
Parametrized Complexity of Virtual Network Embeddings:
Dynamic & Linear Programming Approximations
Matthias Rost

TU Berlin, Germany
mrost@inet.tu-berlin.de

Elias Döhne
TU Berlin, Germany

edoehne@inet.tu-berlin.de

Stefan Schmid
University of Vienna, Austria
stefan_schmid@univie.ac.at

ABSTRACT

This paper makes the case for a parametrized complexity approach
to tackle the fundamental but notoriously hard Virtual Network
Embedding Problem. In particular, we show that the structure of
the to-be-embedded virtual network requests can be exploited to-
ward fast (i.e., fixed-parameter tractable) approximation algorithms,
using dynamic as well as linear programming algorithms.

Our approach does provide formal guarantees on the runtime
and solution quality and can safeguard also latency constraints.
Using extensive computational experiments we demonstrate the
practical relevance of our novel approach.

CCS CONCEPTS

•Networks→Network resources allocation; •Theory of com-

putation → Fixed parameter tractability;

KEYWORDS

Virtual Network Embedding, Approximation, Fixed-Parameter
Tractability, Dynamic Programming, Linear Programming

1 INTRODUCTION

The Virtual Network Embedding Problem (VNEP) captures the
essence of many resource allocation problems in networks [5]:
Given are a substrate network, representing the physical infras-
tructure, and a virtual request graph, representing a customer’s
workload; the task is to map each virtual request node to a physical
substrate node and to realize each virtual request edge as a path in
the substrate connecting the respective servers while safeguarding,
among others, capacity constraints. The VNEP has attracted much
interest over the last years and is closely related to other embedding
problems, e.g., the embedding of service function chains [8], virtual
clusters [1], or virtual datacenters [13]. Indeed, in all of these cases
a request topology is to be embedded in the provider’s physical
substrate network. Figure 1 gives an example.

Alas, the VNEP is algorithmically very challenging: it is
NP-complete and inapproximable under any objective [10]. Even
more, the VNEP remains NP-complete in the absence of capacity
constraints. Concretely, given restrictions on the mapping of re-
quest nodes and edges, the respective Valid Mapping Problem (VMP)
asking to determine a valid mapping respecting only the given re-
strictions, is NP-complete, even for planar and degree-bounded
request graphs. However, the VMP is not only an elementary prob-
lem, solving the VMP was recently also shown to be of crucial
importance for the development of approximations for the VNEP:
to approximate the offline variant of the VNEP using randomized
rounding the computation of (convex combinations of) valid map-
pings using Linear Programming (LP) is necessary [11].

A B

CD

AC B

D

1

11

1

6

Request Graph Gr

Embedding 1/2

1/2 1/2

1/2

2/3

1/3

1 4

3 1

2/2 4/5

0/0 1/13/3

Substrate Network GS

Figure 1: Exemplary embedding of a request on a substrate.

The numbers represent demands and allocations/capacities.

Contributions. This paper initiates the study of a parametrized

complexity approach to solve the fundamental Valid Mapping
Problem, which in turn leads to novel solutions for the VNEP.
The motivation behind a parametrized complexity approach is
that many NP-hard problems become polynomial-time tractable
when considering input parameters beyond the input size: the
parametrized complexity classes F PT and XP contain prob-
lems that can be solved in time O (2poly(k) · poly(|X |)) and
O (|X |poly(k) + poly(|X |)) for a problem instance X with parameter
k , respectively [6]. We employ the treewidth of the request graph
as parametrization, which measures the closeness of the request
graph to a tree [2] and derive a number of new results:
(1) We develop the dynamic programming algorithm

DynVMP to solve the VMP, which runs in XP-time
O (n

poly(k)
S · poly(nS · nr)), where nS and nr denote the

number of substrate and request nodes, respectively, and k
denotes the treewidth of the request graph. Thus, for graphs of
bounded treewidth DynVMP runs in polynomial-time.

(2) Based on Linear Programming duality, we show that the
DynVMP algorithm can be used as separation oracle and de-
rive an efficient column generation approach for solving Linear
Programming relaxations of the VNEP. Accordingly, the previ-
ous (polynomial-time) approximation result of [11] for cactus
graphs is generalized to graphs of bounded treewidth, while
yielding XP-approximations for all other graph classes.

(3) For the VNEP with per-edge latency constraints, we derive a
novel approximation result based on computing approximate
latency-observing mappings using the DynVMP algorithm.

(4) To demonstrate the applicability of our approach in practice, we
study the treewidth of random graphs, and evaluate randomized
rounding heuristics with state-of-the-art heuristics.

Novelty & Related Work. The VNEP has received much attention
over the last years and we refer to the survey [5] for an overview.
Most existing works consider heuristics which do not provide any
formal performance guarantees.

Much less is known about polynomial-time approximation algo-
rithms. Even et al. [4] present an approximation algorithm for linear
chain requests. A first more general approximation of the offline

ACM SIGCOMM Computer Communication Review Volume 49 Issue 1, January 2019

VNEP (cf. Definition 2.5) was recently proven for the class of cactus
request graphs [11], i.e. graphs in which cycles intersect in at most
a single node. In particular, it was shown that the previously known
Multi-Commodity Flow (MCF) LP formulation [3] yields invalid
mappings. Hence, the integrality gap of the MCF formulation is
unbounded, rendering it useless for approximations. Accordingly,
a novel LP formulation was proposed which always returns valid
mappings, but grows in size compared to the MCF LP.

In this paper, we present a parametrized column generation ap-
proach to compute optimal LP solutions for arbitrary request graphs
based on dynamic programming. Leveraging this parametrized com-
plexity perspective, we not only generalize the previously known
approximation to arbitrary graphs, but also obtain approximations
for the VNEP under latency constraints. We are not aware of any
VNEP approximations respecting latencies.

Structure. Section 2 introduces our formal model, and Section 3
presents the idea of decomposing requests into trees. Our dynamic
program is given in Section 4 and our approximations in Section 5.
In Section 6 rounding heuristics are discussed. Our evaluation is
presented in Section 7. We conclude our work in Section 8.

