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Communication Networks

Critical infrastructure of digital society
• Popularity of datacentric applications: health, 

business, entertainment, social networking, 
AI/ML, etc.

• Evident during ongoing pandemic: online 
learning, online conferences, etc.

• Much traffic especially to, from, and inside
datacenters

Increasingly stringent dependability requirements!

Facebook datacenter
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Roadmap

• A Brief Background on Resilient Networking

• Algorithms for Local Fast Re-Routing (FRR)



Traditional Networks

Routing
Algorithm

data
plane

control
plane

Distributed algorithms: 
upon link failure, reconverge
to shortest paths
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Software-Defined Networks (SDN)

Centralized algorithms: 
upon link failure, push new
forwarding rules

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

Faster and more controlled reaction: 
a reason for Google’s move to SDN!



Software-Defined Networks (SDN)

Centralized algorithms: 
upon link failure, push new
forwarding rules

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

Faster and more controlled reaction: 
a reason for Google’s move to SDN!

Still slow…



Restoration in control plane takes time -> packet drops!

2022-03-26 7Video shot taken from “Lemmings” 
designed and developed by DMA Design

routing 
restoration



Failover: Control Plane vs Data Plane

• Slower reaction in the control plane than in the data plane
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Minister of Education

vs

Teacher in the Classroom



Approaches for Failover

In Control Plane

• Distributed 
recomputation of 
shortest paths (“re-
convergence”)

• Centralized 
recomputation of paths
(SDN)

• Link-reversal algorithms 
(e.g., Gafni et al.)

In Data Plane

• Static forwarding table

• Rules pre-installed before
failures are known

vs
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The FRR Problem

Phase 1: Rule installation
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The FRR Problem

Phase 1: Rule installation Phase 2: Failures and routing

if x fwd to y 13



The FRR Problem

Phase 1: Rule installation Phase 2: Failures and routing

Without coordination!if x fwd to y 13



The FRR Problem

• Pre-installed local-fast failover rules
– Can depend on local failures and, e.g., destination, 

inport, source

• At runtime, rules are just ”executed”

s

t

Advantage: no need to wait 
for reconvergence.

Default route

Credits: Klaus-Tycho Förster 14
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Advantage: no need to wait 
for reconvergence.
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The FRR Problem

• Pre-installed local-fast failover rules
– Can depend on local failures and, e.g., destination, 

inport, source

• At runtime, rules are just ”executed”

s

t

Advantage: no need to wait 
for reconvergence.

Requires inport
matching!

Can get complex under
multiple failures..

Credits: Klaus-Tycho Förster 14



The FRR Problem

• Pre-installed local-fast failover rules
– Can depend on local failures and, e.g., destination, 

inport, source

• At runtime, rules are just ”executed”

s

t

Advantage: no need to wait 
for reconvergence.

With global 
knowledge: simpler!

Credits: Klaus-Tycho Förster 14



What information is locally available in a 
switch for handling a packet?

Credits: Marco Chiesa 15



Locally Available Information:
The Forwarding Table: Match -> Action

Forwarding 
table

match action

Credits: Marco Chiesa 15



Locally Available Information:
The Packet Header

Forwarding 
table

match actionheader

Credits: Marco Chiesa 15



Locally Available Information:
The Inport of the Received Packet

Forwarding 
table

match actionheader

int1

int0

int3

int2

Credits: Marco Chiesa 15



Forwarding 
table

match actionheader

Locally Available Information:
The Outgoing Port Depends on Failed Links

int1

int0

int3

int2

Credits: Marco Chiesa 15



Raises an Interesting Question

Can we pre-install local fast failover rules 
which ensure reachability under multiple 

failures? In particular: How many failures can 
be tolerated by static forwarding tables?
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Roadmap

• A Brief Background on Resilient Networking

• Algorithms for Local Fast Re-Routing (FRR)



So: How many failures can be tolerated by 
static forwarding tables?

Credits: Marco Chiesa 19



If we partition the network, 
there is not much to do

Credits: Marco Chiesa 19



The connectivity k of a network 𝑁: the minimum 
number of link deletions that partitions 𝑁

The connectivity of this 
network is four

Credits: Marco Chiesa 19



Resilience Criteria

Ideal resilience

Given a k-connected graphs, we
can tolerate any k-1 link failures.

Perfect resilience

Any source s can always reach any
destination t as long as the
unterlying network is physically
connected.

