INFOCOM ’99);    
   Suri, Sandholm, Warkhede (Algorithmica ’03)  

❖ Problematic in presence of updates (thousands rule updates / sec.)

✦ Systems-oriented approaches

Liu, Zhao, Nam, Wang, Zhang (GLOBECOM ’10);   Zhao, Liu, Wang, Zhang 
(INFOCOM ’10);  Uzmi, Nebel, Tariq, Jawad, Chen, Shaikh, Wang, Francis 
(CoNEXT ’11);  Karpilovsky, Caesar, Rexford, Shaikh, Merwe (Trans. Netw Serv. 
Manag. ’12);  Liu, Zhang, Wang (INFOCOM ’13);  Luo, Xie, Salamatian, Uhlig, 
Mathy, Xie (INFOCOM ’13);  Rétvári, Tapolcai, Korösi, Majdán, Heszberger 
(SIGCOMM ’13), …  

✦ Analytic (competitive-ratio based) approaches 

B., Schmid (SIROCCO ’13); B., Sarrar, Schmid, Uhlig. (ICDCS ’14)
29


