Online Tree Caching

Marcin Maciej Stefan Aleksandra
Bienkowski Marcinkowski Pacut Schmid Spyra
University University University University el
of Wroctaw of Wroctaw of Wroctaw of Aalborg e

SPAA 2017

Mouvaton: routers

Router

T @

stream of packets

outgoling ports

For each incoming packet, a router:
takes a packet destination address (bit string of length w),
finds a matching rule in its forwarding table (FIB),

the rule defines outgoing port for a packet.

3

COOOO

Router

R R R e R @

stream of packets

outgoling ports

o000

32 bits for IPv4, 128 bits for IPv6

For each incoming packet, a router:
takes a packet destination address (bit string of length w),
finds a matching rule in its forwarding table (FIB),

the rule defines outgoing port for a packet.

3

Forwarding table (F1B)

If packet’s destination add TR
packets destination adaress Forward it via port ...

starts with prefix

€ port gray

0 port yellow
011 port green

1 port red
1010 port blue

—— T
S——
stream U

of packets
ports

Forwarding table (F1B)

If packet’s destination address
starts with prefix

Forward it via port ...

2 port gray
0
UL port green
- port red
1010 port blue
o @ | If many rules match chooseg :
=T ~ = *‘the one that ”matches best” |
stream _
of packets = has longest preﬁx
i ports S |

Alternative representation of F1B

Trie storing prefixes

Alternative representation of F1B

Trie storing prefixes

One of possible implementations,
we do not assume it.

1000 1001

The problem: FIB size

ner—r—m7m—rnr r. r. .. r.r.r.. 11111111 1 1 1 T T T 11

600000 |-
500000
400000 |-

300000 |-

Active BGP entries (FIB)

Report from http://bgp.potaroo.net/as1221/

| S

200000 |- =
)

O

<

100000 |- I
«

W

N

ol o T e o

89 90 91 92 93 94 95 96 97 93 99 00 0L 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 =

(8=

Date

+ Many routers operate at the edge of their memory capacity.

» Upgrading memory expensive (specialized TCAM chips for fast lookups).

6

Solution: FIB offloading

Idea: store only subset of rules in the router
* What rules should be kept?

* How to handle remaining rules?

Next-slide setup proposed and tested experimentally by

Kim, Caesar, Gerber, Rexford (PAM’09); Sarrar, Uhlig, Feldmann, Sherwood, Huang,
(SIGCOMM “12); Liu, Lehman, Wang (Comp. Netw. "15); Katta, Alipourfard,
Rexford, Walker (SOSR 16); ...

FIB offloading setup

router: small and fast memory

FIB offloading setup

controller: large and slow memory router: small and fast memory

FIB offloading setup

controller: large and slow memory router: small and fast memory

stores whole FIB

FIB offloading setup

rule updates

R

controller: large and slow memory router: small and fast memory

stores whole FIB

FIB offloading setup

rule updates

.

controller: large and slow memory router: small and fast memory

stores whole FIB stores chosen ““bottom part” of FIB

FIB offloading setup

rule updates

.

controller: large and slow memory router: small and fast memory

stores whole FIB stores chosen ““bottom part” of FIB

FIB offloading setup

rule updates

i

controller: large and slow memory router: small and fast memory

stores whole FIB stores chosen ““bottom part” of FIB

FIB offloading setup

rule updates

—— B

controller: large and slow memory router: small and fast memory

artificial rule forwarding
unmatched packets to controller

stores whole FIB stores chosen ““bottom part” of FIB

Arriving packet (case 1)

router: stores chosen ““bottom part” of FIB

If packet was matched by BOTTOM rules (e.g., destination = 111111...)

... it is still matched by bottom rules and processed at router.
9

Arriving packet (case 2)

controller: stores whole FIB router: stores chosen ““bottom part” of FIB

If packet was matched by TOP rules (e.g., destination = 1100000...)

... it is matched by default route, and forwarded to the controller.
10

Arriving packet (case 2)

Controller finds a port and returns

TAGGED packet to router

controller: stores whole FIB

If packet was matched by TOP rules (e.g., destination = 1100000...)

... it is matched by default route, and forwarded to the controller.
10

Arriving packet (case 2)

Controller finds a port and returns

TAGGED packet to router

troller: st hole FIB . :
conrtroliier: stores wnoile Same forwardlng b@haVIOT

but SLOWER.

If packet was matched by TOP rules (e.g., destination = 1100000...)

... it is matched by default route, and forwarded to the controller.
10

Abstraction: caching

T'ree caching

controller: & router (cache):
=

= tree T of all items subforest of T, at most k items

+ Input = sequence of requests to items.
+ Cache hit — cost 0, cache miss — cost 1.

+ Changing cache (single item fetch or eviction) — cost a > 1.

12

T'ree caching

controller: & router (cache):
=

= tree T of all items subforest of T, at most k items

« Input = sequence of requests to items. s

and tree dependencies
between items”

+ Cache hit — cost 0, cache miss — cost 1.

