
Robust Architectures for Distributed Systems
and Topological Self-Stabilization

Stefan Schmid
(T-Labs / TU Berlin)

Joint work with:
Matthias Baumgart (TUM)

Dominik Gall (TUM)
Riko Jacob (TUM)
Fabian Kuhn (USI)

Andrea Richa (ASU)
Christian Scheideler (UPB)

Hanjo Täubig (TUM)
Roger Wattenhofer (ETH)

Robust Architectures for Distributed Systems
and Topological Self-Stabilization

Natural

R&A by

scalability

and
redundancy

(but

also more
exposed)

Stefan Schmid
(T-Labs / TU Berlin)

Joint work with:
Matthias Baumgart (TUM)

Dominik Gall (TUM)
Riko Jacob (TUM)
Fabian Kuhn (USI)

Andrea Richa (ASU)
Christian Scheideler (UPB)

Hanjo Täubig (TUM)
Roger Wattenhofer (ETH)

How

to design?

Stefan Schmid @ WRAS, 2010 3

Talk outline: R&A Distributed Systems

1. Some

design principles:
 -

Maintaining

overlay

topology

 under

worst-case

churn?
 -

Secure

data

repliation

despite

 past-insider

adversary?
 -

Connect

to the

seniors!

2. Towards

self-repairing

systems

... interactive...

Stefan Schmid @ WRAS, 2010 4

Talk outline

1. Some

design principles:
 - Maintaining overlay topology

under worst-case churn?
-

Secure

data

repliation

despite

 past-insider

adversary?
 -

Connect

to the

seniors!

2. Towards

self-repairing

systems

Stefan Schmid @ WRAS, 2010 5

Talk outline

1. Some

design principles:
 -

Maintaining

overlay

topology

 under

worst-case

churn?
 - Secure data repliation despite

past-insider adversary?
- Connect

to the

seniors!

2. Towards

self-repairing

systems

Fired!

Stefan Schmid @ WRAS, 2010 6

Talk outline

1. Some

design principles:
 -

Maintaining

overlay

topology

 under

worst-case

churn?
 -

Secure

data

repliation

despite

 past-insider

adversary?
 - Connect to the seniors!

2. Towards

self-repairing

systems

Stefan Schmid @ WRAS, 2010 7

Talk outline

1. Some

design principles:
 -

Maintaining

overlay

topology

 under

worst-case

churn?
 -

Secure

data

repliation

despite

 past-insider

adversary?
 - Connect

to the

seniors!

2. Towards self-repairing systems

(Exciting, not well-understood field!)

Stefan Schmid @ WRAS, 2010 8

Use

redundancy

1: reliable

dynamic

topologies

Maintaining a System
under Worst-Case Churn

Stefan Schmid @ WRAS, 2010 9

Design of Dynamic

Distributed

System?

An algorithmic

challenge: How

many

nodes

can

join

and leave

a network
(e.g., a p2p system) per unit time (e.g., max

transmission

time) such that

•

Network

remains

connected?

•

Network

maintains

hypercubic

structure?

•

Network

still allows

for

logarithmic

time routing

/ search?

Idea: Simulated / redundant graphs!

Stefan Schmid @ WRAS, 2010 10

Recipe

1. Take a graph with desirable properties

2. Simulate the graph by representing each vertex by a set of nodes
(Goal: keep graph properties!)

3. Find a token (node) distribution algorithm on this graph

4. Find an algorithm to estimate the total number of nodes in the system

5. Find an algorithm to adapt the graph‘s dimension

Stefan Schmid @ WRAS, 2010 11

Example: Hypercube

Stefan Schmid @ WRAS, 2010 12

Result

Theorem:
-

Despite

ADV(log

n, log n, 1), topology

can

be

maintained
-

Peer degree

and network

diameter

(connections: matching

of
cliques): O(log

n)
-

Asymptotically

optimal (why?)
-

Similarly

for

pancake

graphs: replace

log n by

log n / loglog

n
(weaker

adversary!)
-

not

self-stabilizing

(see

later)

Stefan Schmid @ WRAS, 2010 13

Use

redundancy

2: How

to achieve

reliable

storage?

