
Emerging paradigms in networking: Software-defined networks,
programmable dataplanes, and network virtualization
Stefan Schmid

A warmup:
How to design a datacenter network?

How to design a datacentre network?

Racks of
Servers

VMs

Internet

Network

Racks of
Servers

How to design a datacentre network?

VMs

Internet

Network

Racks of
Servers

How to design a datacentre network?

Which devices?
Switches or routers?

Tradeoff: today!

VMs

Refresher: Layer-2 Networks

• Layer-2 networks are very flexible: location-independent addresses,
plug&play, self-learning, etc.: devices (and virtual machines!) can
move (migrate)

• But: Layer-2 networks do not scale: despite caching, LAN-wide
broadcasts needed once in a while (ARP, MAC learning, DHCP, etc.)!

How large should a LAN be?

Refresher: Layer-2 Networks

• Layer-2 networks are very flexible: location-independent addresses,
plug&play, self-learning, etc.: devices (and virtual machines!) can
move (migrate)

• But: Layer-2 networks do not scale: despite caching, LAN-wide
broadcasts needed once in a while (ARP, MAC learning, DHCP, etc.)!

How large should a LAN be?

Flexibility vs Scalability tradeoff!

Network

Racks of
Servers

Datacenter Network Design: Proposal #1

Last-hop
router

Internet

VMs

Network

Racks of
Servers

Datacenter Network Design: Proposal #1

LAN

Internet

VMs

Internet

Network

Racks of
Servers

Datacenter Network Design: Proposal #1

LAN
No need to change IP!

Flexible VM migration… but large
broadcast domain: a tradeoff!

VMs

Internet

Network

Racks of
Servers

Datacenter Network Design: Proposal #1

LAN
Broadcast domain

Flexible VM migration… but large
broadcast domain: a tradeoff!

VMs

Network

Racks of
Servers

Datacenter Network Design: Proposal #2

Last-hop
router

Internet

VMs

Network

Racks of
Servers

Datacenter Network Design: Proposal #2
Internet

LAN

VMs

Network

Racks of
Servers

Datacenter Network Design: Proposal #2
Internet

LAN

VM migration

Limited VM migration… but small
broadcast domain: a tradeoff!

VMs

Network

Racks of
Servers

Datacenter Network Design: Proposal #2
Internet

LAN

broadcast

Limited VM migration… but small
broadcast domain: a tradeoff!

VMs

Motivation: Why networks still require
research and innovation

Rewinding the clock of the
Internet to a decade ago...

Slide credit:
Pedro Casas

The Internet 50 Years Ago

• Connectivity between fixed locations / “super computers”
• For researchers : Simple applications like email and file

transfer

Kudos to: Pedro Casas

The Internet Is A Huge Success Story

Today:
• Supports connectivity between diverse “users” : humans, machines,

datacenters, or even things
• Also supports wireless and mobile endpoints
• Heterogeneous applications: e-commerce, Internet telephony, VoD, gaming,

etc.
• “One of the complex artefacts created by mankind” (Christos H. Papadimitriou)

Yet:
• Technology hardly changed! But now: mission-critical infrastructure

But how secure are our networks?

The Internet at first sight:
• Monumental
• Passed the “Test-of-Time”
• Should not and cannot be changed

But how secure are our networks?

The Internet at first sight:
• Monumental
• Passed the “Test-of-Time”
• Should not and cannot be changed

The Internet at second sight:
• Antique
• Brittle
• More and more successful attacks

Slide credit: Adrian Perrig

• Internet in 80s: based on trust
• Danny Hillis, TED talk, Feb. 2013, “There were two Dannys.

I knew both. Not everyone knew everyone, but there was
an atmosphere of trust.”

Slide credit: Adrian Perrig

A 1st Issue with Today’s Networks:
Trust Assumptions

Vulnerabilities in VPNs Vulnerabilities in IoT DDoS attacks often in the news
(e.g. “babyphone attack”, Olympics)

More exploits in the news…

… even 911 services affected!… 1000s passengers stranded…

Many outages due to misconfigurations and human errors.