+ Changing cache (single item fetch or eviction) — cost a > 1.

12

External updates to rule

controller:
& » all FIB rules

Other routers

13

External updates to rule

controller:
& » all FIB rules

Other routers

13

External updates to rule

controller:
& » all FIB rules

Other routers

If the updated rule is also stored at router (is cached), it needs to be
updated — cost a = 1.

13

Tree caching (final version)

l ‘ controller: router (cache):
= » tree T of all items W sub-forest of T, at most k items

o%

» Input = sequence of requests to items
+ Positive request: cost 1 iff item is not cached.
+ Negative request: cost 1 iff item is cached.

+ Changing cache (single item fetch or eviction) — cost a > 1.

14

Tree caching (final version)

l \ controller: router (cache):
= » tree T of all items W sub-forest of T, at most k items

o

» Input = sequence of requests to items

Actual costs can be

+ Positive request: cost 1 itf item is not cached. simulated by these.

+ Negative request: cost 1 iff item is cached.

+ Changing cache (single item fetch or eviction) — cost a > 1.

14

Our results

Performance measure
Online problem.

Goal: minimize the competitive ratio (max; ALG(I) / OPT(I)).

16

Our results

Performance measure

has cache of size kaig

Online problem.

Goal: minimize the competitive ratio (max; ALG(I) / OPT(I)).

16

Our results

he of siz <
Performance measure has cache of size korr < kaLc

has cache of size kaig

Online problem.

Goal: minimize the competitive ratio (max; ALG(I) / OPT(I)).

16

Our results

he of siz <
Performance measure has cache of size korr < kaLc

has cache of size kaig

Online problem.

Goal: minimize the competitive ratio (max; ALG(I) / OPT(I)).

Tree caching
O(karc / (karc - kopr + 1) * height(T))-competitive algorithm.

Lower bound of Q(karg / (karc - kopr + 1)).

16

Our results

he of siz <
Performance measure has cache of size korr < kaLc

has cache of size kaig

Online problem.

Goal: minimize the competitive ratio (max; ALG(I) / OPT(I)).

Tree caching
O(karc / (karc - kopr + 1) * height(T))-competitive algorithm.

Lower bound of Q(karg / (karc - kopr + 1)). By a reduction to

caching problem

16

This talk

Algorithm for the infinite cache case

Captures core difficulty of the problem

117

This talk

Algorithm for the infinite cache case
Captures core difficulty of the problem
Still non-trivial because of negative requests!

O(depth(T))-competitive algorithm for this case.

117

Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
eviction of this node.

o
oﬂo)fz} @ coched node
oo

- non-cached node

Assume: o = 2.

18

Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
eviction of this node.

o
oﬂo /z/I}b @ coched node
oo

- non-cached node

Assume: o = 2.

18

Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
eviction of this node.

- cached node
é - non-cached node

Assume: o = 2.

18

Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
eviction of this node.

- cached node
é - non-cached node

Assume: o = 2.

18

Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
eviction of this node.

- cached node

- non-cached node

Assume: o = 2.

18

Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
eviction of this node.

- cached node

- non-cached node

Assume: o = 2.

18

Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
eviction of this node.

- cached node

- non-cached node

Assume: o = 2.

18

Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
eviction of this node.

- cached node

- non-cached node

Assume: o = 2.

18

Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
eviction of this node.

- cached node

- non-cached node

Assume: o = 2.

18

Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
eviction of this node.

Sum of counters at X nodes = X : «&.
AND

If fetched, the cache remains valid.

. cached node

@ non-cached node

Assume: o = 2.

18

Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
last eviction of this node.

S
oﬂo /z& @ cched node
© O o

- non-cached node

Assume: o = 2.

19

Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
last eviction of this node.

o o - cached node
- non-cached node
a4

Assume: o = 2.

19

Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
last eviction of this node.

- cached node

- non-cached node

Assume: o = 2.

19

Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
last eviction of this node.

- cached node

- non-cached node

Assume: o = 2.

19

Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
last eviction of this node.

Sum of counters at X nodes = X : .
AND

If evicted, the cache remains valid.

. cached node

@ non-cached node

Assume: o = 2.

19

Our counter-based algorithm

Without loss of generality: all requests cost 1
(positive at non-cached nodes, negative at cached ones)

Counter = number of requests at node from the last fetch /
last eviction of this node.

- cached node

- non-cached node

Assume: o = 2.

19

Glimpse of analysis

The plan

Analysis when tree T is a line
Nicer geometry.

Omits gory details of the general case.

21

Bounding cost of ALG

o
%
1
Y "

22

Bounding cost of ALG

%
%

& _
Y f

22

Bounding cost of ALG

.
%
@ ¢
g

time
R E——

22

Bounding cost of ALG

b |

.

o

Y t.

22

Bounding cost of ALG

N

b |
.
o
Y t.

22

Bounding cost of ALG

-
N

3
&
;T
T t.