Chameleon: Robust data replication

Stefan Schmid @ WRAS, 2010 14

Idea:
•

Store data

redundantly

(goal: minimal blow-up

factor)
•

Even a past insider should

not

know

where

it

is

stored
(As soon

as

he is

out, newly

added

data

is

hard

to find!)
•

Thus: Information system must

„change

its

appearance“ over time
•

How?
•

Idea: Randomization

(no fixed

locations, e.g., depending

on file

name)

deterministic

placement

??? ???

randomized

placement
Don‘t

know

where
to attack

–

and search!

Stefan Schmid @ WRAS, 2010 15

Basic strategy: Random

placements

in increasing

„vicinities“
•

choose

suitable

hash

functions

h1

,..,hc

:D→V

(D: name

space

of data, V: set

of servers)
•

Store copy

of item

d

for

every

i

and j

randomly

in a set

of servers

of size

2j

that

contains

hi

(d)

hi

(d)

easy

to
block

difficult

to
block

easy

to
find

difficult

to find

Stefan Schmid @ WRAS, 2010 16

Past-Insider-Attack:

Attacker

knows

everything

about

system till

 (unknown) time t0

Goal:

scalable

information

system so that

everything

that

was inserted

 after

t0

is

safe

(w.h.p.) against

any

past-insider

DoS

attack

that

can

 shut

down any

ε-fraction

of the

servers, for

some

ε>0, and create

 any

legal set

of put

and get

requests

You

are

fired!
What

replication

factor

is

needed

to
no data

loss, efficient

search

and
insertion

if

ε

is

a constant?

One would

expect

a linear number

of
replicas

are

needed, but

polylog
are

enough!

Stefan Schmid @ WRAS, 2010 17

It

can

be

shown

(see

Awerbuch

& Scheideler) that

for

sufficiently

random
placements

(expansion

property

of hash

functions), system is

robust.

But

what

if

attacker

prevents

proper replica

placement

during

insertion?

Idea:

•

Use

two

stores

(essentially

DHTs!): a permanent p-store

where

data

is

replicated

properly

(robust to past

insider)

•

A temporary, always

changing

t-store

where

insert

requests

are

buffered

(not

many!) until

required

replication

level

is

guaranteed

in p-store

Stefan Schmid @ WRAS, 2010 18

Phase of Chameleon

system:
1.

Adversary

blocks

servers

and initiates

put

& get

requests
2.

build

new

t-store, transfer

data

from

old to new

t-store

(no quiet

time as

in DISC!)
3.

process

all put

requests

in t-store

(de Bruijn

like

network)
4.

process

all get

requests

in t-store

and p-store

(detect

block areas

fast by

sampling, no
waste

of resources

to find)
1.

try

to transfer

data

items

from

t-store

to p-store

p-store

t-store

Internet

Stefan Schmid @ WRAS, 2010 19

Theorem: Under

any

ε-bounded

past-insider

attack

(for

 some

constant

ε>0

that

removes

a constant

fraction

ε

of
all nodes), the

Chameleon

system can

serve

any

set

of
requests

(one

per server) in O(log2

n)

time s.t. every

get

 request

to a data

item

inserted

or

updated

after

t0

is

 served

correctly, w.h.p.

[Baumgart, Scheideler, Schmid @ SPAA 2009]

Stefan Schmid @ WRAS, 2010 20

Reliability

by

connecting

„to the

seniors“:

Shell: Robust Distributed Heap

Stefan Schmid @ WRAS, 2010 21

How

to build

robust systems? Connect

to the

seniors!

Idea: Older

nodes

typically

less

dynamic

= more

reliable?

Goal: Build

a distributed

system that

allows

for

fast joins

and leaves

 where

younger

peers

only

connect

older

peers!

Stefan Schmid @ WRAS, 2010 22

Idea

(1)

•

Idea: if

everybody

only

connects

to older

network

participants...
-

... nodes

would

have

stable

neighborhoods!
-

... one

is

resilient

against

attacks

by

„young

troublemakers“

Stefan Schmid @ WRAS, 2010 23

Idea

(2)

•

Implications:
-

Communication

paths

of the

„seniors“

never

include

younger

nodes

-
-

Young nodes

cannot

overload

network

(rate control

in „core

network“)

Stefan Schmid @ WRAS, 2010 24

Model

•

How

to implement

such an idea?

•

Idea: A central

server

assigns

joining

nodes

a rank
-

Nodes

only

connect

to nodes

that

arrived

earlier

(lower

rank)

28

2321
26

18 17 2019

16
9 10 3

Network Entry Point

A distributed heap!

