
Stefan Schmid (TU Berlin)

The algorithmic challenges of local fast re-routing

Kudos: Marco Chiesa

Communication Networks

Critical infrastructure of digital society
• Popularity of datacentric applications: health,

business, entertainment, social networking,
AI/ML, etc.

• Evident during ongoing pandemic: online
learning, online conferences, etc.

• Much traffic especially to, from, and inside
datacenters

Increasingly stringent dependability requirements!

Facebook datacenter

1

Roadmap

• A Brief Background on Resilient Networking

• Algorithms for Local Fast Re-Routing (FRR)

Traditional Networks

Routing
Algorithm

data
plane

control
plane

Distributed algorithms:
upon link failure, reconverge
to shortest paths

8

Software-Defined Networks (SDN)

Centralized algorithms:
upon link failure, push new
forwarding rules

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

Faster and more controlled reaction:
a reason for Google’s move to SDN!

Software-Defined Networks (SDN)

Centralized algorithms:
upon link failure, push new
forwarding rules

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

Faster and more controlled reaction:
a reason for Google’s move to SDN!

Still slow…

Restoration in control plane takes time -> packet drops!

2022-03-26 7Video shot taken from “Lemmings”
designed and developed by DMA Design

routing
restoration

Failover: Control Plane vs Data Plane

• Slower reaction in the control plane than in the data plane

11

Minister of Education

vs

Teacher in the Classroom

Approaches for Failover

In Control Plane

• Distributed
recomputation of
shortest paths (“re-
convergence”)

• Centralized
recomputation of paths
(SDN)

• Link-reversal algorithms
(e.g., Gafni et al.)

In Data Plane

• Static forwarding table

• Rules pre-installed before
failures are known

vs

12

Approaches for Failover

In Control Plane

• Distributed
recomputation of
shortest paths (“re-
convergence”)

• Centralized
recomputation of paths
(SDN)

• Link-reversal algorithms
(e.g., Gafni et al.)

In Data Plane

• Static forwarding table

• Rules pre-installed before
failures are known

vs

12

The FRR Problem

Phase 1: Rule installation

13

The FRR Problem

Phase 1: Rule installation

if x fwd to y 13

The FRR Problem

Phase 1: Rule installation Phase 2: Failures and routing

if x fwd to y 13

The FRR Problem

Phase 1: Rule installation Phase 2: Failures and routing

Without coordination!if x fwd to y 13

The FRR Problem

• Pre-installed local-fast failover rules
– Can depend on local failures and, e.g., destination,

inport, source

• At runtime, rules are just ”executed”

s

t

Advantage: no need to wait
for reconvergence.

Default route

Credits: Klaus-Tycho Förster 14

The FRR Problem

• Pre-installed local-fast failover rules
– Can depend on local failures and, e.g., destination,

inport, source

• At runtime, rules are just ”executed”

s

t

Advantage: no need to wait
for reconvergence.

Pre-installed
failover rule

Good alternative
under 1 failure!

Credits: Klaus-Tycho Förster 14

The FRR Problem

• Pre-installed local-fast failover rules
– Can depend on local failures and, e.g., destination,

inport, source

• At runtime, rules are just ”executed”

s

t

Advantage: no need to wait
for reconvergence.

Does not see 2nd

failure…

Good alternative
under 1 failure!

Credits: Klaus-Tycho Förster 14

The FRR Problem

• Pre-installed local-fast failover rules
– Can depend on local failures and, e.g., destination,

inport, source

• At runtime, rules are just ”executed”

s

t

Advantage: no need to wait
for reconvergence.

Requires inport
matching!

Can get complex under
multiple failures..

Credits: Klaus-Tycho Förster 14

The FRR Problem

• Pre-installed local-fast failover rules
– Can depend on local failures and, e.g., destination,

inport, source

• At runtime, rules are just ”executed”

s

t

Advantage: no need to wait
for reconvergence.

With global
knowledge: simpler!

Credits: Klaus-Tycho Förster 14

What information is locally available in a
switch for handling a packet?

