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Our research vision: 
Self-* networks!

Self-observing, self-adjusting, self-
repairing, “self-driving”, …
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Rewinding the clock of the 
Internet  to a decade ago...



Rewinding the clock of the 
Internet...

Shortest path routing only

Indirect control: via weights only

Difficult and slow innovation

Proprietary, blackbox implementations

Kudos to: Pedro Casas
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• Opportunities of self-* networks
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– Example 2: Self-repairing networks

• Challenges of desinging self-* networks
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„Demand has structure“
“less than 1% of the rack pairs account for 

80% of the total traffic”

“only a few ToR switches are hot and 
most of their traffic goes to a few 

other ToRs”

“over 90% bytes 
in elephant flows”

ProjecToR @ SIGCOMM 2016
Understanding Data Center Traffic 

Characteristics @ WREN 2009



Intuitive but: how to measure and quantify 
structure? We lack metrics!



Dimension 1: Non-Temporal Structure

Traffic matrix of two different distributed ML applications (GPU-to-GPU):

vs

Color = 
comm. pair
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Two different ways to generate same traffic matrix (same non-temporal structure)

vs

Dimension 2: Temporal Structure
More 
bursty

More 
random
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An Entropy Approach: The Complexity Map

Complexity Map: Entropy 
(„complexity“) of traffic traces.

!

!

More complexity

More structure

Measuring the Complexity of Packet Traces. 
Avin, Ghobadi, Griner, Schmid. ArXiv 2019.
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Complexity Map: Entropy 
(„complexity“) of traffic traces.

Size = product 
of entropy

!

!

An Entropy Approach: The Complexity Map

Measuring the Complexity of Packet Traces. 
Avin, Ghobadi, Griner, Schmid. ArXiv 2019.



Uniform: Today’s 
datacenters

• Traditional networks are optimized 
for the “worst-case” (all-to-all 
communication traffic)

• Example, fat-tree topologies: 
provide full bisection bandwidth
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Good in the worst case but: 
cannot leverage different 

temporal and non-temporal 
structures of traffic traces! 
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An Entropy Approach: The Complexity MapTo exploit temporal structure, 
need adaptive demand-aware 

(“self-adjusting”) networks.

Non-temporal structure could 
be exploited already with static 

demand-aware networks!

Good in the worst case but: 
cannot leverage different 

temporal and non-temporal 
structures of traffic traces! 

11



• Facebook clusters: DB, WEB, HAD
• HPC workloads: CNS, Multigrid
• Distributed Machine Learning (ML)
• Synthetic traces like pFabric

Observation: different applications 
feature quite significant (and 
different!) temporal and non-

temporal structures.
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Both structures!

TOR switches

Mirrors

Lasers

Goal: Design self-adjusting 
networks which leverage both

dimensions of structure!
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Potential gain / tax of
self-adjusting

networks!

Both structures!

No structure!

TOR switches

Mirrors

Lasers

Goal: Design self-adjusting 
networks which leverage both

dimensions of structure!
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An Entropy Approach: The Complexity Map



Algorithms to Exploit Structure
We are mainly interested in online algorithms (with provable
guarantees: competitive ratio)

Online admission control 
and routing

(joint optimization: 
placement and routing)

Virtual network embedding
(slicing) and demand-aware 
reconfiguration/migration

Topology design: 
Graph spanners

22



A Taxonomy: Reconfigurable Networks

Demand-Aware

Reconfigurable

Offline Online

Awareness

Topology

Input

AlgorithmOFF ON

Revealed over time:
learning or online

algorithm

Static
Optimality PropertyDynamic

Optimality
Working 

Set

12



A Taxonomy: Reconfigurable Networks

Demand-Aware

Reconfigurable

Offline Online

Awareness

Topology

Input

AlgorithmOFF ON

Revealed over time:
learning or online

algorithm

Static
Optimality PropertyDynamic

Optimality
Working 

Set

12

Structure does not imply
predictable!
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Cluster with services that 
should be globally reachable.

Cluster with services that should
be accessible only internally.

Reasoning About Failures is Hard for Humans
Example: BGP in
datacenter (!)
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Reasoning About Failures is Hard for Humans
Example: BGP in
datacenter (!)