Can this be achieved? Assume undirected link failures.
20
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Spectrum of Models

Forwarding 
table

match actionheader

int1

int0

int3

int2

Recall our switch model:

Per-
destination

Per source
Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting

Achievable resilience depnds on what can be matched: 

Credits: Marco Chiesa 21



Spectrum of Models

Forwarding 
table

match actionheader

int1

int0

int3

int2

Recall our switch model:

Per-
destination

Per source
Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting

Achievable resilience depnds on what can be matched: 

Can carry global information, 
but often undesirable

Credits: Marco Chiesa 21



Per-destination routing cannot cope
with even one link failure

t

Per-
destination

Per source
Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting
Resiliency

X 0

Without matching inport: 
sends back – loop!  s

Pre-computed 
failover path
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Can we achieve k – 1 resiliency in k-connected graph here?

t

Per-
destination

Per source
Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting
Resiliency

X X X ?

s

Credits: Marco Chiesa 23



Can we achieve k – 1 resiliency in k-connected graph here?

t

Per-
destination

Per source
Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting
Resiliency

X X X Yes

s
k disjoint paths: try
one after the other, 
routing back to 
source each time. 

Credits: Marco Chiesa 24



Can we achieve k – 1 resiliency in k-connected graph here?

Per-
destination

Per source
Incoming 

port
Probabilistic 
forwarding

Packet 
header 

rewriting
Resiliency

X X ?

What about this scenario? 
Practically important. From now

on called “ideal resilience”.
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Ideal Resilience: Example 2-dim Torus?
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Ideal Resilience: Example 2-dim Torus?

k=4 connected: 
tolerate 3 failures?

26



• Decompose torus into 2-
edge-disjoint Hamilton 
Cycles (HC)

• Can route in both directions: 
4-arc-disjoint HCs

3-resilient routing to 
destination d:
• go along 1st directed HC, if 

hit failure, reverse direction
• if again failure switch to 2nd 

HC, if again failure reverse 
direction

• No more failures possible!

Idea: Decomposition into Hamilton Cycles

1st Hamilton cycle
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• Decompose torus into 2-
edge-disjoint Hamilton 
Cycles (HC)

• Can route in both directions: 
4-arc-disjoint HCs

3-resilient routing to 
destination d:
• go along 1st directed HC, if 

hit failure, reverse direction
• if again failure switch to 2nd 

HC, if again failure reverse 
direction

• No more failures possible!

Idea: Decomposition into Hamilton Cycles

d

3-resilient routing to 
destination d:
• go along 1st directed HC, if 

hit failure, reverse direction
• if again failure switch to 

2nd HC, if again failure 
reverse direction

• No more failures possible!
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Ideal Resilience with Hamilton Cycles

Chiesa et al.: if k-connected graph has k arc 
disjoint Hamilton Cycles, k-1 resilient routing 

can be constructed!

What about graphs which cannot be 
decomposed into Hamilton cycles?

Chiesa et al. On the Resiliency of Static Forwarding Tables.
IEEE/ACM Transactions on Networking (ToN), 2017. 



Ideal Resilience in General k-Connected Graphs

• Use directed trees (i.e. arborescences) instead 
of Hamilton cycles
– Arc-disjoint, spanning, and rooted at destination

• Classic result: k-connectivity guarantees k-
arborescence decomposition

Basic idea:

• Idea: route towards root on one arborescence
• After failure: change arborescence (e.g. in circular 

fashion)
• Incoming port defines current arborescence
• After k-1 failures: At least one arborescence intact

4-connected, 
4 arborescences

J. Edmonds, Edge-disjoint branchings.
Combinatorial Algorithms, 1972.



Ideal Resilience in General k-Connected Graphs

• Use directed trees (i.e. arborescences) instead 
of Hamilton cycles
– Arc-disjoint, spanning, and rooted at destination

• Classic result: k-connectivity guarantees k-
arborescence decomposition

Basic idea:

• Idea: route towards root on one arborescence
• After failure: change arborescence (e.g. in circular 

fashion)
• Incoming port defines current arborescence
• After k-1 failures: At least one arborescence intact

4-connected, 
4 arborescences

The challenge: how
to avoid earlier tree?

J. Edmonds, Edge-disjoint branchings.
Combinatorial Algorithms, 1972.



A k-connected network contains 
k arc-disjoint spanning arborescences [Edmonds, 1972] 

t
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A k-connected network contains 
k arc-disjoint spanning arborescences [Edmonds, 1972] 
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General technique: routing along the same tree

t

Credits: Marco Chiesa 30



When a failed link is hit…

t

Credits: Marco Chiesa 30



… how do we choose the next arborescence?

t

Credits: Marco Chiesa 30



But how do we choose the next arborescence?