Stefan Schmid @ WRAS, 2010 25

SHELL

Sybil

attack

by

newcomers: No problem, traffic

& access

control
to core

network

3

47
5

10 8 912

21
14 15 11

Attack

„Rate Control“

Traffic

between

old nodes
unaffected!

Stefan Schmid @ WRAS, 2010 26

A naive Solution

•

Our

goal

is

achieved

with:

•

Problem: Scalability
-

Large

diameter, not

robust to join/leave, etc.

145 3 2

•

Better

topologies: hypercubes, pancake

graphs, ...

Stefan Schmid @ WRAS, 2010 27

Simple Approach for

„good“

Peer-to-Peer Topologies

•

Naor

& Wieder: The Continuous-Discrete Approach

•

Simplified

version:
-

Nodes

join

at random

position

in [0,1)
-

Connects

to points

x/2 and (1+x)/2
-

If

there

is

no node, rounding

is

necessary
(„continuous

=> discrete“)
-

Details less

interesting

here

•

Result: a kind

of de Bruijn

Graph
-

constant

degree
-

logarithmic

diameter
-

simple routing

0 1

x/2
(x+1)/2

x

Stefan Schmid @ WRAS, 2010 28

Idea

and Problem

•

Network

Entry

Point assigns

random

position

[0,1)...

•

... and then

build

topology

according

to Continuous-Discrete

 Approach!

•

Problem? 0 1

x/2
(x+1)/2

x There could be a younger
node there!
Solution?

Stefan Schmid @ WRAS, 2010 29

Solution and another

Problem

•

Connect

to corresponding

older

node

close

to this

position

•

Everything

solved? Other

problems?

•

Analysis shows, that

older

nodes

can

be

congested,
as

everybody

tries

to connect

to them!

Idea?

Stefan Schmid @ WRAS, 2010 30

Redundancy

•

Solution: we

connect

to more

than

one

node!
(During

routing, go

to youngest

neighbor

among

older

ones...)

•

Allows

us

to „load-balance“

Stefan Schmid @ WRAS, 2010 31

The

Algorithm

(1)

•

Assume, each

node

u knows

n_u

= # living

nodes

that

are

older
(can

be

estimated, see

later)

•

Divide

[0,1) Circle

in fixed

Intervals

/ Levels

of exponentially

 decreasing

sizes

Partition 1 Partition 2

Partition 3 Partition 4

Stefan Schmid @ WRAS, 2010 32

The

Algorithm

(2)

•

Node

v connects

to three

Intervals
-

lv,0 & buddy: Home-interval

with

position

x
plus other

half of the

(i-1)-interval
-

lv,1 & buddy: Interval

with

position

x/2, plus buddy
-

lv,2 & buddy: Interval

with

position

(1+x)/2, plus buddy

•

Interval

is

chosen

such that

it

includes

at least c log nv older

nodes

(c
= const.)! (If

not

possible, set

level

to 0.)

•

Establish

forward

edges

to these

nodes. Store all incoming

edges

as

 backward

edges!

Stefan Schmid @ WRAS, 2010 33

Overview

„Forward

Edges“

x = „home“

x/2 = de Bruijn 1
(1+x)/2 = de Bruijn 2

buddy

buddy

buddy

c log nv / nv

c log nv
/ nv

Stefan Schmid @ WRAS, 2010 34

Unfortunately, not

many

distributed

systems fulfill
 a very

appealing

robustness

requirement:

Self-Stabilization

Stefan Schmid @ WRAS, 2010 35

Self-Stabilization

•

Important

concept

in fault-tolerance

•

A self-stabilizing

system (eventually) ends

up in a correct

state...

•

... independently

of the

initial

state.

„All the designs I was familiar with
were not self-stabilizing in the sense
that when once (erroneously) in an
illegitimate state, they could – and
usually did! – remain so forever.“

E. W. Dijkstra

(1974)

Stefan Schmid @ WRAS, 2010 36

Self-Stabilization

•

Model: Adversary

can

disturb

the

computations

(shared
variables in system state) arbitrarily

•

Once

the

changes

are

over, algorithm

converges

towards
desired

state

•

Good news:
„Awerbuch

& Varghese

91“: (cf

also Wattenhofer

@ SSS 2009)
local algorithms = self-stabilizing algorithms

•

However:
-

if

applied

for

dynamic

topologies

the

overhead

is

large
-

randomized

local

algorithms

less

understood

Stefan Schmid @ WRAS, 2010 37

Goal: Terminator 2!