2 FORMAL MODEL

Within this section the VNEP and the VMP are formally introduced.
As latency constraints play an important role in Service Function
Chaining [8], we (optionally) incorporate these here.

Substrate Network. We refer to the physical network as substrate
network and model it as directed graph GS = (VS ,ES). Capacities
of the substrate are given via the function dS : GS → R≥0. The
capacitydS (u) of nodeu ∈ VS may represent the number of (virtual)
CPUs while the capacity dS (u,v) of edge (u,v) ∈ ES represents the
available bandwidth. We denote by PS the set of all simple paths
in GS . Each substrate element x ∈ GS may be attributed with costs
cS (x) ∈ R≥0 for using it (per unit capacity). Substrate edges may
be attributed with latencies via lS : ES → R≥0.

Request Graphs. A request is similarly modeled as di-
rected graph Gr = (Vr ,Er) together with node and edge
demands dr : Gr → R≥0. Per edge latency bounds are given by
lr : Er → R≥0, when latencies are considered. Each request r ∈ R
may be attributed with a profit br ∈ R≥0 that the provider obtains
when embedding the request, subject to the following restrictions.

Mapping Restrictions. Virtual nodes and edges can only be
mapped on substrate nodes and edges of sufficient capacity. Fur-
thermore, the customer or provider may restrict the mapping of
request nodes i ∈ Vr and edges (i, j) ∈ Er by providing sets of
forbidden substrate nodes V i

S ⊆ VS and edges E
i, j
S ⊆ ES . The

set V i
S may for example include substrate nodes too distant to

the customer or servers not suited to host the functionality of re-
quest node i . Similarly, the set Ei, jS contains edges which must
be avoided due to security or other technical policies. Accord-
ingly, we denote the set of suitable substrate nodes for i ∈ Vr

by V r,i
S = {u ∈ VS \ V

i
S | dS (u) ≥ dr (i)} while the set of suitable

substrate edges for (i, j) ∈ Er is denoted by E
r,i, j
S = {(u,v) ∈

ES \ E
i, j
S | dS (u,v) ≥ dr (i, j)}. The maximal demand dmax (r ,x)

of any request element for a single substrate resource x ∈ GS is
defined as dmax (r ,u) = max({0} ∪ {dr (i) | i ∈ Vr : u ∈ V r,i

S }) and

dmax (r ,u,v) = max({0} ∪ {dr (i, j) | (i, j) ∈ Er : (u,v) ∈ Er,i, jS }) for
substrate nodes u ∈ VS and edges (u,v) ∈ ES , respectively.

Problem Definitions. According to the above introduction of map-
ping restrictions, a valid mapping is defined as follows.

Definition 2.1 (Valid Mapping). A valid mapping of request r ∈ R
to the substrate GS is a tuplemr = (mV

r ,m
E
r) of functions that map

nodes and edges, respectively, s.t. the following holds:
• The functionmV

r : Vr → VS maps virtual nodes validly to sub-
strate nodes, such thatmV

r (i) ∈ V
r,i
S holds for i ∈ Vr .

• The function mE
r : Er → PS maps virtual edges (i, j) ∈ Er to

valid simple paths in GS connectingmV
r (i) tomV

r (j), such that
mE
r (i, j) ⊆ E

r,i, j
S holds for (i, j) ∈ Er .

• When latencies are considered
∑

(u,v)∈mE
r (i, j)

lS (u,v) ≤ lr (i, j)

must hold for (i, j) ∈ Er .
The set of all valid mappings of request r is denoted byMr . □

Hence, a valid mapping enforces the validity of each single vir-
tual element with respect to mapping restrictions and resource
capacities. Cumulative resource allocations are defined as follows:

Definition 2.2 (Allocations). We denote by A(mr ,x) ∈ R≥0 the
resource allocation induced by the valid mappingmr = (mV

r ,m
E
r)

on substrate element x ∈ GS . For u ∈ VS and (u,v) ∈ ES the
following holds, respectively: A(mr ,u) =

∑
i ∈Vr :mV

r (i)=u
dr (i) and

A(mr ,u,v) =
∑

(i, j)∈Er :(u,v)∈mE
r (i, j)

dr (i, j). We denote the maxi-
mal allocation that a valid mapping may impose on a substrate
resource x ∈ GS by Amax (r ,x) = maxmr ∈Mr A(mr ,x) . □

A set of mappings is feasible if it respects resource capacities:

Definition 2.3 (Feasible Embedding). A set of mappings {mr }r ∈R
over a set of requests R is feasible, if and only if

∑
r ∈R A(mr ,x) ≤

dS (x) holds for x ∈ GS . A single mapping mr is feasible, if this
holds for the singleton set {mr }. □

The online and offline VNEP are defined as follows:

Definition 2.4 (Online Virtual Network Embedding Problem). The
online VNEP asks for a feasible embeddingmr of a single request r
minimizing the cost c (mr) =

∑
x ∈GS cS (x) · A(mr ,x). □

Definition 2.5 (Offline Virtual Network Embedding Problem). The
offline VNEP asks for a feasible embedding {mr }r ∈R′ of a subset of
requests R ′ ⊆ R maximizing the profit

∑
r ∈R′ br . □

As the feasibility of an embedding implies the validity of the
respective mappings, the computation of valid mappings is a pre-
requisite for both VNEP variants. We also introduce the (online)
Valid Mapping Problem as follows:

Definition 2.6 (Valid Mapping Problem (VMP)). Given a request r ,
the VMP asks for finding the valid mappingmr minimizing the cost
function c (mr) =

∑
x ∈GS cS (x) · A(mr ,x). □

We note that when request demands are small compared to the
substrate capacities, the online VNEP reduces to the VMP:

Observation 2.7. Given a request for which any valid mapping

mr ∈ Mr is feasible, i.e. Amax (r ,x) ≤ dS (x) holds for all substrate
resources x ∈ GS , then the online VNEP reduces to the VMP: an

optimal solution to the VMP is an optimal solution to the VNEP.