Da
ta

ce
nt

er

Internet
X and Y announce to 
Internet what is from 

G* (prefix).
X and Y block what is 

from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.
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H

FIf link (G,X) fails and traffic from G is rerouted via Y 
and C to X: X leaks (does not block) G and H as it 

comes from C. (Note: BGP.)
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Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Non-reachability: Is it ensured that

traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Routers and switches store
list of forwarding rules, and 

conditional failover rules.
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E.g. NORDUnet: no traffic via 
Iceland (expensive!). Or no traffic 

through route reflectors. 15
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Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A 

to B never goes via C?
• Waypoint enforcement: Is it ensured

that traffic from A to B is always
routed via a node C?

A

B

C

… and everything even under multiple failures?!

k failures = 
(𝑛𝑛𝑘𝑘) possibilities

E.g. IDS, firewall

15



Can we automate such tests 
or even self-repair?



Can we automate such tests 
or even self-repair?

Yes! Automated What-if Analysis Tool for 
MPLS and SR in polynomial time.



MPLS configurations, 
Segment Routing etc.

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Leveraging Automata-Theoretic Approach

Pushdown Automaton (PDA) and 
Prefix Rewriting Systems Theory

17



Leveraging Automata-Theoretic Approach

MPLS configurations, 
Segment Routing etc.

Pushdown Automaton (PDA) and 
Prefix Rewriting Systems Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Use cases: Sysadmin issues queries 
to test certain properties, or do it 
on a regular basis automatically!

17



Tool and Query Language

Part 1: Parses query
and constructs Push-
Down System (PDS)
• In Python 3

query processing flow

Part 2: Reachability 
analysis of 
constructed PDS
• Using Moped tool

Regular query language

k <a> b <c>
# failures header

header
path

18



YES!
(Gives witness!)

2 failures

Example: Traversal Testing With 2 Failures
Traversal test with k=2: Can traffic starting with [] go through s5, under up to k=2 failures?

push

push

stack
size!

pop

pop

Query: k=2 [] s1 >> s5 >> s7 []

18



A Complex and Big Formal Language! 
Why Polynomial Time?

• Arbitrary number k of failures: How can I avoid
checking all (𝑛𝑛𝑘𝑘) many options?

• Even if we reduce to push-down automaton: 
simple operations such as emptiness testing or
intersection on PDA is computationally non-trivial 
and sometimes even undecidable!

k failures = 
(𝑛𝑛𝑘𝑘) possibilities

19



Time for Automata Theory
(from Switzerland!)

Julius Richard Büchi

1924-1984

Swiss logician

• Classic result by Büchi 1964: the set of all reachable
configurations of a pushdown automaton a is regular set

• Hence, we can operate only on Nondeterministic Finite 
Automata (NFAs) when reasoning about the pushdown 
automata

• The resulting regular operations are all polynomial time
• Important result of model checking

20



Speedup with Machine Learning



Speed Up Further and Synthesize:
Deep Learning

• Yes sometimes without losing guarantees

• Extend graph-based neural networks

• Predict counter-examples and fixes
Network topologies and MPLS rules

Network topologies and query 21



Roadmap

• Opportunities of self-* networks
– Example 1: Demand-aware, self-adjusting networks
– Example 2: Self-repairing networks

• Challenges of desinging self-* networks

5



Challenge 1: Realizing Limits?

• Can a self-* network realize its limits? 

• E.g., when quality of input data is not good enough? 

• When to hand over to human? Or fall back to „safe/oblivious mode“?

• Can we learn from self-driving cars?

24



Challenge 2: Self-Stabilization

A self-stabilizing system guarantees that it reconverges to a desirable 
configuration or state, from any initial state. 

• Could be an attractive property of self-* network!

„Stehaufmännchen“

25



Self-Stabilization
Self-stabilizing algorithms pioneered 
by Dijkstra (1973): for example self-
stabilizing mutual exclusion. 

“I regard this as Dijkstra’s most 
brilliant work. Self-stabilization is a 
very important concept in fault 
tolerance.”
Leslie Lamport (PODC 1983)

Some notable works by Perlman toward 
self-stabilizing Internet, e.g., self-
stabilizing spanning trees.

Yet, many protocols in the Internet 
are not self-stabilizing. Much need

for future work. 



SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1 vSDN-1

To enable multi-tenancy, 
take existing network

hypervisor (e.g. Flowvisor, 
OpenVirteX): provides

network abstraction and 
control plane translation!

An Experiment: 2 vSDNs with bw guarantee! 