Credits: Marco Chiesa 15

Locally Available Information:
The Forwarding Table: Match -> Action

Forwarding
table

match action

Credits: Marco Chiesa 15

Locally Available Information:
The Packet Header

Forwarding
table

match actionheader

Credits: Marco Chiesa 15

Locally Available Information:
The Inport of the Received Packet

Forwarding
table

match actionheader

int1

int0

int3

int2

Credits: Marco Chiesa 15

Forwarding
table

match actionheader

Locally Available Information:
The Outgoing Port Depends on Failed Links

int1

int0

int3

int2

Credits: Marco Chiesa 15

Raises an Interesting Question

Can we pre-install local fast failover rules
which ensure reachability under multiple

failures? In particular: How many failures can
be tolerated by static forwarding tables?

16

Roadmap

• A Brief Background on Resilient Networking

• Algorithms for Local Fast Re-Routing (FRR)

So: How many failures can be tolerated by
static forwarding tables?

Credits: Marco Chiesa 19

If we partition the network,
there is not much to do

Credits: Marco Chiesa 19

The connectivity k of a network 𝑁: the minimum
number of link deletions that partitions 𝑁

The connectivity of this
network is four

Credits: Marco Chiesa 19

Resilience Criteria

Ideal resilience

Given a k-connected graphs, we
can tolerate any k-1 link failures.

Perfect resilience

Any source s can always reach any
destination t as long as the
unterlying network is physically
connected.

Can this be achieved? Assume undirected link failures.
20

Resilience Criteria

Ideal resilience

Given a k-connected graphs, we
can tolerate any k-1 link failures.

Perfect resilience

Any source s can always reach any
destination t as long as the
unterlying network is physically
connected.

Can this be achieved? Assume undirected link failures.
20

Spectrum of Models

Forwarding
table

match actionheader

int1

int0

int3

int2

Recall our switch model:

Per-
destination

Per source
Incoming

port
Probabilistic
forwarding

Packet
header

rewriting

Achievable resilience depnds on what can be matched:

Credits: Marco Chiesa 21

Spectrum of Models

Forwarding
table

match actionheader

int1

int0

int3

int2

Recall our switch model:

Per-
destination

Per source
Incoming

port
Probabilistic
forwarding

Packet
header

rewriting

Achievable resilience depnds on what can be matched:

Can carry global information,
but often undesirable

Credits: Marco Chiesa 21

Per-destination routing cannot cope
with even one link failure

t

Per-
destination

Per source
Incoming

port
Probabilistic
forwarding

Packet
header

rewriting
Resiliency

X 0

Without matching inport:
sends back – loop! s

Pre-computed
failover path

22

Can we achieve k – 1 resiliency in k-connected graph here?

t

Per-
destination

Per source
Incoming

port
Probabilistic
forwarding

Packet
header

rewriting
Resiliency

X X X ?

s

Credits: Marco Chiesa 23

Can we achieve k – 1 resiliency in k-connected graph here?

t

Per-
destination

Per source
Incoming

port
Probabilistic
forwarding

Packet
header

rewriting
Resiliency

X X X Yes

s
k disjoint paths: try
one after the other,
routing back to
source each time.

Credits: Marco Chiesa 24

Can we achieve k – 1 resiliency in k-connected graph here?

Per-
destination

Per source
Incoming

port
Probabilistic
forwarding

Packet
header

rewriting
Resiliency

X X ?

What about this scenario?
Practically important. From now

on called “ideal resilience”.

25

Ideal Resilience: Example 2-dim Torus?

26

Ideal Resilience: Example 2-dim Torus?

k=4 connected:
tolerate 3 failures?

26

• Decompose torus into 2-
edge-disjoint Hamilton
Cycles (HC)

• Can route in both directions:
4-arc-disjoint HCs

3-resilient routing to
destination d:
• go along 1st directed HC, if

hit failure, reverse direction
• if again failure switch to 2nd

HC, if again failure reverse
direction

• No more failures possible!

Idea: Decomposition into Hamilton Cycles

1st Hamilton cycle

26

• Decompose torus into 2-
edge-disjoint Hamilton
Cycles (HC)

• Can route in both directions:
4-arc-disjoint HCs

3-resilient routing to
destination d:
• go along 1st directed HC, if

hit failure, reverse direction
• if again failure switch to 2nd

HC, if again failure reverse
direction

• No more failures possible!