ACM SIGCOMM Computer Communication Review Volume 49 Issue 1, January 2019

3 REQUEST GRAPH TREE DECOMPOSITIONS

In the following, we revisit the notion of tree decompositions [2, 6]
and apply it to request graphs. Tree decompositions are used to rep-
resent arbitrary graphs as trees (cf. Figure 2). The definition of tree
decompositions ensures that (i) all nodes and edges of the request
graph are covered while (ii) preserving crucial structural informa-

tion of the original graph. Combinatorial optimization problems as
the VMP can then be solved on this tree representation by using
dynamic programming [6]. As tree decompositions are defined for
undirected graphs, we consider undirected request graphs:

Definition 3.1 (Undirected Request GraphGr). For a request graph
Gr = (Vr ,Er) its undirected interpretation Gr = (Vr ,Er) is given
by Er = {{i, j}|(i, j) ∈ Er } on the original node set Vr . □

Note that directed, antiparallel edges (i, j), (j, i) ∈ Er of the orig-
inal request graph are accordingly represented using only a single
undirected edge {i, j} ∈ Er . Tree decompositions, here concerning
the request graphs, are then defined as follows [6].

Definition 3.2 (Tree Decomposition Tr = (Tr ,Br)). Given an undi-
rected request Gr = (Vr ,Er), a tree decomposition of Gr is a pair
Tr = (Tr ,Br) consisting of an undirected tree Tr = (VT ,ET) and a
family Br = {Bt }t ∈VT of subsets Bt ⊆ VT , also referred to as the
node bags, for which the following conditions hold:
(1) For all request nodes i ∈ Vr , the set V −1T (i) = {t ∈ VT | i ∈ Bt }

of tree nodes containing node i is connected in Tr .
(2) Each request node and each (undirected) request edge is con-

tained in at least one of the bags: ∀i ∈ Vr . ∃t ∈ VT : i ∈ Bt and
∀{i, j} ∈ Er . ∃t ∈ VT : {i, j} ⊆ Bt hold. □

The treewidth is then defined as follows (cf. [6]):
Definition 3.3 (Width of a Tree Decomposition and Treewidth).

The width tw(Tr) ∈ N equals the maximal bag size minus one, i.e.
tw(Tr) = maxt ∈VT |Bt | − 1. The treewidth of an undirected graph
equals the minimal width among all tree decompositions. □

Finding tree decompositions of minimal width is itself a challeng-
ing optimization problem and known to beNP-hard [6]. However,
if the treewidth of a graph G is known to be k ∈ N, the problem of
finding a tree decomposition is fixed-parameter tractable. Several
important graph classes (including many request topologies usually
considered in the literature) are known to have small treewidths
(cf. Table 1). The example requests of Figure 2, a service chain [8]
and a virtual cluster [1], have treewidths 1 and 2 respectively, as
the service chain is outerplanar and the virtual cluster is a tree.
However, even if a request graph does not belong to a graph class
of bounded treewidth, recent exact algorithms can compute optimal
tree decompositions in a matter of seconds (see Section 7).

A tree decomposition naturally groups request nodes together
into node bags. As the size of each bag is bounded for graphs

Graph Class tw Description
trees 1 connected graph without cycle
cacti 2 cycles intersect only in a single node

series-parallel 2 source-terminal graphs; generated us-
ing parallel and serial composition

(1-)outerplanar 2 planar graph; nodes lie on outer face
k-outerplanar k + 1 planar graph; removal of outer face

nodes yields (k − 1)-outplanar graph
Table 1: Graph Classes of Bounded Treewidth [2]

Internet

LB1 LB2Cache

FW

NAT

VM1

VM5

VM4VM3

VM2

Customer

Backend1 Backend2

Tree Tr

Bags Br

Graph Gr

Figure 2: Depicted are two exemplary virtual network re-

quest graphs together with corresponding tree decomposi-

tions: a load-balancing service chain and a virtual cluster

with 5 VMs. The covering node bags are depicted in the mid-

dle, while the resulting trees are depicted on the bottom. The

widths of the decompositions are 2 (left) and 1 (right).

of bounded treewidth, this allows to perform more complex
operations on the whole bag in polynomial-time. In particu-
lar, instead of mapping single virtual nodes, we will consider
the joint mappings of all request nodes contained in the bags.
While the number of mapping possibilities grows exponentially
in the node bag’s size, it is polynomial for graphs of bounded
treewidth. Concretely, the number of mapping possibilities for
a node bag Bt equals

∏
i ∈Bt |V

r,i
S | ∈ O (|VS |

tw(Tr)+1). We math-
ematically represent the space of node bag mappings as follows.
We denote by M (Bt) = [Bt → VS] the set of all functions from
Bt to VS , i.e. mV

t ∈ M (Bt) maps all virtual nodes of Bt . Given
a specific bag mapping mV

t ∈ M (Bt), a cost-optimal valid map-
ping of the subgraph Gr [Bt] = (Bt ,Er [Bt]) induced by Bt , i.e.
Er [Bt] = {(i, j) ∈ Er | i, j ∈ Bt }, is computable in polynomial-time:

Lemma 3.4 (Computation of optimal induced mappings).
Given a node bag mapping mV

t ∈ M (Bt), one can check in time

O (poly(|Bt | · |GS |)) if a valid edge mapping extension mE
t exists,

such thatmt = (mV
t ,m

E
t) is a valid mapping of the induced subgraph

Gr [Bt]. Furthermore, if such an induced valid mapping exists, the

least cost one can be computed in time O (poly(|Bt | · |GS |)).

Proof. The validity of the given node mapping mV
t can be

checked by testing whether mV
t (i) ∈ V r,i

S holds for each virtual
node i ∈ Bt . As the node mappings are fixed, one can compute a
shortest valid path for each edge (i, j) ∈ Er [Bt] by applying e.g.
Dijkstra’s algorithm, albeit only considering substrate edges con-
tained in E

r,i, j
S . If valid paths exist for all induced edges Er [Bt]

under the node mappingmV
t , a cost-optimal edge mappingmE

t is
obtained and otherwise no valid mapping can exist. □

Besides this, we employ the following facts for our algorithm.

