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How

 

to design?
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Talk outline: R&A Distributed Systems 

1. Some
 

design principles:
 -

 
Maintaining

 
overlay

 
topology

 under
 

worst-case
 

churn?
 -

 
Secure

 
data

 
repliation

 
despite

 past-insider
 

adversary?
 -

 
Connect

 
to the

 
seniors!

 
2. Towards

 
self-repairing

 
systems

 
... interactive...
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Talk outline 

1. Some
 

design principles:
 - Maintaining overlay topology 

under worst-case churn? 
-

 
Secure

 
data

 
repliation

 
despite

 past-insider
 

adversary?
 -

 
Connect

 
to the

 
seniors!

 
2. Towards

 
self-repairing

 
systems
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Talk outline 

1. Some
 

design principles:
 -

 
Maintaining

 
overlay

 
topology

 under
 

worst-case
 

churn?
 - Secure data repliation despite 

past-insider adversary? 
- Connect

 
to the

 
seniors!

 
2. Towards

 
self-repairing

 
systems

Fired!
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Talk outline 

1. Some
 

design principles:
 -

 
Maintaining

 
overlay

 
topology

 under
 

worst-case
 

churn?
 -

 
Secure

 
data

 
repliation

 
despite

 past-insider
 

adversary?
 - Connect to the seniors! 

2. Towards
 

self-repairing
 

systems
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Talk outline 

1. Some
 

design principles:
 -

 
Maintaining

 
overlay

 
topology

 under
 

worst-case
 

churn?
 -

 
Secure

 
data

 
repliation

 
despite

 past-insider
 

adversary?
 - Connect

 
to the

 
seniors!

 
2. Towards self-repairing systems 

(Exciting, not well-understood field!)
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Use
 

redundancy
 

1: reliable
 

dynamic
 

topologies
 

Maintaining a System 
under Worst-Case Churn
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Design of Dynamic
 

Distributed
 

System?

An algorithmic

 

challenge: How

 

many

 

nodes

 

can

 

join

 

and leave

 

a network
(e.g., a p2p system) per unit time (e.g., max

 

transmission

 

time) such that

•

 

Network

 

remains

 

connected?

•

 

Network

 

maintains

 

hypercubic

 

structure?

•

 

Network

 

still allows

 

for

 

logarithmic

 

time routing

 

/ search?

Idea: Simulated / redundant graphs!
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Recipe

1. Take a graph with desirable properties

2. Simulate the graph by representing each vertex by a set of nodes
(Goal: keep graph properties!)

3. Find a token (node) distribution algorithm on this graph

4. Find an algorithm to estimate the total number of nodes in the system

5. Find an algorithm to adapt the graph‘s dimension
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Example: Hypercube
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Result

Theorem:
-

 

Despite

 

ADV(log

 

n, log n, 1), topology

 

can

 

be

 

maintained
-

 

Peer degree

 

and network

 

diameter

 

(connections: matching

 

of   
cliques): O(log

 

n)
-

 

Asymptotically

 

optimal (why?)
-

 

Similarly

 

for

 

pancake

 

graphs: replace

 

log n by

 

log n / loglog

 

n
(weaker

 

adversary!)
-

 

not

 

self-stabilizing

 

(see

 

later)
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Use
 

redundancy
 

2: How
 

to achieve
 

reliable
 

storage?
 

Chameleon: Robust data replication
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Idea:
•

 

Store data

 

redundantly

 

(goal: minimal blow-up

 

factor) 
•

 

Even a past insider should

 

not

 

know

 

where

 

it

 

is

 

stored
(As soon

 

as

 

he is

 

out, newly

 

added

 

data

 

is

 

hard

 

to find!)
•

 

Thus: Information system must

 

„change

 

its

 

appearance“ over time
•

 

How?
•

 

Idea: Randomization

 

(no fixed

 

locations, e.g., depending

 

on file

 

name)

deterministic
 

placement

??? ???