22

Bounding cost of ALG

3
T +

i

T . t.

I I EEE—

22

Bounding cost of ALG

3
T +

i

T . t.

I I EEE—

22

Bounding cost of ALG

time

22

Bounding cost of ALG

+

(+
—>

|

%

.y T
T . t.

I I EEE—

22

Bounding cost of ALG

time

22

Bounding cost of ALG

time

22

Bounding cost of ALG

time

22

Bounding cost of ALG

time

22

Bounding cost of ALG

time

22

Bounding cost of ALG

time

22

Bounding cost of ALG

time

22

Bounding cost of ALG

time

22

Bounding cost of ALG

time

22

Bounding cost of ALG

time

Bounding cost of ALG

time

22

Bounding cost of ALG

time

22

Bounding cost of ALG

time

22

Bounding cost of ALG

time

22

Bounding cost of ALG

time

22

Bounding cost of ALG

22

Bounding cost of ALG

22

Bounding cost of ALG

22

Bounding cost of ALG

22

Bounding cost of ALG

22

Bounding cost of ALG

22

Bounding cost of ALG

22

Bounding cost of ALG

22

Bounding cost of ALG

time

Bounding cost of ALG

time

22

Bounding cost of ALG

22

Bounding cost of ALG

22

Bounding cost of ALG

22

Bounding cost of ALG

22

Bounding cost of ALG

22

Bounding cost of ALG

> time

22

Bounding cost of ALG

For any field E ALG pays:
* height(F) a for requests inside F and

* height(F) - « for cache change at the end of F

X

© o||® ©

R

time

22

Bounding cost of ALG

For any field E ALG pays:
* height(F) a for requests inside F and
* height(F) - « for cache change at the end of F

o time

Ideal fields

Ideal field = each node receives exactly a requests.

23

OPT cost for ideal fields

24

OPT cost for ideal fields

+

-+

i -

Look at the history of any node

24

OPT cost for ideal fields

24

OPT cost for ideal fields

25

OPT cost for ideal fields

* Recall: ALG pays O(at) for each arrow (? A ¢)

25

OPT cost for ideal fields

* Recall: ALG pays O(a) for each arrow (? AL ¢)

* OPT pays at least a here
(for fetch, eviction, for positive or for negative requests)

25

OPT cost for ideal fields

* Recall: ALG pays O(a) for each arrow (? AL ¢)

* OPT pays at least a here
(for fetch, eviction, for positive or for negative requests)

25

Arbitrary (non-ideal) fields

[t is possible to shift requests in each field, so that:
the resulting sequence is not more difficult for OPT,

the resulting field is “~almost ideal”, i.e.,
Q(1 / height(T)) of all nodes have Q(«x) requests.

© © © O +
+

H

—
© o

26

Arbitrary (non-ideal) fields

[t is possible to shift requests in each field, so that:

7/
%

the resulting sequence is not more difficult for OPT,

* the resulting field is “~~almost ideal”, i.e.,
Q(1 / height(T)) of all nodes have Q(«x) requests.

© © © O +
+

H

—
© o

Arbitrary (non-ideal) fields

It is possible to shift req “Requests density” is higher on the top ot

the field. We shift requests down.
* the resulting sequence 1s not m

7/

* the resulting field is ““almost ideal”, i.e.
Q(1 / height(T)) of all nodes have Q(a) requests.

© © © O +

H

Outlook

Tree caching problem = abstraction for FIB offloading.
Simple, competitive counter-based algorithm.

Algorithm can be implemented efficiently at the controller.

27

Thank you!

Alternative solution: FIB compression

Replacing the set of rules by smaller and equivalent set.

Draves, King, Venkatachary, Zill INFOCOM ’99);
Suri, Sandholm, Warkhede (Algorithmica "03)

20

Alternative solution: FIB compression

o,

» Replacing the set of rules by smaller and equivalent set.

Draves, King, Venkatachary, Zill INFOCOM ’99);
Suri, Sandholm, Warkhede (Algorithmica "03)

X/
L X4

Problematic in presence of updates (thousands rule updates / sec.)

+ Systems-oriented approaches

Liu, Zhao, Nam, Wang, Zhang (GLOBECOM ’10); Zhao, Liu, Wang, Zhang
(INFOCOM "10); Uzmi, Nebel, Tariq, Jawad, Chen, Shaikh, Wang, Francis
(CoNEXT "11); Karpilovsky, Caesar, Rexford, Shaikh, Merwe (Trans. Netw Serv.
Manag. '12); Liu, Zhang, Wang (INFOCOM "13); Luo, Xie, Salamatian, Uhlig,
Mathy, Xie (INFOCOM "13); Rétvari, Tapolcai, Korosi, Majdan, Heszberger
(SIGCOMM "13), ...

+ Analytic (competitive-ratio based) approaches

B., Schmid (SIROCCO “13); B., Sarrar, Schmid, Uhlig. (ICDCS "14)
29