Circular-arborescence routing: 

• compute an order of the arborescences

• switch to the next arborescence when hitting a failed link

31



Circular arborescence-routing is (k/2-1)-resilient

1 2

Arborescence order

3 4
Intuition: each single 

failure may affect 
two arborescences

t

Credits: Marco Chiesa 32



1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 1 
to destination...

32
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1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 2 to 
destination...
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1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 3 to 
destination...
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1 2
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two arborescences



1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 4 to 
destination...

32

Circular arborescence-routing is (k/2-1)-resilient

1 2

Arborescence order

Intuition: each single 
failure may affect 

two arborescences



1 2 3 4

All k=4 arborescences used 
(2 failures disconnected 

affected all four):
LOOP!

t

Credits: Marco Chiesa 32

Circular arborescence-routing is (k/2-1)-resilient

1 2

Arborescence order

Intuition: each single 
failure may affect 

two arborescences



An Alternative Algorithm: Bouncing Arborescence

Bouncing-arborescence algorithm: 

• Reroute on the tree that shares the failed link

This algorithm is 1-resilient.

33



Bouncing-Arborescence is 1-Resilient

d

Credits: Marco Chiesa

Start with red…
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Bouncing-Arborescence is 1-Resilient

d

Credits: Marco Chiesa

… bounce to yellow…
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Bouncing-Arborescence is 1-Resilient

d

LOOP!
Credits: Marco Chiesa

… bounce to red
(again!)…

34



Idea: Bounce on „Good Arborescences“

• Define well-bouncing arc:

– When bounce get to the destination 

– Without hitting any other failures

– (3,1) is not well-bouncing

– (1,3) is well-bouncing

• Define good tree:

– every failed arc is well-bouncing

– Red is not a good tree

– Blue, Yellow, and Green are good trees

d

1 2

3

54
Credits: Marco Chiesa 34
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Idea: Bounce on „Good Arborescences“

• Define well-bouncing arc:

– When bounce get to the destination 

– Without hitting any other failures

– (3,1) is not well-bouncing

– (1,3) is well-bouncing

• Define good arborescence:

– every failed arc is well-bouncing

– Red is not a good arborescence

– Blue is a good arboresence

d

1 2

3

54
Credits: Marco Chiesa 34



Ideas

• One can show that there is always a good arborescence

• An tempting idea:
– route on an arborescence X until a failed link is hit:

• if X is a good arborescence, bounce!

• otherwise, route circular

• Too good to be true: 
– The “goodness” of an arborescence depends on the actual set of failed links! 

– How do we know a arborescence is good?

Credits: Marco Chiesa 35



Resilience Criteria

Can this be achieved? Assume undirected link failures.

Ideal resilience

Given a k-connected graphs, we 
can tolerate any k-1 link failures.

Perfect resilience

Any source s can always reach any
destination t as long as the
unterlying network is physically
connected.

36



Perfect resilience is impossible to 
achieve in general.

Resilience Criteria

37



Relevant Neighbors

38

• Routing table of node 𝑖: matches in-ports of 𝑖 to 
out-ports of 𝑖
– ... depending on the incident failures

• But not all neighbors are relevant: only if
potentially required to reach destination!
– Without local failures: just 𝑣2, 𝑣3 for i, since 

𝑣1 does not give extra connectivity
– With additional failures 𝑣1 becomes 

relevant, since 𝑣1 might be only choice to 
reach destination 𝑡

• Note: 𝑣1 is unaware of these non-incident failures!
• Same for 𝑣3 



• Routing table of node 𝑖: matches in-ports of 𝑖 to 
out-ports of 𝑖
– ... depending on the incident failures

• But not all neighbors are relevant: only if
potentially required to reach destination!
– Without local failures: just 𝑣2, 𝑣3 for i, since 

𝑣1 does not give extra connectivity
– With additional failures 𝑣1 becomes 

relevant, since 𝑣1 might be only choice to 
reach destination 𝑡

• Note: 𝑣1 is unaware of these non-incident failures!
• Same for 𝑣3 

High-level definition of relevant: From the local view-point of the node 𝑖, a relevant neighbor 
might be only neighbor to reach destination (without taking a detour over a current neighbor).