Stefan Schmid @ WRAS, 2010 38

Most Simple Topological

Stabilization: Graph Linearization

1 2 3 4 5 6 7 8

•

INPUT: Arbitrary

connected

graph
-

nodes

have

arbitrary

IDs

Stefan Schmid @ WRAS, 2010 39

Most Simple Topological

Stabilization: Graph Linearization

1 2 3 4 5 6 7 8

•

OUTPUT: Sorted

graph

Stefan Schmid @ WRAS, 2010 40

Most Simple Topological

Stabilization: Graph Linearization

1 2 3 4 5 6 7 8

•

Ideas: How

to linearize

locally?
To preserve

connectivity?

Stefan Schmid @ WRAS, 2010 41

Basic Linearization

Step

•

A basic

linearization

step

involves

a node

triple

•

Observe: Connectivity

is

preserved

Stefan Schmid @ WRAS, 2010 42

LINall

and LINmax

•

LINall

proposes

all possible

triples

to the

scheduler

(for

node

u)

•

LINmax

proposes

the

furthest triple

on each

side

(for

node

u)

Stefan Schmid @ WRAS, 2010 43

LINall

and LINmax

•

LINall proposes all possible triples to the scheduler (for node u)

•

LINmax

proposes

the

furthest triple

on each

side

(for

node

u)

2 3 4 5 6 7 8 91

2 3 4 5 6 7 8 91

Stefan Schmid @ WRAS, 2010 44

LINall

and LINmax

•

LINall proposes all possible triples to the scheduler (for node u)

•

LINmax

proposes

the

furthest triple

on each

side

(for

node

u)

2 3 4 5 6 7 8 91

2 3 4 5 6 7 8 91

Stefan Schmid @ WRAS, 2010 45

LINall

and LINmax

•

LINall proposes all possible triples to the scheduler (for node u)

•

LINmax

proposes

the

furthest triple

on each

side

(for

node

u)

2 3 4 5 6 7 8 91

2 3 4 5 6 7 8 91

Stefan Schmid @ WRAS, 2010 46

LINall

and LINmax

•

LINall proposes all possible triples to the scheduler (for node u)

•

LINmax

proposes

the

furthest triple

on each

side

(for

node

u)

2 3 4 5 6 7 8 91

2 3 4 5 6 7 8 91

Stefan Schmid @ WRAS, 2010 47

LINall

and LINmax

•

LINall

proposes

all possible

triples

to the

scheduler

(for

node

u)

•

LINmax proposes the furthest triple on each side (for node u)

2 3 4 5 6 7 8 91

2 3 4 5 6 7 8 91

Stefan Schmid @ WRAS, 2010 48

How

to measure

distributed

execution

time?

Stefan Schmid @ WRAS, 2010 49

A Naïv

Model

•

There

are

different models

for

what

can

happen

in one

round!

•

For example: Every

node

can

fire

one

action

per round

•

Problem: Nodes

can

be

involved

in many

changes
-

Therefore, this

solution

does

not

scale!

1 2 3 4 5 6 7 8

Stefan Schmid @ WRAS, 2010 50

A Scalable

Model

We

propose

the

following, scalable

model:
-

Let

V(A) be

the

nodes

involved

in an action

A
-

Two

actions

A and B are

independent if

V(A) ∩

V(B) = {}
-

Only

an independent set

of actions

is

fired

per round

1 2 3 4 5 6 7 8

Stefan Schmid @ WRAS, 2010 51

Schedulers

•

Nodes

propose

different enabled

actions

to the

scheduler...

•

... –

which

one

to choose?

Worst-case scheduler: chooses

independent set

of
enabled

actions

which

maximizes

the

runtime

Randomized scheduler: chooses

independent sets
at random
Greedy scheduler: scheduler

gives

priority

to nodes
having

a large

degree

Best-case scheduler: chooses

independent set

of
enabled

actions

which

minimizes

the

runtime

Stefan Schmid @ WRAS, 2010 52

Analysis

•

It

turns

out that

already

these

simple algorithms

are

challenging!