randomized
 

placement
Don‘t

 

know

 

where
to attack

 

–

 

and search! 
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Basic strategy: Random

 

placements

 

in increasing

 

„vicinities“
•

 

choose

 

suitable

 

hash

 

functions

 

h1

 

,..,hc

 

:D→V

 
(D: name

 

space

 

of data, V: set

 

of servers)
•

 

Store copy

 

of item

 

d

 

for

 

every

 

i

 

and j

 

randomly

 

in a set

 

of servers

 

of size

 

2j

 
that

 

contains

 

hi

 

(d)

hi

 

(d)

easy

 

to 
block

difficult

 

to 
block

easy

 

to 
find

difficult

 
to find
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Past-Insider-Attack:

 

Attacker

 

knows

 

everything

 

about

 

system till

 (unknown) time t0

Goal:

 

scalable

 

information

 

system so that

 

everything

 

that

 

was inserted

 after

 

t0

 

is

 

safe

 

(w.h.p.) against

 

any

 

past-insider

 

DoS

 

attack

 

that

 

can

 shut

 

down any

 

ε-fraction

 

of the

 

servers, for

 

some

 

ε>0, and create

 any

 

legal set

 

of put

 

and get

 

requests

You
 

are
 

fired!
What

 

replication

 

factor

 

is

 

needed

 

to 
no data

 

loss, efficient

 

search

 

and
insertion

 

if

 

ε

 

is

 

a constant?

One would

 

expect

 

a linear number

 

of
replicas

 

are

 

needed, but

 

polylog
are

 

enough!
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It

 

can

 

be

 

shown

 

(see

 

Awerbuch

 

& Scheideler) that

 

for

 

sufficiently

 

random
placements

 

(expansion

 

property

 

of hash

 

functions), system is

 

robust.

But

 

what

 

if

 

attacker

 

prevents

 

proper replica

 

placement

 

during

 

insertion?

Idea:

•

 

Use

 

two

 

stores

 

(essentially

 

DHTs!): a permanent p-store

 

where

 

data

 

is

 
replicated

 

properly

 

(robust to past

 

insider)

•

 

A temporary, always

 

changing

 

t-store

 

where

 

insert

 

requests

 

are

 

buffered

 
(not

 

many!) until

 

required

 

replication

 

level

 

is

 

guaranteed

 

in p-store
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Phase of Chameleon

 

system:
1.

 

Adversary

 

blocks

 

servers

 

and initiates

 

put

 

& get

 

requests
2.

 

build

 

new

 

t-store, transfer

 

data

 

from

 

old to new

 

t-store

 

(no quiet

 

time as

 

in DISC!)
3.

 

process

 

all put

 

requests

 

in t-store

 

(de Bruijn

 

like

 

network)
4.

 

process

 

all get

 

requests

 

in t-store

 

and p-store

 

(detect

 

block areas

 

fast by

 

sampling, no 
waste

 

of resources

 

to find)
1.

 

try

 

to transfer

 

data

 

items

 

from

 

t-store

 

to p-store

p-store

t-store

Internet
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Theorem: Under

 

any

 

ε-bounded

 

past-insider

 

attack

 

(for

 some

 

constant

 

ε>0

 

that

 

removes

 

a constant

 

fraction

 

ε

 

of 
all nodes), the

 

Chameleon

 

system can

 

serve

 

any

 

set

 

of 
requests

 

(one

 

per server) in O(log2

 

n)

 

time s.t. every

 

get

 request

 

to a data

 

item

 

inserted

 

or

 

updated

 

after

 

t0

 

is

 served

 

correctly, w.h.p.

[Baumgart, Scheideler, Schmid @ SPAA 2009]
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Reliability
 

by
 

connecting
 

„to the
 

seniors“:
 

Shell: Robust Distributed Heap
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How
 

to build
 

robust systems? Connect
 

to the
 

seniors!

Idea: Older

 

nodes

 

typically

 

less

 

dynamic

 

= more

 

reliable?