Idea: Decomposition into Hamilton Cycles

1st Hamilton cycle

2nd Hamilton cycle

26

• Decompose torus into 2-
edge-disjoint Hamilton
Cycles (HC)

• Can route in both directions:
4-arc-disjoint HCs

3-resilient routing to
destination d:
• go along 1st directed HC, if

hit failure, reverse direction
• if again failure switch to 2nd

HC, if again failure reverse
direction

• No more failures possible!

Idea: Decomposition into Hamilton Cycles

d

26

• Decompose torus into 2-
edge-disjoint Hamilton
Cycles (HC)

• Can route in both directions:
4-arc-disjoint HCs

3-resilient routing to
destination d:
• go along 1st directed HC, if

hit failure, reverse direction
• if again failure switch to 2nd

HC, if again failure reverse
direction

• No more failures possible!

Idea: Decomposition into Hamilton Cycles

d

3-resilient routing to
destination d:
• go along 1st directed HC, if

hit failure, reverse direction
• if again failure switch to

2nd HC, if again failure
reverse direction

• No more failures possible!

26

Ideal Resilience with Hamilton Cycles

Chiesa et al.: if k-connected graph has k arc
disjoint Hamilton Cycles, k-1 resilient routing

can be constructed!

What about graphs which cannot be
decomposed into Hamilton cycles?

Chiesa et al. On the Resiliency of Static Forwarding Tables.
IEEE/ACM Transactions on Networking (ToN), 2017.

Ideal Resilience in General k-Connected Graphs

• Use directed trees (i.e. arborescences) instead
of Hamilton cycles
– Arc-disjoint, spanning, and rooted at destination

• Classic result: k-connectivity guarantees k-
arborescence decomposition

Basic idea:

• Idea: route towards root on one arborescence
• After failure: change arborescence (e.g. in circular

fashion)
• Incoming port defines current arborescence
• After k-1 failures: At least one arborescence intact

4-connected,
4 arborescences

J. Edmonds, Edge-disjoint branchings.
Combinatorial Algorithms, 1972.

Ideal Resilience in General k-Connected Graphs

• Use directed trees (i.e. arborescences) instead
of Hamilton cycles
– Arc-disjoint, spanning, and rooted at destination

• Classic result: k-connectivity guarantees k-
arborescence decomposition

Basic idea:

• Idea: route towards root on one arborescence
• After failure: change arborescence (e.g. in circular

fashion)
• Incoming port defines current arborescence
• After k-1 failures: At least one arborescence intact

4-connected,
4 arborescences

The challenge: how
to avoid earlier tree?

J. Edmonds, Edge-disjoint branchings.
Combinatorial Algorithms, 1972.

A k-connected network contains
k arc-disjoint spanning arborescences [Edmonds, 1972]

t

Credits: Marco Chiesa 29

A k-connected network contains
k arc-disjoint spanning arborescences [Edmonds, 1972]

t

Credits: Marco Chiesa 29

A k-connected network contains
k arc-disjoint spanning arborescences [Edmonds, 1972]

t

Credits: Marco Chiesa 29

A k-connected network contains
k arc-disjoint spanning arborescences [Edmonds, 1972]

t

Credits: Marco Chiesa 29

A k-connected network contains
k arc-disjoint spanning arborescences [Edmonds, 1972]

t

Credits: Marco Chiesa 29

A k-connected network contains
k arc-disjoint spanning arborescences [Edmonds, 1972]

t

Credits: Marco Chiesa 29

General technique: routing along the same tree

t

Credits: Marco Chiesa 30

When a failed link is hit…

t

Credits: Marco Chiesa 30

… how do we choose the next arborescence?

t

Credits: Marco Chiesa 30

But how do we choose the next arborescence?

Circular-arborescence routing:

• compute an order of the arborescences

• switch to the next arborescence when hitting a failed link

31

Circular arborescence-routing is (k/2-1)-resilient

1 2

Arborescence order

3 4
Intuition: each single

failure may affect
two arborescences

t

Credits: Marco Chiesa 32

1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 1
to destination...