Fact 3.5 ([6]). Let N (t) ⊆ VT denote the neighboring tree nodes

of t ∈ VT . For any tree node t ∈ VT and any pair t1, t2 ∈ N (t) of
neighbors of t with t1 , t2, the following holds: (Bt1 ∩ Bt2) \ Bt = ∅.

Fact 3.6 ([6]). Any tree decomposition can be transformed into a

small one for which Bt1 ⊈ Bt2 holds for all t1, t2 ∈ VT with t1 , t2.
For any small tree decomposition |VT | = |Br | ≤ |Vr | holds.

The first fact states that node bags separate neighboring node
bags from each other, while the second allows to bound the size of
the tree |VT | by the number of original request nodes |Vr |.

ACM SIGCOMM Computer Communication Review Volume 49 Issue 1, January 2019

The following additional notation will be used throughout this
work. We employ Bt1∩t2 to denote the intersection of the corre-
sponding node bags, i.e. Bt1∩t2 = Bt1 ∩ Bt2 . Given a node bag
mappingmV

t , we denote by ⦉mV
t |V

′
r ⦊ : V ′r → VS the restriction of

mV
t to a subset V ′r ⊆ Bt , such that ⦉mV

t |V
′
r ⦊(i) =mV

t (i) for i ∈ V
′
r .

4 DYNAMIC PROGRAM DynVMP

We now present the XP-algorithm DynVMP for solving the VMP.
We first consider the VMP without latency constraints and after-
wards present a minor extension to cater for latencies. The algo-
rithm uses the tree decomposition Tr of the request graph and ap-
plies dynamic programming: starting from the leaves of the tree de-
composition, (partial) cost-optimal valid mappings are constructed
bottom-up. This is facilitated by Lemma 3.4. Starting at the leaves,
these cost-optimal valid mappings are combined in a bottom-up
fashion. Concretely, the algorithm stores for each tree node t ∈ VT
and each node bag mappingmV

t ∈ M (Bt) the optimal mapping
costs in the table C[t][mV

t] (infinite costs indicate infeasibility)
together with the node mappings in tableM[t][mV

t] (see Lines 2-4).
The nodes of the tree decomposition are then traversed bottom-

up (post-order traversal). Considering a specific tree node t ∈ VT
with node bag Bt , all node bag mappingsmV

t ∈ M (Bt) are enumer-
ated (Line 7). Only if the induced mapping is valid, the mapping is
considered and otherwise the corresponding cost C[t][mV

t] stays
infinite (indicating invalidity). Considering leaves, the (induced)
mapping costs of locally valid mappings can be readily computed
using Lemma 3.4 by the InducedCost function. For nodes hav-
ing children, the current mapping mV

t is sought to be extended
as cheaply as possible. To this end, all suitable child mappings
mV
tc ∈ M (Btc) agreeing with the current mapping mV

t are con-
sidered and according to the cost-optimal one the mapping table
M[t][mV

t] is updated. Importantly, the different children will never
set a mapping of a virtual node i ∈ Vr twice by Fact 3.5: a request
node i is either contained in only a single child bag or in multi-
ple; however, if it is contained in multiple bags, then it must be
contained in Bt . Accordingly, if i ∈ Bt holds, then the mapping
of i is already explicitly set bymV

t and the child mappings cannot
disagree on the mapping of i , as only matching mappings were
selected in Line 12. Only if for all children valid mappings exist,
the cost is updated and otherwise the mapping is considered to
be invalid (cf. Lines 23 and 24). Having processed the whole tree,
the optimal valid mapping is retrieved at the root node t̂r or ⊥ is
returned to indicate that none exists.

Theorem 4.1. The DynVMP algorithm correctly determines

whether a valid mapping exists and if so, returns a cost-optimal one.

Its runtime is bounded by O (|Vr |
3 · |VS |

2·tw(Tr)+3).
Proof. By the above description of the algorithm, the algorithm

returns an optimal valid mapping, if one exists. With respect to
the runtime, we first note that |VT | ≤ |Vr | holds when considering
small tree decompositions (cf. Fact 3.6). The pre-computation of all
shortest valid paths can be implemented in time O (|Vr |2 · |VS |3)
by applying Dijkstra’s algorithm for each of the O (|Vr |2) request
edges for each potential substrate start node. On the other hand,
the runtime of the Lines 12 to 22 dominate the main algorithm’s
runtime. Here, for each of the at most |Vr | tree nodes at most
|VS |

tw(Tr)+1 many mappingsmV
t are considered, for which again

Algorithm 1: DynVMP: Computing Optimal Valid Mappings
Input : substrate GS , request Gr , tree decomposition Tr
Output :valid mapping of minimal cost or ⊥ if none exists

1 PrecomputeShortestValidPaths(Gr ,GS)

2 foreach t ∈ VT do // initialize tables

3 foreachmV
t ∈ M (Bt) do

4 C[t][mV
t]← ∞ andM[t][mV

t]← (i 7→ ⊥ | i ∈ Vr \ Bt)

5 set QT ← PostOrderTraversal(Tr , t̂r)

6 for t ∈ QT do // traverse tree in post-order

7 formV
t ∈ M (Bt) do // consider node bag mappings

8 if InducedMappingLocallyValid(mV
t) then

9 set children_valid ← True
10 for (t , tc) ∈ δ+ (t) do // find best child mapping m̂V

tc
11 set m̂V

tc ← ⊥

12 for

(
mV
tc ∈ M (Btc) with

⦉mV
tc |Btc∩t⦊ = ⦉mV

t |Btc∩t⦊

)
do

13 if m̂V
tc = ⊥ or C[tc][mV

tc] < C[tc][m̂
V
tc] then

14 m̂V
tc ←mV

tc

15 if m̂V
tc , ⊥ then // if valid mapping exists

16 for i ∈ Vr \ Bt do // as mV
t fixes Bt mapping

17 if i ∈ Btc then // as mV
tc maps i

18 M[t][mV
t](i) ← m̂V

tc (i)