Challenge 3: Modelling
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Challenge 4: Security

Virtualization
Layer

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Virtual switches reside in the server’s virtualization layer
(e.g., Xen’s Dom0). Goal: provide connectivity and isolation. 29



Challenge 4: Security

Number of parsed high-level protocols constantly increases…
30



Challenge 4: Security

User

Kernel

VM VM VM

N
I
C

Virtual SwitchL2,L2.5,
L3,L4

Ethernet
LLC
VLAN
MPLS
IPv4
ICMPv4
TCP
UDP
ARP
SCTP
IPv6
ICMPv6
IPv6 ND
GRE
LISP
VXLAN
PBB
IPv6 EXT HDR
TUNNEL-ID
IPv6 ND
IPv6 EXT HDR
IPv6HOPOPTS
IPv6ROUTING
IPv6Fragment
IPv6DESTOPT
IPv6ESP
IPv6 AH
RARP
IGMP 31
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Conclusions

• Self-* networks: great opportunities
(data and flexibilities), great challenges
(algorithm design: metrics, formal 
methods, machine learning)

• We are hiring and looking for interns

33



Thanks. Questions?
Univ.-Prof. Dr. Stefan Schmid

stefan_schmid@univie.ac.at
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On The Impact of the Network Hypervisor on Virtual Network Performance
Andreas Blenk, Arsany Basta, Wolfgang Kellerer, and Stefan Schmid.
IFIP Networking, Warsaw, Poland, May 2019.
Adaptable and Data-Driven Softwarized Networks: Review, Opportunities, and Challenges (Invited Paper)
Wolfgang Kellerer, Patrick Kalmbach, Andreas Blenk, Arsany Basta, Martin Reisslein, and Stefan Schmid.
Proceedings of the IEEE (PIEEE), 2019.
Efficient Distributed Workload (Re-)Embedding
Monika Henzinger, Stefan Neumann, and Stefan Schmid.
ACM/IFIP SIGMETRICS/PERFORMANCE, Phoenix, Arizona, USA, June 201
Parametrized Complexity of Virtual Network Embeddings: Dynamic & Linear Programming Approximations
Matthias Rost, Elias Döhne, and Stefan Schmid.
ACM SIGCOMM Computer Communication Review (CCR), January 2019.
Charting the Complexity Landscape of Virtual Network Embeddings (Best Paper Award)
Matthias Rost and Stefan Schmid.
IFIP Networking, Zurich, Switzerland, May 2018.
Tomographic Node Placement Strategies and the Impact of the Routing Model
Yvonne Anne Pignolet, Stefan Schmid, and Gilles Tredan.
ACM SIGMETRICS, Irvine, California, USA, June 2018. hmid.
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Ithaca, New York, USA, July 2018.

Flexibilities and Complexity

https://www.univie.ac.at/ct/stefan/ifip19hypervisor.pdf
https://www.univie.ac.at/ct/stefan/ieeeproc19.pdf
https://www.univie.ac.at/ct/stefan/sigmetrics2019learn.pdf
https://www.univie.ac.at/ct/stefan/vnep-tw.pdf
https://www.univie.ac.at/ct/stefan/ifip18landscape.pdf
https://www.univie.ac.at/ct/stefan/sigmetrics18tomography.pdf
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Survey of Reconfigurable Data Center Networks: Enablers, Algorithms, Complexity
Klaus-Tycho Foerster and Stefan Schmid.
SIGACT News, June 2019.
Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks (Editorial)
Chen Avin and Stefan Schmid.
ACM SIGCOMM Computer Communication Review (CCR), October 2018.
Demand-Aware Network Design with Minimal Congestion and Route Lengths
Chen Avin, Kaushik Mondal, and Stefan Schmid.
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.
Documents: paper pdf, bibtex bib
Distributed Self-Adjusting Tree Networks
Bruna Peres, Otavio Augusto de Oliveira Souza, Olga Goussevskaia, Chen Avin, and Stefan Schmid.
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.
Efficient Non-Segregated Routing for Reconfigurable Demand-Aware Networks
Thomas Fenz, Klaus-Tycho Foerster, Stefan Schmid, and Anaïs Villedieu.
IFIP Networking, Warsaw, Poland, May 2019.
DaRTree: Deadline-Aware Multicast Transfers in Reconfigurable Wide-Area Networks
Long Luo, Klaus-Tycho Foerster, Stefan Schmid, and Hongfang Yu.
IEEE/ACM International Symposium on Quality of Service (IWQoS), Phoenix, Arizona, USA, June 2019.
Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
31st International Symposium on Distributed Computing (DISC), Vienna, Austria, October 2017.
SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016. Early version: IEEE IPDPS 2013.
Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures
Klaus-Tycho Foerster, Monia Ghobadi, and Stefan Schmid.
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Ithaca, New York, USA, July 2018.