32

Circular arborescence-routing is (k/2-1)-resilient

1 2

Arborescence order

Intuition: each single
failure may affect

two arborescences

1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 2 to
destination...

32

Circular arborescence-routing is (k/2-1)-resilient

1 2

Arborescence order

Intuition: each single
failure may affect

two arborescences

1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 3 to
destination...

32

Circular arborescence-routing is (k/2-1)-resilient

1 2

Arborescence order

Intuition: each single
failure may affect

two arborescences

1 2 3 4

t

Credits: Marco Chiesa

Go along arborescence 4 to
destination...

32

Circular arborescence-routing is (k/2-1)-resilient

1 2

Arborescence order

Intuition: each single
failure may affect

two arborescences

1 2 3 4

All k=4 arborescences used
(2 failures disconnected

affected all four):
LOOP!

t

Credits: Marco Chiesa 32

Circular arborescence-routing is (k/2-1)-resilient

1 2

Arborescence order

Intuition: each single
failure may affect

two arborescences

An Alternative Algorithm: Bouncing Arborescence

Bouncing-arborescence algorithm:

• Reroute on the tree that shares the failed link

This algorithm is 1-resilient.

33

Bouncing-Arborescence is 1-Resilient

d

Credits: Marco Chiesa

Start with red…

34

Bouncing-Arborescence is 1-Resilient

d

Credits: Marco Chiesa

… bounce to yellow…

34

Bouncing-Arborescence is 1-Resilient

d

LOOP!
Credits: Marco Chiesa

… bounce to red
(again!)…

34

Idea: Bounce on „Good Arborescences“

• Define well-bouncing arc:

– When bounce get to the destination

– Without hitting any other failures

– (3,1) is not well-bouncing

– (1,3) is well-bouncing

• Define good tree:

– every failed arc is well-bouncing

– Red is not a good tree

– Blue, Yellow, and Green are good trees

d

1 2

3

54
Credits: Marco Chiesa 34

Idea: Bounce on „Good Arborescences“

• Define well-bouncing arc:

– When bounce get to the destination

– Without hitting any other failures

– (3,1) is not well-bouncing

– (1,3) is well-bouncing

• Define good tree:

– every failed arc is well-bouncing

– Red is not a good tree

– Blue, Yellow, and Green are good trees

d

1 2

3

54
Credits: Marco Chiesa 34

Idea: Bounce on „Good Arborescences“

• Define well-bouncing arc:

– When bounce get to the destination

– Without hitting any other failures

– (3,1) is not well-bouncing

– (1,3) is well-bouncing

• Define good tree:

– every failed arc is well-bouncing

– Red is not a good tree

– Blue, Yellow, and Green are good trees

d

1 2

3

54
Credits: Marco Chiesa 34

Idea: Bounce on „Good Arborescences“

• Define well-bouncing arc:

– When bounce get to the destination

– Without hitting any other failures

– (3,1) is not well-bouncing

– (1,3) is well-bouncing

• Define good arborescence:

– every failed arc is well-bouncing

– Red is not a good tree

– Blue, Yellow, and Green are good trees

d

1 2

3

54
Credits: Marco Chiesa 34

Idea: Bounce on „Good Arborescences“

• Define well-bouncing arc:

– When bounce get to the destination

– Without hitting any other failures

– (3,1) is not well-bouncing

– (1,3) is well-bouncing

• Define good arborescence:

– every failed arc is well-bouncing

– Red is not a good arborescence

– Blue, Yellow, and Green are good trees

d

1 2

3

54
Credits: Marco Chiesa 34

Idea: Bounce on „Good Arborescences“

• Define well-bouncing arc:

– When bounce get to the destination

– Without hitting any other failures

– (3,1) is not well-bouncing

– (1,3) is well-bouncing

• Define good arborescence:

– every failed arc is well-bouncing

– Red is not a good arborescence

– Blue is a good arboresence

d

1 2

3

54
Credits: Marco Chiesa 34

Ideas

• One can show that there is always a good arborescence

• An tempting idea:
– route on an arborescence X until a failed link is hit:

• if X is a good arborescence, bounce!

• otherwise, route circular

• Too good to be true:
– The “goodness” of an arborescence depends on the actual set of failed links!