•

Overview

of results:

Worst-case

scheduler:
LINmax

requires

Θ(n2) rounds
LINall

requires

O(n2

log n) rounds
Greedy

scheduler:
LINall

requires

O(n

log n) rounds

Best-case

scheduler:
LINmax

and LINall

require

Θ(n) rounds

With

degree

cap

(worst-case

scheduler):
LINmax

requires

at most

O(n2) and LINall

at most

O(n3) rounds

Stefan Schmid @ WRAS, 2010 53

Degree

Cap Phenomenon

•

Degree

cap

constraint

can

sometimes

improve

the
runtime! (Cap schedulers?)
-

degree

grows

only

a „middle

node“
-

cap: do not

allow

to increase

degree

if

degree

larger

or

equal

cap
-

too

small

degree: blocks

many

options
-

however, small

degree

also forces

execution

on „good paths“

Cap 2

Cap 3

no Cap
Cap 5

Stefan Schmid @ WRAS, 2010 54

Sample Analysis (1)

Theorem: Under

a greedy

scheduler, LINall

terminates
after

at most

O(n

log n) rounds.

Greedy

scheduler: In each

round, nodes

are

sorted

w.r.t. remaining

degree

(remove
fired

triples

with

incident

edges). Scheduler

picks

node

v with

largest

degree, and schedules
triple

of v (to the

larger

degree

side) with

most

distant

neighbors.

Proof.
Consider

the

potential function

Initially: ψ0

< n3

In the

end: ψ

= n-1

We

will show

that

in each

round, potential ψ

is

multiplied

by

a factor

of
at most

1-1/(24 n). This implies the claim.

Stefan Schmid @ WRAS, 2010 55

Sample Analysis (2)

This

implies

the

claim?

Stefan Schmid @ WRAS, 2010 56

Sample Analysis (3)

Greedy

scheduler: In each

round, nodes

are

sorted

w.r.t. remaining

degree

(remove
fired

triples

with

incident

edges). Scheduler

picks

node

v with

largest

degree, and schedules
triple

of v with

most

distant

neighbors

(to larger

degree

side).

Consider

the

potential function

We

will show

that

in each

round, potential ψ

is

multiplied

by

a factor

of
at most

1-1/(24 n). This

implies

the

claim.

•

Observe: firing

a triple

reduces

potential ψ...
•

... but

other

nodes

will be

blocked

in this

round.

•

Idea: we

want

to estimate

the

amount

of blocked

potential.

u v w

Stefan Schmid @ WRAS, 2010 57

Sample Analysis (4)

•

Consider

the

following

right-linearization

step

•

Removing

{u,w} and adding

{v,w} reduces

the

potential by

at least

dist(u,w)-dist(v,w) = dist(u,v)

•

Since

the

greedy

scheduler

takes

larger

degree

side:

dist(u,v) ≥

deg(u) /2 –

1 ≥

deg(u)/4

u v w

Stefan Schmid @ WRAS, 2010 58

Sample Analysis (5)

•

Thus, potential reduced

in one

step

by

at least deg(u)/4

•

How

much

potential is

blocked?

•

Consider

remaining

components

after

removing

triple
•

Consider

neighbor

x of u, v or

w
-

if

x is

in ordered

line component

=> blocked

potential at most

n+n
(link length

to x plus potential of ordered

line)
-

if

x is

in different component

=> can

still be

linearized

further

(account

for
blocked

component‘s

potential later, only

count

link length

potential: n)

u v w

Stefan Schmid @ WRAS, 2010 59

Sample Analysis (6)

•

The

amount

of blocked

potential is

at most

6·

deg(u) ·

n
- since u has larger

degree

than

v and w,
-

and since

we

have

at most

blocked

potential 2·

n per neighbor

(n for

component

plus n for

link to this

neighbor)

•

Thus, potential reduced

by

a factor

at least 1-Θ(1/n)

per round.

QED.

u v w xx

Stefan Schmid @ WRAS, 2010 60

Other

Algorithms

for

Self-Stabilizing

Topologies

•

„2-dimensional linearization“

(„social

network“): Delaunay graphs

•

Hypercubic

graphs

(„p2p network“): Skip graphs (see

also PODC
BA by

Sriram

et al.)

Stefan Schmid @ WRAS, 2010 61

Thanks!

Thanks

to my

co-authors:

Matthias Baumgart (TUM)
Dominik Gall (TUM)
Riko Jacob (TUM)
Fabian Kuhn (USI)

Andrea Richa (ASU)
Christian Scheideler (UPB)

Hanjo Täubig (TUM)
Roger Wattenhofer (ETH)