Goal: Build

 

a distributed

 

system that

 

allows

 

for

 

fast joins

 

and leaves

 where

 

younger

 

peers

 

only

 

connect

 

older

 

peers!
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Idea
 

(1)

•

 

Idea: if

 

everybody

 

only

 

connects

 

to older

 

network

 

participants...
-

 

... nodes

 

would

 

have

 

stable

 

neighborhoods!
-

 

... one

 

is

 

resilient

 

against

 

attacks

 

by

 

„young

 

troublemakers“
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Idea
 

(2) 

•

 

Implications:
-

 

Communication

 

paths

 

of the

 

„seniors“

 

never

 

include

 

younger

 

nodes

 

-
-

 

Young nodes

 

cannot

 

overload

 

network

 

(rate control

 

in „core

 

network“) 
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Model

•

 

How

 

to implement

 

such an idea? 

•

 

Idea: A central

 

server

 

assigns

 

joining

 

nodes

 

a rank
-

 

Nodes

 

only

 

connect

 

to nodes

 

that

 

arrived

 

earlier

 

(lower

 

rank) 

28

2321
26

18 17 2019

16
9 10 3

Network Entry Point

A distributed heap!
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SHELL

Sybil

 

attack

 

by

 

newcomers: No problem, traffic

 

& access

 

control
to core

 

network

3

47
5

10 8 912

21
14 15 11

Attack

„Rate Control“

Traffic

 

between

 

old nodes
unaffected!
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A naive Solution

•

 

Our

 

goal

 

is

 

achieved

 

with:

•

 

Problem: Scalability
-

 

Large

 

diameter, not

 

robust to join/leave, etc.

145 3 2

•

 

Better

 

topologies: hypercubes, pancake

 

graphs, ...
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Simple Approach for
 

„good“
 

Peer-to-Peer Topologies

•

 

Naor

 

& Wieder: The Continuous-Discrete Approach

•

 

Simplified

 

version: 
-

 

Nodes

 

join

 

at random

 

position

 

in [0,1)
-

 

Connects

 

to points

 

x/2 and (1+x)/2
-

 

If

 

there

 

is

 

no node, rounding

 

is

 

necessary
(„continuous

 

=> discrete“)
-

 

Details less

 

interesting

 

here

•

 

Result: a kind

 

of de Bruijn

 

Graph
-

 

constant

 

degree
-

 

logarithmic

 

diameter
-

 

simple routing

0 1

x/2
(x+1)/2

x
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Idea
 

and Problem

•

 

Network

 

Entry

 

Point assigns

 

random

 

position

 

[0,1)...

•

 

... and then

 

build

 

topology

 

according

 

to Continuous-Discrete

 Approach!

•

 

Problem? 0 1

x/2
(x+1)/2

x There could be a younger
node there!
Solution?
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Solution and another
 

Problem

•

 

Connect

 

to corresponding

 

older

 

node

 

close

 

to this

 

position

•

 

Everything

 

solved? Other

 

problems?

•

 

Analysis shows, that

 

older

 

nodes

 

can

 

be

 

congested,
as

 

everybody

 

tries

 

to connect

 

to them!

Idea?
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Redundancy

•

 

Solution: we

 

connect

 

to more

 

than

 

one

 

node!
(During

 

routing, go

 

to youngest

 

neighbor

 

among

 

older

 

ones...)