– How do we know a arborescence is good?

Credits: Marco Chiesa 35

Resilience Criteria

Can this be achieved? Assume undirected link failures.

Ideal resilience

Given a k-connected graphs, we
can tolerate any k-1 link failures.

Perfect resilience

Any source s can always reach any
destination t as long as the
unterlying network is physically
connected.

36

Perfect resilience is impossible to
achieve in general.

Resilience Criteria

37

Relevant Neighbors

38

• Routing table of node 𝑖: matches in-ports of 𝑖 to
out-ports of 𝑖
– ... depending on the incident failures

• But not all neighbors are relevant: only if
potentially required to reach destination!
– Without local failures: just 𝑣2, 𝑣3 for i, since

𝑣1 does not give extra connectivity
– With additional failures 𝑣1 becomes

relevant, since 𝑣1 might be only choice to
reach destination 𝑡

• Note: 𝑣1 is unaware of these non-incident failures!
• Same for 𝑣3

• Routing table of node 𝑖: matches in-ports of 𝑖 to
out-ports of 𝑖
– ... depending on the incident failures

• But not all neighbors are relevant: only if
potentially required to reach destination!
– Without local failures: just 𝑣2, 𝑣3 for i, since

𝑣1 does not give extra connectivity
– With additional failures 𝑣1 becomes

relevant, since 𝑣1 might be only choice to
reach destination 𝑡

• Note: 𝑣1 is unaware of these non-incident failures!
• Same for 𝑣3

High-level definition of relevant: From the local view-point of the node 𝑖, a relevant neighbor
might be only neighbor to reach destination (without taking a detour over a current neighbor).

Relevant Neighbors

38

How to Achieve Perfect Resilience?

• Necessary: need to try all
relevant neighbors
– Here, if local link to 𝑣2 broken:
𝑣1 and 𝑣3

• That is, if packet
– comes from 𝑣3: eventually try 𝑣1
– comes from 𝑣1: eventually try 𝑣3

39

Impossibility: On Planar Graphs
Some observations:

• Additional failures only add relevant neighbors to nodes

• Any node of degree 2 of G after failures must forward packets with incoming port p to port p'

• If all neighbors are relevant, the forwarding function of a node must be a cyclic permutation

40

Impossibility: On Planar Graphs

8

All neighbors of all nodes are
relevant (even without failures).

Considered node 1 will not
see any local failures.

Some observations:

• Additional failures only add relevant neighbors to nodes

• Any node of degree 2 of G after failures must forward packets with incoming port p to port p'

• If all neighbors are relevant, the forwarding function of a node must be a cyclic permutation

Idea of the counter example:

So we must fix a
permutation for node 1. 41

Impossibility: On Planar Graphs

Proof idea, with three cases:
• If the dashed links fail (non-local to

node 1), in any forwarding pattern,
packets will be stuck in one of the blue
loops…

• … even though there is at least one
remaining path to the target

Some observations:

• Additional failures only add relevant neighbors to nodes

• Any node of degree 2 of G after failures must forward packets with incoming port p to port p'

• If all neighbors are relevant, the forwarding function of a node must be a cyclic permutation

Go through all possible
permutations @1 and give

counter example.
42

Impossibility: On Planar Graphs

For node 1:
5->2 implies
(5,2,3,4) (b)
(5,2,4,3) (a)

Possible cyclic permutations: when a packet arrives from 2,
due to cyclic permutation, it can only be forwarded to either
3 or 4. Leads to loops in scenarios (b) (4 goes to 5, 2 can only
go to 4) and (a) (3 goes to 5, 2 can only go to 3), respectively.

Arriving on
inport 5,

forwarded
to 2.

43

Impossibility: On Planar Graphs

For node 1:
5->2 implies
(5,2,3,4) (b)
(5,2,4,3) (a)

Possible cyclic permutations: when a packet then
arrives on port 4, it can only be forwarded to either 2
or 5. Leads to loops in scenarios (a) (2 will go to 5, 5
can only go to 1 and 3 only to 2) and (c) (5 goes to 3, 4
goes to 5, rest degree-2), respectively.