Entire countries disconnected…

A 2nd Issue with Today’s Networks:
Complexity

Even Tech-Savvy Companies Struggle to Provide Reliable Networks

We discovered a misconfiguration on this
pair of switches that caused what's called a
“bridge loop” in the network.

A network change was […] executed
incorrectly […] more “stuck” volumes
and added more requests to the re-
mirroring storm

Service outage was due to a series of internal
network events that corrupted router data tables

Experienced a network connectivity issue […]
interrupted the airline's flight departures,
airport processing and reservations systems

A 3rd Issue: Lack of Tools
Anecdote “Wall Street Bank”

• Outage of a data center of a Wall Street investment bank
• Lost revenue measured in USD 106 / min
• Quickly, an emergency team was assembled with experts in compute, storage and networking:

• The compute team: soon came armed with reams of logs, showing how and when the applications
failed, and had already written experiments to reproduce and isolate the error, along with candidate
prototype programs to workaround the failure.

• The storage team: similarly equipped, showing which file system logs were affected, and already
progressing with workaround programs.

• “All the networking team had were two tools invented over 20y ago to merely test end-to-end
connectivity. Neither tool could reveal problems with switches, the congestion experienced by
individual packets, or provide any means to create experiments to identify, quarantine and resolve the
problem. Whether or not the problem was in the network, the networking team would be blamed since
they were unable to demonstrate otherwise.”

Source: «The world’s fastest and most programmable networks»
White Paper Barefoot Networks

Also: How much can we trust technology?

• Hardware backdoors and exploits
• The problem seems fundamental: how can we hope to build a secure

network if the underlying hardware can be insecure?!
• E.g., secure cloud for the government: no resources and expertise to

build own “trustworthy” high-speed hardware

Takeaway

Complexity and human errors: networks should be
operated in a less manual but more automated

way. Hence: need to rely on formal specifications.

So
ur

ce
:

Fa
ce

bo
ok

+network

Another Takeaway
Our digital society relies on all sorts of networks, e.g.,

increasingly on the networks to, from, and in
datacenters, but also more “exotic” networks such as in-
cabin and car networks, cryptocurrency networks, etc.

Roadmap

• Software-defined networks

• Programmable dataplanes

• Network virtualization

5

Roadmap

• Software-defined networks

• Programmable dataplanes

• Network virtualization

5

Making the control plane
programmable

Making the data plane
programmable

Control Plane vs Data Plane

• forwarding: move packets
from router’s input to
appropriate router output

data plane

control plane

Recall: two network-layer functions:

 routing: determine route
taken by packets from source
to destination

Roadmap

• Software-defined networks

• Programmable dataplanes

• Network virtualization

5

Control Plane

ctrl

ctrl

ctrl

Traditionally:
• Distributed control plane
• Blackbox, not programmable

Control Plane
SDN Controller

ctrl

ctrl

ctrl

Traditionally:
• Distributed control plane
• Blackbox, not programmable

Software-defined Networs (SDN):
• Logically centralized control
• Programmable, match-action

Control Plane
SDN Controller

ctrl

ctrl

ctrl

Traditionally:
• Distributed control plane
• Blackbox, not programmable

Software-defined Networs (SDN):
• Logically centralized control
• Programmable, match-action

Benefit 1: simple and fast innovation in control plane!
Centralized view, and can implement

own control plane algorithms (e.g., routing).

Benefit 2: secure communication channels.

Benefit 3: more flexible API (match-action).

In more details: Traditionally…

Routing
Algorithm

data
plane

control
plane

… and SDN:

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

Why logically centralized control plane?

• easier network management: avoid router
misconfigurations, greater flexibility of traffic flows

• table-based forwarding (recall OpenFlow API) allows
“programming” routers
– centralized “programming” easier: compute tables

centrally and distribute
– distributed “programming: more difficult: compute

tables as result of distributed algorithm (protocol)
implemented in each and every router

• open (non-proprietary) implementation of control plane

Analogy: Mainframe to PC Evolution

Specialized
Operating

System

Specialized
Hardware

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

App

Specialized
Applications

Horizontal Open interfaces
Rapid innovation Huge industry

Microprocessor

Open Interface

Linux Mac
OS

Windows
(OS) or or

Open Interface

The SDN Perspective

Data plane switches
• fast, simple, commodity switches

implementing generalized data-plane
forwarding (Section 4.4) in hardware

• switch flow table computed, installed by
controller

• API for table-based switch control (e.g.,
OpenFlow)
– defines what is controllable and what

is not
• protocol for communicating with controller

(e.g., OpenFlow)

data
plane

control
plane

SDN Controller
(network operating system)