19 else if M[tc][m̂V
tc](i) , ⊥ then

20 M[t][mV
t](i) ← M[tc][m̂V

tc](i)

21 else // induced valid mapping cannot exist

22 set children_valid ← False and exit for-loop

23 if children_valid then

24 C[t][mV
t]← InducedCost(mV

t ∪M[t][mV
t])

25 choose m̂V
t̂r
∈ M (Bt̂r) s.t. ĉ ← C[t̂r][m̂

V
t̂r
] is minimal

26 if ĉ < ∞ then return InducedMapping(m̂V
t̂r
∪M[t̂r][m̂V

t̂r
])

27 else return ⊥

at most |Vr | · |VS |tw(Tr)+1 many mappings of its children must be
considered while adapting the mappings in Lines 17 to 20 may again
take O (|Vr |) time, yielding the claimed overall runtime. □

Lastly, we show that the DynVMP algorithm can be used to
approximate the cost of valid mappings under latency constraints.
While computing minimum-cost latency-constrained shortest paths
(LCSP) is itself an NP-hard problem, a fully polynomial-time ap-
proximation scheme (FPTAS) exists:

Theorem 4.2 (LCSP FPTAS, Lorenz & Raz [9]). For any ε ′ > 0,
a (1 + ε ′)-optimal path satisfying the latency bound can be computed

in O
(
|ES | · |VS | · (log log |VS | + 1/ε ′)

)
= timeLCSP (ε ′).

The FPTAS for the LCSP can be used in the DynVMP algorithm
to compute approximate latency respecting valid paths in Line 1.
As each computed path is (1 + ε ′)-optimal, the resulting mapping
is also (1 + ε ′)-optimal and we obtain the following result:

Theorem 4.3. Using the LCSP FPTAS, the DynVMP algorithm

finds a (1 + ε ′)-optimal valid mapping, if one exists. Its runtime is

bounded by O (|Vr |
2 · (|Vr | · |VS |

2·tw(Tr)+2 + timeLCSP (ε ′))).

ACM SIGCOMM Computer Communication Review Volume 49 Issue 1, January 2019

5 XP-APPROXIMATIONS FOR THE VNEP

We now present a novel Linear Programming (LP) approach for
the VNEP that allows us to generalize the previously obtained
approximation result for the offline VNEP of [11]. Our approach
also enables the first approximations under latency constraints.

Concretely, in [11] it was shown that approximations can be
obtained if the fractional offline VNEP can be solved. In the frac-
tional variant several valid mappings can be selected and weighed
to obtain a convex combination of mappings. The LP Formulation 1
models this by enumerating all valid mappings. Using randomized
rounding (see Algorithm 2), the following was obtained:

Theorem 5.1 (VNEP Approximation for Cacti [11]). Algo-
rithm 2 returns an (α , β ,γ)-approximate solution for the VNEP of at

least an α = 1/3 fraction of the optimal profit, and allocations on

nodes and edges within factors of β and γ of the original capacities,

respectively, with high probability, where β ,γ ≥ 1 are defined as

β =1 + ε ·
√
2 · ∆(VS) · log(|VS |) and γ=1 + ε ·

√
2 · ∆(ES) · log(|ES |)

with ∆(X) = maxx ∈X
∑
r ∈R:dmax (r,x)>0 (Amax (r ,x)/dmax (r ,x))2

being the maximal sum of squared maximal allocation-to-capacity

ratios over the resource set X and the maximum demand-to-capacity

ratio ε = maxr ∈R,x ∈GS dmax (r ,x)/dS (x).
In the following, we show how the LP Formulation 1 can be

solved efficiently for arbitrary request graphs by using theDynVMP
algorithm. While the primal formulation uses exponentially many
variables, its dual (cf. Formulation 2) uses a polynomial number of
variables λ⃗ (corresponding to Constraint 2) and µ⃗ (corresponding
to Constraint 3) while employing exponentially many constraints.
However, it is known that such LP formulations can be solved in
polynomial-time, as long as violated constraints can be identified
in polynomial-time by a ‘separation oracle’ [7].

Considering the case without latencies first, Constraints 6 can
be separated using DynVMP as follows. First, we interpret the µ⃗
variables as resource costs cS,µ : GS → R≥0 with cS,µ (x) = µx .
Accordingly, the mapping cost cS,µ (mr) of a valid mapping mr
equals

∑
x ∈GS µx · A(mr ,x), i.e. the second term of the left-hand

side of Constraint 6. Accordingly, the DynVMP algorithm can be
used to compute cost-optimal mappings m̂r for each request r ∈
R. If cS,µ (m̂r) ≥ br − λr holds, all valid mappings of request r
satisfy Constraint 6. On the other hand, if cS,µ (m̂r) < br − λr
holds, then the constraint corresponding to the mapping m̂r is
added to the Linear Program 2. By initializing λ⃗ = µ⃗ = 0⃗ and
iteratively separating the violated constraints as long as one exists,
an optimal LP solution can be computed. For practical applications,
the following lemma is helpful in terminating the separation process
once a solution of sufficient quality has been found:

Lemma 5.2. Let µ⃗, λ⃗ be the dual variables of a primal LP solution

and let ϵ > 0. If cS,µ (mr) · (1 + ϵ) ≥ br − λr holds for allmr ∈ Mr
and each r ∈ R, then the primal LP solution is (1 + ϵ)-optimal.

Proof. This follows from weak duality [7], as scaling the µ⃗ vari-
ables by a factor of (1 + ϵ) yields a feasible dual solution while
increasing the objective by at most a factor (1 + ϵ). □

As the separation of violated constraints equals the introduc-
tion of new variables (‘columns’) in the primal, this approach is
generally referred to as ‘column generation’. As the runtime of
these approaches is polynomially bounded in the runtime of the
separation oracle [7], the following XP-result is obtained.