For node 1:
5->3 implies
(5,3,4,2) (a)
(5,3,2,4) (c)

Arriving on
inport 5,

forwarded
to 3.

43

Impossibility: On Planar Graphs

For node 1:
5->2 implies
(5,2,3,4) (b)
(5,2,4,3) (a)

Possible cyclic permutations: packet
arriving on port 3 can only be forwarded
to either 5 or 2. Leads to loops in
scenarios (c) and (b), respectively.

For node 1:
5->3 implies
(5,3,4,2) (a)
(5,3,2,4) (c)

For node 1:
5->4 implies
(5,4,2,3) (c)
(5,4,3,2) (b)

Arriving on
inport 5,

forwarded
to 4.

43

Impossibility: On Planar Graphs

For node 1:
5->2 implies
(5,2,3,4) (b)
(5,2,4,3) (a)

Possible cyclic permutations: packet
arriving on port 3 can only be forwarded
to either 5 or 2. Leads to loops in
scenarios (c) and (b), respectively.

For node 1:
5->3 implies
(5,3,4,2) (a)
(5,3,2,4) (c)

For node 1:
5->4 implies
(5,4,2,3) (c)
(5,4,3,2) (b)

43

Link needed:
otherwise 5 would

not be relevant!

A Pity: Planar Graphs Are Important

• Internet Topology Zoo and
Rocketfuel topologies
– 88% of the graphs are planar

– However:
• Almost a third (32%) belong to the family

of cactus graphs

• Roughly half of the graphs (49%) are
outerplanar

• … and they work ☺

44

A Pity: Planar Graphs Are Important

• Internet Topology Zoo and
Rocketfuel topologies
– 88% of the graphs are planar

– However:
• Almost a third (32%) belong to the family

of cactus graphs

• Roughly half of the graphs (49%) are
outerplanar

• … and they work ☺

44

Where Can Perfect Resilience Be Achieved?

For example on outerplanar graphs:

• Via geometric routing, well studied in sensor networks etc.

• Embed graph in the plane s.t. all nodes are on the outer face
– Note: If a link l belongs to the outer face of a planar graph G, it also belongs to the outer face for all

subgraphs of G

• Apply right-hand rule to forwarding (skipping failures)
– Ensures packets use only the links of the outer face and do not change the direction despite failures

• Strategy traverses all nodes on the outer face

• Also works for any graph which is outerplanar without the source (e.g., K4)

44

Some Observations
• 𝐾_5, 𝐾_3,3: no perfect resilience

• Perfect resiliency on graph G -> any subgraph G‘ of G also
allows for perfect resiliency
– Idea: Take routing on G, fail edges to create G‘,

routing must still work

• Contraction works as well, by a simulation argument
– A bit technical

• Combined: Perfect resilience on graph G -> any minor G‘
of G as well
– But since 𝐾_5, 𝐾_3,3 not: non-planar graphs not

perfectly resilient

u v

uv

45

What we know about perfect resilience

Possible:

• On all outerplanar graphs [right-hand rule]

• On every graph that is outerplanar without the
destination (e.g. non-outerplanar planar 𝐾_4)

Impossible:

• On some planar graphs

• Every non-planar graph

• Perfect resilience must hold on minors

8

u v uv

Foerster et al. On the Feasibility of Perfect Resilience
with Local Fast Failover. SIAM Symposium on Algorithmic
Principles of Computer Systems (APOCS), 2021.

• per-destination

• shortest paths DAGs

• equal-split

A
 R

ec
en

t
Su

rv
ey

A Survey of Fast-Recovery Mechanisms in Packet-Switched Networks
Marco Chiesa, Andrzej Kamisinski, Jacek Rak, Gabor Retvari, and Stefan Schmid.
IEEE Communications Surveys and Tutorials (COMST), 2021.

https://www.univie.ac.at/ct/stefan/frr-survey.pdf

• per-destination

• shortest paths DAGs

• equal-split

R
ef

er
en

ce
s

On the Price of Locality in Static Fast Rerouting
Klaus-Tycho Foerster, Juho Hirvonen, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
52nd IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Baltimore, Maryland, USA, June 2022.