•

 

Allows

 

us

 

to „load-balance“
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The
 

Algorithm
 

(1)

•

 

Assume, each

 

node

 

u knows

 

n_u

 

= # living

 

nodes

 

that

 

are

 

older
(can

 

be

 

estimated, see

 

later)

•

 

Divide

 

[0,1) Circle

 

in fixed

 

Intervals

 

/ Levels

 

of exponentially

 decreasing

 

sizes

Partition 1 Partition 2

Partition 3 Partition 4
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The
 

Algorithm
 

(2)

•

 

Node

 

v connects

 

to three

 

Intervals
-

 

lv,0 & buddy: Home-interval

 

with

 

position

 

x
plus other

 

half of the

 

(i-1)-interval
-

 

lv,1 & buddy: Interval

 

with

 

position

 

x/2, plus buddy
-

 

lv,2 & buddy: Interval

 

with

 

position

 

(1+x)/2, plus buddy

•

 

Interval

 

is

 

chosen

 

such that

 

it

 

includes

 

at least c log nv older

 

nodes

 

(c 
= const.)! (If

 

not

 

possible, set

 

level

 

to 0.)

•

 

Establish

 

forward

 

edges

 

to these

 

nodes. Store all incoming

 

edges

 

as

 backward

 

edges!
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Overview
 

„Forward
 

Edges“

x = „home“

x/2 = de Bruijn 1
(1+x)/2 = de Bruijn 2

buddy

buddy

buddy

c log nv / nv

c log nv
/ nv
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Unfortunately, not
 

many
 

distributed
 

systems fulfill
 a very

 
appealing

 
robustness

 
requirement:

 
Self-Stabilization
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Self-Stabilization

•

 

Important

 

concept

 

in fault-tolerance

•

 

A self-stabilizing

 

system (eventually) ends

 

up in a correct

 

state...

•

 

... independently

 

of the

 

initial

 

state. 

„All the designs I was familiar with
were not self-stabilizing in the sense 
that when once (erroneously) in an 
illegitimate state, they could – and 
usually did! – remain so forever.“

E. W. Dijkstra

 

(1974)
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Self-Stabilization

•

 

Model: Adversary

 

can

 

disturb

 

the

 

computations

 

(shared
variables in system state) arbitrarily

•

 

Once

 

the

 

changes

 

are

 

over, algorithm

 

converges

 

towards
desired

 

state

•

 

Good news: 
„Awerbuch

 

& Varghese

 

91“: (cf

 

also Wattenhofer

 

@ SSS 2009)
local algorithms = self-stabilizing algorithms

•

 

However: 
-

 

if

 

applied

 

for

 

dynamic

 

topologies

 

the

 

overhead

 

is

 

large
-

 

randomized

 

local

 

algorithms

 

less

 

understood
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Goal: Terminator 2!
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Most Simple Topological
 

Stabilization: Graph Linearization

1 2 3 4 5 6 7 8

•

 

INPUT: Arbitrary

 

connected

 

graph
-

 

nodes

 

have

 

arbitrary

 

IDs
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Most Simple Topological
 

Stabilization: Graph Linearization

1 2 3 4 5 6 7 8

•

 

OUTPUT: Sorted

 

graph
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Most Simple Topological
 

Stabilization: Graph Linearization

1 2 3 4 5 6 7 8

•

 

Ideas: How

 

to linearize

 

locally?
To preserve

 

connectivity?
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Basic Linearization
 

Step

•

 

A basic

 

linearization

 

step

 

involves

 

a node

 

triple

•

 

Observe: Connectivity

 

is

 

preserved
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LINall

 

and LINmax

•

 

LINall

 

proposes

 

all possible

 

triples

 

to the

 

scheduler

 

(for

 

node

 

u)

•

 

LINmax

 

proposes

 

the

 

furthest triple

 

on each

 

side

 

(for

 

node

 

u)
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LINall

 

and LINmax

•

 

LINall proposes all possible triples to the scheduler (for node u)

•

 

LINmax

 

proposes

 

the

 

furthest triple

 

on each

 

side

 

(for

 

node

 

u)

2 3 4 5 6 7 8 91

2 3 4 5 6 7 8 91
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LINall

 

and LINmax

•

 

LINall proposes all possible triples to the scheduler (for node u)

•

 

LINmax

 

proposes

 

the

 

furthest triple

 

on each

 

side

 

(for

 

node

 

u)