Formulation 1: Primal Enumerative LP for the Offline VNEP

max
∑

r ∈R,mk
r ∈Mr

f kr · br (1)∑
mk
r ∈Mr

f kr ≤ 1 ∀r ∈ R (2)∑
r ∈R,mk

r ∈Mr
f kr · A(m

k
r ,x)≤ dS (x) ∀x ∈ GS (3)

f kr ∈ [0, 1] ∀r ∈ R,mk
r ∈ Mr (4)

Formulation 2: Dual Enumerative LP for the Offline VNEP

min
∑

r ∈R
λr +

∑
x ∈GS

µx · dS (x) (5)

λr +
∑

x ∈GS
µx · A(m

k
r ,x)≥ br ∀r ∈ R,mk

r ∈ Mr (6)
λr ≥ 0 ∀r ∈ R (7)
µx ≥ 0 ∀x ∈ GS (8)

Algorithm 2: Randomized Rounding Approximation (cf. [11])
1 foreach r ∈ R do // preprocess requests

2 compute solution to LP Formulation 1 for request r
3 remove r from R if solution’s profit is less than br
4 compute solution to LP Formulation 1 for all requests R
5 do // perform randomized rounding

6 foreach r ∈ R embed r usingmk
r with probability f kr

// request r is rejected with prob. 1 −
∑
k f kr

7 while solution is not (α , β ,γ)-approximate

Theorem 5.3. LP Formulations 1 and 2 can be solved in time

O
(
poly

(∑
r ∈R |Vr |

3 · |VS |
2·tw(Tr)+3

))
by using DynVMP as oracle.

As the approximation framework developed in [11] only depends
on the ability to solve the LP Formulation 1 optimally, the approxi-
mation result readily carries over to arbitrary request graphs.

Theorem 5.4. Using the DynVMP algorithm to solve LP Formu-

lation 1 and applying the rounding procedure of [11], a tri-criteria

(α , β,γ)-(XP-)approximation for the offline VNEP is obtained (with

α , β , γ as defined in Theorem 5.1), with high probability. Accordingly,

polynomial-time approximations are obtained when considering re-

quests of bounded treewidth, as for example outerplanar graphs.

We note that parametrized approximations are indeed the best
one can hope for, as the VNEP is NP-complete for planar request
graphs [10] and – unless P =NP holds – no polynomial-time
algorithms can exist. Furthermore, we note that planar graphs have
unbounded treewidth: a k × k grid has a treewidth of k [6].

Lastly, we turn towards approximations under latency con-
straints. In this case, the Constraints 6 can only be separated ap-
proximatively (cf. Theorem 4.3): for each request r ∈ R a (1 + ε ′)-
optimal mapping m̃r is computed and respective columns are added
as long as cS,µ (m̃r) < br − λr holds. After the separation pro-
cess, some of the Constraints 6 might still be violated. In fact, only
cS,µ (m

k
r) · (1 + ε ′) ≥ br − λr holds for all mappingsmk

r ∈ Mr and
by Lemma 5.2 the respective solution is (1 + ε ′)-optimal.

To obtain an approximation, Algorithm 2 must be adapted to
this approximative setting as follows. In Line 3, a request r is only
removed when their achieved profit is less than br /(1 + ε ′), as this
indicates that the request can never be fully embedded. Further-
more, the analysis of [11] requires that the LP’s profit b̂ is larger
than bmax = maxr ∈R br . First, note that bmax/(1 + ε ′) ≤ b̂ always
holds [11]. Accordingly, in the case that bmax/(1 + ε ′) ≤ b̂ < bmax

ACM SIGCOMM Computer Communication Review Volume 49 Issue 1, January 2019

holds, an additional profit of bmax − b̂ must be ensured. This can be
achieved by adding a fractional embedding of the request rmax ∈ R
having the largest profit. In particular, given the initial LP computa-
tion for rmax of Line 2, the returned solution can be scaled to fully
embed rmax while exceeding capacities by at most a factor (1 + ε ′).
Adding a (bmax − b̂)/bmax ≤ ε ′/(1 + ε ′) fraction of this embedding
to LP solution of Line 4, the condition b̂ ≥ bmax holds while the LP
solution exceeds capacities by at most a factor (1 + ε ′). Rounding
this solution as before, the following approximation is obtained:

Theorem 5.5. For the offline VNEP with latency constraints,
a tri-criteria (α/(1 + ε ′), β + ε ′,γ + ε ′)-(XP-)approximation is ob-

tained for any ε ′ > 0 and α , β , γ as defined in Theorem 5.1,

with high probability. The runtime of the algorithm lies in

O
(
poly

(∑
r ∈R |Vr |

2 ·
(
|Vr | · |VS |

2·tw(Tr)+2 + timeLCSP (ε ′)
)))

.

6 RANDOMIZED ROUNDING HEURISTICS

The approximations come at the cost of violating resource capacities.
However, randomized rounding can be easily adapted to obtainXP-
heuristics not violating resource capacities. In [11] a first heuristic
was proposed, which works as Algorithm 2 but discards selected
mappings whose addition would exceed capacities.

As an improvement over this heuristic and facilitated by the
column generation approach, we propose a novel rounding heuris-
tic that a priori removes mappings whose addition would lead to
resource violations and recomputes the LP before applying the
rounding (see Algorithm 3). Therefore, the addition of any rounded
mapping is feasible while also better guiding the rounding process
by providing currently optimal rounding probabilities. Specifically,
in Lines 4 and 5 first all infeasible mappings are ‘removed’ by setting
the respective LP variables to 0. To reflect made rounding decisions
in the LP, either the respective mapping variable is set to 1 (Line 9),
or all mappings of a rejected request are disabled (Line 11).

Besides this novel rounding heuristic, we also consider different
orders to round request mappings in: randomized (R) as proposed
in [11], and either sorting the requests in descending fashion by
their static (S) profits or their actual achieved profit (A) in the LP.