The Hazard Value: A Quantitative Network Connectivity Measure Accounting for Failures
Pieter Cuijpers, Stefan Schmid, Nicolas Schnepf, and Jiri Srba.
52nd IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Baltimore, Maryland, USA, June 2022.
On the Feasibility of Perfect Resilience with Local Fast Failover
Klaus-Tycho Foerster, Juho Hirvonen, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
SIAM Symposium on Algorithmic Principles of Computer Systems (APOCS), Alexandria, Virginia, USA, January 2021.

Brief Announcement: What Can(not) Be Perfectly Rerouted Locally
Klaus-Tycho Foerster, Juho Hirvonen, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
International Symposium on Distributed Computing (DISC), Freiburg, Germany, October 2020.

Improved Fast Rerouting Using Postprocessing
Klaus-Tycho Foerster, Andrzej Kamisinski, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
IEEE Transactions on Dependable and Secure Computing (TDSC), 2020.

Resilient Capacity-Aware Routing
Stefan Schmid, Nicolas Schnepf and Jiri Srba.
27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Virtual Conference, March 2021.

AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS Networks
Peter Gjøl Jensen, Morten Konggaard, Dan Kristiansen, Stefan Schmid, Bernhard Clemens Schrenk, and Jiri Srba.
16th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Barcelona, Spain, December 2020.

P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures
Jesper Stenbjerg Jensen, Troels Beck Krogh, Jonas Sand Madsen, Stefan Schmid, Jiri Srba, and Marc Tom Thorgersen.
14th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Heraklion/Crete, Greece, December 2018.

Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba.
37th IEEE Conference on Computer Communications (INFOCOM), Honolulu, Hawaii, USA, April 2018.

https://www.univie.ac.at/ct/stefan/dsn22frr.pdf
https://www.univie.ac.at/ct/stefan/dsn22hazard.pdf
https://www.univie.ac.at/ct/stefan/apocs21resilience.pdf
https://www.univie.ac.at/ct/stefan/disc20.pdf
https://www.univie.ac.at/ct/stefan/tdsc20.pdf
https://www.univie.ac.at/ct/stefan/tacas21.pdf
https://www.univie.ac.at/ct/stefan/conext20.pdf
https://www.univie.ac.at/ct/stefan/conext18.pdf
https://www.univie.ac.at/ct/stefan/infocom18prefixnet.pdf

• per-destination

• shortest paths DAGs

• equal-split

M
o

re
 R

ef
er

en
ce

s Randomized Local Fast Rerouting for Datacenter Networks with Almost Optimal Congestion
Gregor Bankhamer, Robert Elsässer, and Stefan Schmid..
International Symposium on Distributed Computing (DISC), Freiburg, Germany, October 2021.

Bonsai: Efficient Fast Failover Routing Using Small Arborescences
Klaus-Tycho Foerster, Andrzej Kamisinski, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
49th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Portland, Oregon, USA, June 2019.

CASA: Congestion and Stretch Aware Static Fast Rerouting
Klaus-Tycho Foerster, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.

Load-Optimal Local Fast Rerouting for Dense Networks
Michael Borokhovich, Yvonne-Anne Pignolet, Gilles Tredan, and Stefan Schmid.
IEEE/ACM Transactions on Networking (TON), 2018.

PURR: A Primitive for Reconfigurable Fast Reroute
Marco Chiesa, Roshan Sedar, Gianni Antichi, Michael Borokhovich, Andrzej Kamisinski, Georgios Nikolaidis, and Stefan Schmid.
15th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Orlando, Florida, USA, December 2019.
Artefact Evaluation: Available, Functional, Reusable.

On the Resiliency of Static Forwarding Tables
In IEEE/ACM Transactions on Networking (ToN), 2017
M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. Gurtov, A. Madry, M. Schapira, S. Shenker

https://www.univie.ac.at/ct/stefan/disc21.pdf
https://www.univie.ac.at/ct/stefan/dsn19.pdf
https://www.univie.ac.at/ct/stefan/infocom2019e.pdf
https://www.univie.ac.at/ct/stefan/ton18failover.pdf
https://www.univie.ac.at/ct/stefan/conext19failover.pdf

Questions?