…routing
access
control

load
balance

southbound
API

northbound
API

SDN-controlled
switches

network-control
applications

The SDN Perspective

data
plane

control
plane

SDN Controller
(network operating system)

…routing
access
control

load
balance

southbound
API

northbound
API

SDN-controlled
switches

network-control
applications

SDN controller (network OS):
 maintain network state

information
 interacts with network control

applications “above” via
northbound API

 interacts with network switches
“below” via southbound API

 implemented as distributed
system for performance,
scalability, fault-tolerance,
robustness

The SDN Perspective

data
plane

control
plane

SDN Controller
(network operating system)

…routing
access
control

load
balance

southbound
API

northbound
API

SDN-controlled
switches

network-control
applications

network-control apps:
 “brains” of control:

implement control functions
using lower-level services, API
provided by SND controller

 unbundled: can be provided
by 3rd party: distinct from
routing vendor, or SDN
controller

The OpenFlow Protocol
• operates between controller,

switch
• TCP used to exchange messages

– optional encryption
• three classes of OpenFlow

messages:
– controller-to-switch
– asynchronous (switch to

controller)
– symmetric (misc)

OpenFlow Controller

Controller-to-Switch Messages

Key controller-to-switch messages
• features: controller queries switch

features, switch replies
• configure: controller queries/sets switch

configuration parameters
• modify-state: add, delete, modify flow

entries in the OpenFlow tables
• packet-out: controller can send this

packet out of specific switch port

OpenFlow Controller

Switch-to-Controller Messages

OpenFlow ControllerKey switch-to-controller messages
• packet-in: transfer packet (and its control) to

controller. See packet-out message from
controller

• flow-removed: flow table entry deleted at
switch

• port status: inform controller of a change on a
port.

Fortunately, network operators don’t “program” switches
by creating/sending OpenFlow messages directly. Instead
use higher-level abstraction at controller

OpenFlow
Controller

PC

Hardware
Layer

Software
Layer

MAC
src

MAC
dst

IP
Src

IP
Dst

TCP
sport

TCP
dport Action

OpenFlow Client

5.6.7.8* port 1

port 4port 3port 2port 1

1.2.3.45.6.7.8

OpenFlow
Flow Table

Goal: traffic stays in data plane! Minimize traffic
over controller, and interactions with controller.

OpenFlow: Flow Table Entries

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Rule Action Stats

+ mask

Packet + byte counters

1.Forward packet to port(s)
2.Encapsulate and forward to controller
3.Drop packet
4.Send to normal processing pipeline
5.…

ExamplesL2: Switching

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

* 00:1f:.. * * * * * * * port6

L4: Firewall

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

* * * * * * * * 22 drop

L3: Routing

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

* * * * * 5.6.7.8 * * * port6

OpenFlow 1.5 Switch Model

Example

Fedora example: Packets enter the (virtual) switch either from outside the hypervisor (e.g., an overlay
tunnel) or from a virtual machine. Either way, all packets first go to table 0: e.g., decides if traffic is
destined for another hypervisor (forwards to table 10), or to a virtual machine local to this switch
(forwards to table 20). Both table 10 and 20 will apply any actions required (e.g., NAT then send to
interface)

https://keepingitclassless.net/2014/07/sdn-protocols-2-openflow-deep-dive/

https://keepingitclassless.net/2014/07/sdn-protocols-2-openflow-deep-dive/

Example: MAC Learning With SDN

Ctrl

Control
Programs

Control
Programs

A First (Algorithmic) Challenge: Decoupling

Challenge: centralization and
decoupling!

Despite centralization: SDN stays
a distributed system!