Algorithm 3: Heuristical Rounding with LP Recomputation
1 compute solution to LP 1 (using column generation)
2 set sol← ∅ and R ′ ← R
3 foreach r ∈ R do

4 foreach r ′ ∈ R ′ and eachmk
r ′ ∈ Mr ′ do

5 if sol ∪ {mk
r } is infeasible then set f kr ′ = 0

6 resolve Linear Program (without column generation)
7 choose m̂r ←mk

r with probability f kr
8 if m̂r , ∅ then

9 set sol← sol∪ {m̂r } and f kr = 1 // accept request r
10 else

11 set f kr = 0 for allmk
r ∈ Mr // reject request r

12 R ′ ← R \ {r }

13 return sol

7 EVALUATION

In this section we present two types of evaluation to validate our
approach. Firstly, we present a study of the treewidth of random

5 15 25 35 45
Number of Nodes

10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

Ed
ge

 P
ro

ba
bi

lit
y

Average Treewidth

1

2
3
4
6
10

20

40

0 5 10 15 20 25 30 35 40 45
Treewidth

10−1

100

101

Ru
nt

im
e

[s
]

Decomposition Runtime
percentiles

99% - 100%
75% - 99%
25% - 75%
1% - 25%
0% - 1%

median

Figure 3: Study of the treewidth of random graphs using

Tamaki’s algorithm [12]. Note the logarithmic axes.

graphs to grasp for which graphs our approach may be reasonable.
Secondly, we generate a large set of offline VNEP instances in ac-
cordance with the methodology presented in [11] and compare the
performance of the randomized rounding heuristics to the perfor-
mance of the well-known ViNE heuristics [3]. All experiments have
been conducted on a server equipped with 4 Intel XEON E5-4627v3
CPUs and 256 GB RAM. Our Python 2.7 source code, which uses
Gurobi 8.0 to solve the LPs, is publicly available1.

Qualitative and Quantitative Analysis of the Treewidth. We have
generated 1,200 undirected graphs with {5, . . . , 45} nodes and edge
creation probabilities in the range of {0.05, 0.06, . . . , 0.95}, yielding
4.47M graphs overall. We have then run the exact algorithm by
Tamaki [12] to compute the optimal treewidth. Our results are pre-
sented in Figure 3. Notably, the (average) treewidth is less than 6 for
most graphs with fewer than 15 nodes and a connection probability
of less than 50%. The runtime for computing the tree decomposi-
tions of width less than 10 lies vastly below two seconds with a
median computation time of only 200ms, enabling the application
of our approach in the first place.

Instance Generation. We have generated 6,000 offline VNEP in-
stances (without latencies) according to the methodology presented
in [11], also using the same 40-node substrate topology GÉANT
from the Topology Zoo. Instances of {40, 60, 80, 100} requests are
generated having a treewidth of exactly {1, 2, 3, 4}. The number
of nodes per request is drawn uniformly from {5, . . . , 15}. For
treewidth 1, i.e. trees, the request graphs are generated randomly
by adding edges until the graph is a tree (discarding edges creating
cycles). For generating graphs of treewidth 2, 3, 4, we employ the
graphs generated to evaluate the performance of Tamaki’s algo-
rithm. To this end we have stored all generated undirected graphs
and uniformly at random select graphs of the respective treewidth
and number of nodes. As directed requests are considered, edge
orientations are chosen uniformly at random.

As in [11] the request demands are drawn from an ex-
ponential distribution according to node resource factors
(NRF) {0.2, 0.4, 0.6, 0.8, 1.0} and edge resource factors (ERF)
{0.25, 0.5, 1.0, 2.0, 4.0}. Intuitively, a NRF of 0.6 implies that the
sum of generated node resource demands equals 60% of the avail-
able substrate node resources, while an ERF of 0.5 implies that if
each virtual edge spans exactly 0.5 substrate edges, then the aver-
age edge utilization equals exactly 100%. As in [11], the mapping
of virtual nodes is constrained to 25% of substrate nodes and the
profits of requests are set to equal the (optimal) minimum embed-
ding costs. For each parameter combination (number of requests,
treewidth, NRF, ERF) 15 instances are considered.
1https://github.com/vnep-approx/evaluation-acm-ccr-2019

ACM SIGCOMM Computer Communication Review Volume 49 Issue 1, January 2019

https://github.com/vnep-approx/evaluation-acm-ccr-2019

0

20

40

60

80

100

Pr
of

it
/ L

P U
B [

%
]

C L C L
Det. Rand.

WiNE(ViNE)

R S A R S A
No Recomp. Recomp.

RR Heuristics

best
mean

Performance of Algorithm Variants

40 60 80 100
Number of Requests

0.25

0.5

1.0

2.0

4.0

Ed
ge

 R
es

ou
rc

e
Fa

ct
or

Rel. Improv.: (RRbest - WiNEbest)/LPUB [%]

-24
-18
-12
-6
0
6
12
18
24

0
25
50
75

100 #req.:
40 & 60
#req.:
40 & 60
#req.:
40 & 60
#req.:
40 & 60
#req.:
40 & 60

40 70 100 130 160 190
profit(RRbest) / profit(WiNEbest) [%]

0
25
50
75

100 #req.:
80 & 100
#req.:
80 & 100
#req.:
80 & 100
#req.:
80 & 100
#req.:
80 & 100

ERF
0.25
0.5
1.0
2.0
4.0

ERF
0.25
0.5
1.0
2.0
4.0

EC
DF

 [%
]

Profit Comparison: RRbest / WiNEbest

Figure 4: Performance of the WiNE algorithms and the randomized rounding heuristics. Left: Performance of the different

studied algorithms compared to the upper bound (LPUB). Center: Relative improvement of randomized rounding over WiNE

(a cell averages 300 results). Right: Direct comparison of the best profits achieved (an ECDF represents 600 results).