2 3 4 5 6 7 8 91

2 3 4 5 6 7 8 91
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LINall

 

and LINmax

•

 

LINall proposes all possible triples to the scheduler (for node u)

•

 

LINmax

 

proposes

 

the

 

furthest triple

 

on each

 

side

 

(for

 

node

 

u)

2 3 4 5 6 7 8 91

2 3 4 5 6 7 8 91
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LINall

 

and LINmax

•

 

LINall proposes all possible triples to the scheduler (for node u)

•

 

LINmax

 

proposes

 

the

 

furthest triple

 

on each

 

side

 

(for

 

node

 

u)

2 3 4 5 6 7 8 91

2 3 4 5 6 7 8 91
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LINall

 

and LINmax

•

 

LINall

 

proposes

 

all possible

 

triples

 

to the

 

scheduler

 

(for

 

node

 

u)

•

 

LINmax proposes the furthest triple on each side (for node u)

2 3 4 5 6 7 8 91

2 3 4 5 6 7 8 91
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How
 

to measure
 

distributed
 

execution
 

time?
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A Naïv
 

Model

•

 

There

 

are

 

different models

 

for

 

what

 

can

 

happen

 

in one

 

round!

•

 

For example: Every

 

node

 

can

 

fire

 

one

 

action

 

per round

•

 

Problem: Nodes

 

can

 

be

 

involved

 

in many

 

changes
-

 

Therefore, this

 

solution

 

does

 

not

 

scale!

1 2 3 4 5 6 7 8
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A Scalable
 

Model

We

 

propose

 

the

 

following, scalable

 

model:
-

 

Let

 

V(A) be

 

the

 

nodes

 

involved

 

in an action

 

A
-

 

Two

 

actions

 

A and B are

 

independent if

 

V(A) ∩

 

V(B) = {}
-

 

Only

 

an independent set

 

of actions

 

is

 

fired

 

per round

1 2 3 4 5 6 7 8
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Schedulers

•

 

Nodes

 

propose

 

different enabled

 

actions

 

to the

 

scheduler...

•

 

... –

 

which

 

one

 

to choose?

Worst-case scheduler: chooses

 

independent set

 

of 
enabled

 

actions

 

which

 

maximizes

 

the

 

runtime

Randomized scheduler: chooses

 

independent sets
at random
Greedy scheduler: scheduler

 

gives

 

priority

 

to nodes
having

 

a large

 

degree

Best-case scheduler: chooses

 

independent set

 

of 
enabled

 

actions

 

which

 

minimizes

 

the

 

runtime
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Analysis

•

 

It

 

turns

 

out that

 

already

 

these

 

simple algorithms

 

are

 

challenging!

•

 

Overview

 

of results:

Worst-case

 

scheduler:
LINmax

 

requires

 

Θ(n2) rounds
LINall

 

requires

 

O(n2

 

log n) rounds
Greedy

 

scheduler:
LINall

 

requires

 

O(n

 

log n) rounds

Best-case

 

scheduler:
LINmax

 

and LINall

 

require

 

Θ(n) rounds

With

 

degree

 

cap

 

(worst-case

 

scheduler):
LINmax

 

requires

 

at most

 

O(n2) and LINall

 

at most

 

O(n3) rounds
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Degree
 

Cap Phenomenon

•

 

Degree

 

cap

 

constraint

 

can

 

sometimes

 

improve

 

the
runtime! (Cap schedulers?)
-

 

degree

 

grows

 

only

 

a „middle

 

node“
-

 

cap: do not

 

allow

 

to increase

 

degree

 

if

 

degree

 

larger

 

or

 

equal

 

cap
-

 

too

 

small

 

degree: blocks

 

many

 

options
-

 

however, small

 

degree

 

also forces

 

execution

 

on „good paths“

Cap 2

Cap 3

no Cap
Cap 5
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Sample Analysis (1)

Theorem: Under

 

a greedy

 

scheduler, LINall

 

terminates
after

 

at most

 

O(n

 

log n) rounds.