Demand-Aware and Self-Adjusting Networks

https://www.univie.ac.at/ct/stefan/sigact19.pdf
https://www.univie.ac.at/ct/stefan/ccr18san.pdf
https://www.univie.ac.at/ct/stefan/infocom2019a.pdf
https://www.univie.ac.at/ct/stefan/infocom2019a.pdf
https://www.univie.ac.at/ct/stefan/stefan_schmid-all.bib
https://www.univie.ac.at/ct/stefan/infocom2019b.pdf
https://www.univie.ac.at/ct/stefan/ifip19dan.pdf
https://www.univie.ac.at/ct/stefan/iwqos19.pdf
https://net.t-labs.tu-berlin.de/%7Estefan/disc17.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7066977&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber%3D7066977
https://net.t-labs.tu-berlin.de/%7Estefan/ancs18.pdf
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ng P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures
Jesper Stenbjerg Jensen, Troels Beck Krogh, Jonas Sand Madsen, Stefan Schmid, Jiri Srba, and Marc Tom Thorgersen.
14th International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Heraklion, Greece, December 2018.
Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba.
37th IEEE Conference on Computer Communications (INFOCOM), Honolulu, Hawaii, USA, April 2018.
Renaissance: A Self-Stabilizing Distributed SDN Control Plane
Marco Canini, Iosif Salem, Liron Schiff, Elad Michael Schiller, and Stefan Schmid.
38th IEEE International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, July 2018.
Empowering Self-Driving Networks
Patrick Kalmbach, Johannes Zerwas, Peter Babarczi, Andreas Blenk, Wolfgang Kellerer, and Stefan Schmid.
ACM SIGCOMM 2018 Workshop on Self-Driving Networks (SDN), Budapest, Hungary, August 2018.
DeepMPLS: Fast Analysis of MPLS Configurations using Deep Learning
Fabien Geyer and Stefan Schmid.
IFIP Networking, Warsaw, Poland, May 2019.

Self-Repairing Networks

https://net.t-labs.tu-berlin.de/%7Estefan/conext18.pdf
https://net.t-labs.tu-berlin.de/%7Estefan/infocom18prefixnet.pdf
https://www.univie.ac.at/ct/stefan/icdcs18selfstab.pdf
https://www.univie.ac.at/ct/stefan/sdn18.pdf
https://www.univie.ac.at/ct/stefan/ifip19mpls.pdf
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MTS: Bringing Multi-Tenancy to Virtual Switches
Kashyap Thimmaraju, Saad Hermak, Gabor Retvari, and Stefan Schmid.
USENIX Annual Technical Conference (ATC), Renton, Washington, USA, July 2019.
Taking Control of SDN-based Cloud Systems via the Data Plane (Best Paper Award)
Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-Pierre Seifert, Anja Feldmann, and Stefan Schmid.
ACM Symposium on SDN Research (SOSR), Los Angeles, California, USA, March 2018.
The vAMP Attack: Taking Control of Cloud Systems via the Unified Packet Parser
Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-Pierre Seifert, Anja Feldmann, and Stefan Schmid.
9th ACM Cloud Computing Security Workshop (CCSW), collocated with ACM CCS, Dallas, Texas, USA, November 2017.

Attacks on OVS

Modeling Challenges
NetBOA: Self-Driving Network Benchmarking
Johannes Zerwas, Patrick Kalmbach, Laurenz Henkel, Gabor Retvari, Wolfgang Kellerer, Andreas Blenk, and Stefan Schmid.
ACM SIGCOMM Workshop on Network Meets AI & ML (NetAI), Beijing, China, August 2019.
On The Impact of the Network Hypervisor on Virtual Network Performance (Nominated for Best Paper Award)
Andreas Blenk, Arsany Basta, Wolfgang Kellerer, and Stefan Schmid.
IFIP Networking, Warsaw, Poland, May 2019.

Self-Stabilization
Renaissance: A Self-Stabilizing Distributed SDN Control Plane
Marco Canini, Iosif Salem, Liron Schiff, Elad Michael Schiller, and Stefan Schmid.
38th IEEE International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, July 2018.

https://www.univie.ac.at/ct/stefan/atc19mswitch.pdf
https://www.univie.ac.at/ct/stefan/sosr18.pdf
https://www.univie.ac.at/ct/stefan/ccsw17.pdf
https://www.univie.ac.at/ct/stefan/netai19netboa.pdf
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