1 2 3 4
Treewidth

101

102

103

Ru
nt

im
e

[s
]

LPDynVMP Runtime

#req.
40
60
80
100

#req.
40
60
80
100

1 2 3 4
Treewidth

100

101

102

Ru
nt

im
e

[s
]

Recomp. Heuristic Runtime

#req.
40
60
80
100

#req.
40
60
80
100

Figure 5: Runtime of the novel LP (left) and of the novel

rounding heuristic (right) as a function of the treewidth and

the number of requests. Note the logarithmic y-axes.

Studied Algorithms and Implementation Details. We compare the
performance of the randomized rounding heuristics and the offline
ViNE heuristics for unsplittable edge embeddings [3]. The ViNE
algorithms use the Multi-Commodity Flow LP to guide the em-
bedding of single requests: node mappings are performed either
randomly or deterministically according to the LP node mapping
variables while request edges are embedded using shortest-paths.
Two different LP objectives were proposed in [3]: one minimizing
resource usage and another also performing load-balancing. For the
offline setting, the authors of [3] have proposed the window-based
heuristic (WiNE) that orders requests descendingly according to
their profits and greedily embeds each request using ViNE.

Our DynVMP implementation employs several optimizations.
Most importantly, cost computations are realized using matrix mul-
tiplications. For the novel LP, the separation is terminated upon
1.001-optimality (cf. Lemma 5.2). For each randomized algorithm
several executions are considered: 20 for WiNE, 50 for randomized
rounding with recomputations and 500 without.

Results. We first report on the performance of the different algo-
rithms. In Figure 4 (left) the best and mean solution quality relative
to the maximum attainable LP profit is depicted. ForWiNE, the load-
balancing (L) objective outperforms the cost (C) one. Considering
the randomized rounding (RR) heuristics, the ones with recompu-
tations significantly outperform the ones without. Ordering the
requests according to the profit (S / A) yields the best solutions.

As we are mostly interested in the potential improvement over
greedy heuristics, the center and right plots of Figure 4 compare
the best solution computed by any WiNE execution to the best
solution of any randomized rounding execution. The mean relative
improvement over WiNE significantly depends on the number of

requests and the edge resource factor: when edge resources are
scarce (ERFs 0.25 and 0.5) WiNE performs better, while for ERFs
1.0, 2.0, and 4.0 randomized rounding consistently yields better
solutions (86.7% of scenarios). Even more, for 80 and 100 requests
and ERFs of 1.0 and 2.0, randomized rounding finds better solutions
in 99.9% of the scenarios, improving the best WiNE solution by
more than 30% in 57.5% of the scenarios. The performance drop for
low ERFs may be due to fewer generated mappings being feasible.

The runtime of the column generation LP lies in the order of
100 seconds for treewidths below 3 and several hundred seconds
for treewidth 4 (see Figure 5). The runtime of the recomputation
heuristics mainly ranges between few seconds and 60 seconds (see
Figure 5). The average runtimes of the rounding without recompu-
tations and the WiNE heuristics was 0.03s and 6.38s, respectively.

8 CONCLUSION

This work has presented the firstXP-approximations for the VNEP
for arbitrary request graphs and allowing for edge latencies. As
shown in the evaluation, applying randomized rounding heuristics
can yield significantly better solutions in practice compared to
greedy heuristics while coming at the cost of higher runtimes.

REFERENCES

[1] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. 2011. To-
wards predictable datacenter networks. In ACM SIGCOMM CCR, Vol. 41.

[2] Hans L. Bodlaender. 1998. A partial k-arboretum of graphs with bounded
treewidth. Theoretical Computer Science 209, 1 (1998), 1 – 45.

[3] M. Chowdhury, M. R. Rahman, and R. Boutaba. 2012. ViNEYard: Virtual Network
Embedding Algorithms With Coordinated Node and Link Mapping. IEEE/ACM
Transactions on Networking 20, 1 (2012).

[4] Guy Even, Matthias Rost, and Stefan Schmid. 2016. An Approximation Algorithm
for Path Computation and Function Placement in SDNs. In Proc. SIROCCO.

[5] A. Fischer, J.F. Botero, M. Till Beck, H. de Meer, and X. Hesselbach. 2013. Virtual
Network Embedding: A Survey. Comm. Surveys Tutorials, IEEE 15, 4 (2013).

[6] Jörg Flum and Martin Grohe. 2006. Parameterized complexity theory. Springer.
[7] Martin Grötschel, László Lovász, and Alexander Schrijver. 1988. Geometric algo-

rithms and combinatorial optimization. Springer-Verlag Berlin Heidelberg.
[8] J. Gil Herrera and J. F. Botero. 2016. Resource Allocation inNFV: AComprehensive

Survey. IEEE TNSM 13, 3 (2016).
[9] Dean H. Lorenz and Danny Raz. 2001. A simple efficient approximation scheme

for the restricted shortest path problem. Operations Research Letters 28, 5 (2001).
[10] Matthias Rost and Stefan Schmid. 2018. NP-Completeness and Inapproximabil-

ity of the Virtual Network Embedding Problem and Its Variants. In Proc. IFIP

Networking 2018.
[11] Matthias Rost and Stefan Schmid. 2018. Virtual Network Embedding Approxima-

tions: Leveraging Randomized Rounding. In Proc. IFIP Networking 2018.
[12] Hisao Tamaki. 2017. Positive-Instance Driven Dynamic Programming for

Treewidth. In Proc. 25th Annual European Symposium on Algorithms (ESA).
[13] M. F. Zhani, Q. Zhang, G. Simona, and R. Boutaba. 2013. VDC Planner: Dynamic

migration-aware Virtual Data Center embedding for clouds. In Proc. IFIP/IEEE

International Symposium on Integrated Network Management.

ACM SIGCOMM Computer Communication Review Volume 49 Issue 1, January 2019

	Abstract
	1 Introduction
	2 Formal Model
	3 Request Graph Tree Decompositions
	4 Dynamic Program DynVMP
	5 XP-Approximations for the VNEP
	6 Randomized Rounding Heuristics
	7 Evaluation
	8 Conclusion
	References