Greedy

 

scheduler: In each

 

round, nodes

 

are

 

sorted

 

w.r.t. remaining

 

degree

 

(remove
fired

 

triples

 

with

 

incident

 

edges). Scheduler

 

picks

 

node

 

v with

 

largest

 

degree, and schedules
triple

 

of v (to the

 

larger

 

degree

 

side) with

 

most

 

distant

 

neighbors.

Proof.
Consider

 

the

 

potential function

Initially: ψ0

 

< n3

In the

 

end: ψ

 

= n-1

We

 

will show

 

that

 

in each

 

round, potential ψ

 

is

 

multiplied

 

by

 

a factor

 

of
at most

 

1-1/(24 n). This implies the claim.
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Sample Analysis (2)

This
 

implies
 

the
 

claim?
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Sample Analysis (3)

Greedy

 

scheduler: In each

 

round, nodes

 

are

 

sorted

 

w.r.t. remaining

 

degree

 

(remove
fired

 

triples

 

with

 

incident

 

edges). Scheduler

 

picks

 

node

 

v with

 

largest

 

degree, and schedules
triple

 

of v with

 

most

 

distant

 

neighbors

 

(to larger

 

degree

 

side).

Consider

 

the

 

potential function

We

 

will show

 

that

 

in each

 

round, potential ψ

 

is

 

multiplied

 

by

 

a factor

 

of
at most

 

1-1/(24 n). This

 

implies

 

the

 

claim.

•

 

Observe: firing

 

a triple

 

reduces

 

potential ψ...
•

 

... but

 

other

 

nodes

 

will be

 

blocked

 

in this

 

round.

•

 

Idea: we

 

want

 

to estimate

 

the

 

amount

 

of blocked

 

potential.

u v w



Stefan Schmid @ WRAS, 2010 57

Sample Analysis (4)

•

 

Consider

 

the

 

following

 

right-linearization

 

step

•

 

Removing

 

{u,w} and adding

 

{v,w} reduces

 

the

 

potential by

 

at least 

dist(u,w)-dist(v,w) = dist(u,v)

•

 

Since

 

the

 

greedy

 

scheduler

 

takes

 

larger

 

degree

 

side:

dist(u,v) ≥

 

deg(u) /2 –

 

1 ≥

 

deg(u)/4

u v w
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Sample Analysis (5)

•

 

Thus, potential reduced

 

in one

 

step

 

by

 

at least deg(u)/4

•

 

How

 

much

 

potential is

 

blocked?

•

 

Consider

 

remaining

 

components

 

after

 

removing

 

triple
•

 

Consider

 

neighbor

 

x of u, v or

 

w
-

 

if

 

x is

 

in ordered

 

line component

 

=> blocked

 

potential at most

 

n+n
(link length

 

to x plus potential of ordered

 

line)
-

 

if

 

x is

 

in different component

 

=> can

 

still be

 

linearized

 

further

 

(account

 

for
blocked

 

component‘s

 

potential later, only

 

count

 

link length

 

potential: n)

u v w
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Sample Analysis (6)

•

 

The

 

amount

 

of blocked

 

potential is

 

at most

 

6·

 

deg(u)  ·

 

n
- since u has larger

 

degree

 

than

 

v and w, 
-

 

and since

 

we

 

have

 

at most

 

blocked

 

potential 2·

 

n per neighbor

 

(n for

 
component

 

plus n for

 

link to this

 

neighbor)

•

 

Thus, potential reduced

 

by

 

a factor

 

at least 1-Θ(1/n)

 

per round.

QED.

u v w xx
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Other
 

Algorithms
 

for
 

Self-Stabilizing
 

Topologies

•

 

„2-dimensional linearization“

 

(„social

 

network“): Delaunay graphs

•

 

Hypercubic

 

graphs

 

(„p2p network“): Skip graphs (see

 

also PODC  
BA by

 

Sriram

 

et al.)
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