Relevant Neighbors
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How to Achieve Perfect Resilience?

• Necessary: need to try all 
relevant neighbors
– Here, if local link to 𝑣2 broken: 
𝑣1 and 𝑣3

• That is, if packet
– comes from 𝑣3: eventually try 𝑣1
– comes from 𝑣1: eventually try 𝑣3

39



Impossibility: On Planar Graphs
Some observations: 

• Additional failures only add relevant neighbors to nodes

• Any node of degree 2 of G after failures must forward packets with incoming port p to port p'

• If all neighbors are relevant, the forwarding function of a node must be a cyclic permutation

40



Impossibility: On Planar Graphs

8

All neighbors of all nodes are
relevant (even without failures).

Considered node 1 will not 
see any local failures.

Some observations: 

• Additional failures only add relevant neighbors to nodes

• Any node of degree 2 of G after failures must forward packets with incoming port p to port p'

• If all neighbors are relevant, the forwarding function of a node must be a cyclic permutation

Idea of the counter example:

So we must fix a 
permutation for node 1. 41



Impossibility: On Planar Graphs

Proof idea, with three cases: 
• If the dashed links fail (non-local to 

node 1), in any forwarding pattern, 
packets will be stuck in one of the blue 
loops…

• … even though there is at least one 
remaining path to the target

Some observations: 

• Additional failures only add relevant neighbors to nodes

• Any node of degree 2 of G after failures must forward packets with incoming port p to port p'

• If all neighbors are relevant, the forwarding function of a node must be a cyclic permutation

Go through all possible 
permutations @1 and give

counter example.
42



Impossibility: On Planar Graphs

For node 1: 
5->2 implies
(5,2,3,4) (b)
(5,2,4,3) (a)

Possible cyclic permutations: when a packet arrives from 2, 
due to cyclic permutation, it can only be forwarded to either 
3 or 4. Leads to loops in scenarios (b) (4 goes to 5, 2 can only 
go to 4) and (a) (3 goes to 5, 2 can only go to 3), respectively.

Arriving on 
inport 5, 

forwarded
to 2. 

43
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Link needed: 
otherwise 5 would

not be relevant!



A Pity: Planar Graphs Are Important

• Internet Topology Zoo and 
Rocketfuel topologies
– 88% of the graphs are planar

– However:
• Almost a third (32%) belong to the family 

of cactus graphs

• Roughly half of the graphs (49%) are 
outerplanar

• … and they work ☺

44
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Where Can Perfect Resilience Be Achieved?

For example on outerplanar graphs:

• Via geometric routing, well studied in sensor networks etc.

• Embed graph in the plane s.t. all nodes are on the outer face
– Note: If a link l belongs to the outer face of a planar graph G, it also belongs to the outer face for all 

subgraphs of G

• Apply right-hand rule to forwarding (skipping failures)
– Ensures packets use only the links of the outer face and do not change the direction despite failures

• Strategy traverses all nodes on the outer face

• Also works for any graph which is outerplanar without the source (e.g., K4)

44



Some Observations
• 𝐾_5, 𝐾_3,3: no perfect resilience

• Perfect resiliency on graph G -> any subgraph G‘ of G also 
allows for perfect resiliency
– Idea: Take routing on G, fail edges to create G‘, 

routing must still work 

• Contraction works as well, by a simulation argument
– A bit technical

• Combined: Perfect resilience on graph G -> any minor G‘ 
of G as well
– But since 𝐾_5, 𝐾_3,3 not: non-planar graphs not

perfectly resilient

u v

uv

45



What we know about perfect resilience

Possible:

• On all outerplanar graphs [right-hand rule]

• On every graph that is outerplanar without the 
destination (e.g. non-outerplanar planar 𝐾_4 )

Impossible:

• On some planar graphs

• Every non-planar graph

• Perfect resilience must hold on minors

8

u v uv

Foerster et al. On the Feasibility of Perfect Resilience 
with Local Fast Failover. SIAM Symposium on Algorithmic 
Principles of Computer Systems (APOCS), 2021.



• per-destination

• shortest paths DAGs

• equal-split
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A Survey of Fast-Recovery Mechanisms in Packet-Switched Networks
Marco Chiesa, Andrzej Kamisinski, Jacek Rak, Gabor Retvari, and Stefan Schmid.
IEEE Communications Surveys and Tutorials (COMST), 2021.

https://www.univie.ac.at/ct/stefan/frr-survey.pdf
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