Recall: Networking 101

Credits: Jennifer Rexford

 Networking «Hello World»: MAC learning

 Principle: for packet (src,dst) arriving at port p
 If dst unknown: broadcast packets to all ports

 Otherwise forward directly to known port

 Also: if src unknown, switch learns: src is behind p

 Example
h1

h2
h3

1

2
3

h1

h2
h3

1

2
3

Recall: Networking 101

 Networking «Hello World»: MAC learning

 Principle: for packet (src,dst) arriving at port p
 If dst unknown: broadcast packets to all ports

 Otherwise forward directly to known port

 Also: if src unknown, switch learns: src is behind p

 Example
 h1 sends to h2: flood, learn (h1,p1)

h1

h2
h3

1

2
3

dstmac=h1,fwd(1)

Recall: Networking 101

 Networking «Hello World»: MAC learning

 Principle: for packet (src,dst) arriving at port p
 If dst unknown: broadcast packets to all ports

 Otherwise forward directly to known port

 Also: if src unknown, switch learns: src is behind p

 Example
 h1 sends to h2: flood, learn (h1,p1)

h1

h2
h3

1

2
3

dstmac=h1,fwd(1)

Recall: Networking 101

 Networking «Hello World»: MAC learning

 Principle: for packet (src,dst) arriving at port p
 If dst unknown: broadcast packets to all ports

 Otherwise forward directly to known port

 Also: if src unknown, switch learns: src is behind p

 Example
 h1 sends to h2: flood, learn (h1,p1)

 h3 sends to h1: forward to p1, learn (h3,p3)

h1 3

h2
h3

1

2

dstmac=h1,fwd(1)

dstmac=h3,fwd(3)

Recall: Networking 101

 Networking «Hello World»: MAC learning

 Principle: for packet (src,dst) arriving at port p
 If dst unknown: broadcast packets to all ports

 Otherwise forward directly to known port

 Also: if src unknown, switch learns: src is behind p

 Example
 h1 sends to h2: flood, learn (h1,p1)

 h3 sends to h1: forward to p1, learn (h3,p3)

h1 3

h2
h3

1

2

dstmac=h1,fwd(1)

dstmac=h3,fwd(3)

Recall: Networking 101

 Networking «Hello World»: MAC learning

 Principle: for packet (src,dst) arriving at port p
 If dst unknown: broadcast packets to all ports

 Otherwise forward directly to known port

 Also: if src unknown, switch learns: src is behind p

 Example
 h1 sends to h2: flood, learn (h1,p1)

 h3 sends to h1: forward to p1, learn (h3,p3)

 h1 sends to h3: forward to p3

How to implement this behavior in SDN?

h1 3

From Traditional Networks to SDN

h2
h3

1

2

Controller

Example: SDN MAC Learning
Done Wrong

 Initial table: Send
everything to controller

h1

h2
h3

1

2
3

Controller

OpenFlow

switch

Pattern Action

* send to controller

• Initial table: Send
everything to controller

Example: SDN MAC Learning
Done Wrong

 When h1 sends to h2:

h1

h2
h3

1

2
3

Controller

OpenFlow

switch

Pattern Action

* send to controller

 Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

 When h1 sends to h2:
 Controller learns that h1@p1, updates table, and floods

h1 sends to h2

Pattern Action

* send to controller

Pattern Action

dstmac=h1 Forward(1)

* send to controller

 Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

 Now assume h2 sends to h1:

Pattern Action

dstmac=h1 Forward(1)

* send to controller

 Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

 Now assume h2 sends to h1:
 Switch knows destination: message forwarded to h1
 BUT: No controller interaction, does not learn about h2:

no new rule for h2

Pattern Action

dstmac=h1 Forward(1)

* send to controller

 Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

 Now, when h3 sends to h2:

h3 sends to h2

Pattern Action

dstmac=h1 Forward(1)

* send to controller

 Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

 Now, when h3 sends to h2:
 Dest unknown: goes to controller which learns about h3
 And then floods

h3 sends to h2

Pattern Action

dstmac=h3 Forward(3)

dstmac=h1 Forward(1)

* send to controller

Pattern Action

dstmac=h1 Forward(1)

* send to controller

 Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

 Now, if h2 sends to h3 or h1:

Pattern Action

dstmac=h3 Forward(3)

dstmac=h1 Forward(1)

* send to controller

 Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

 Now, if h2 sends to h3 or h1:
 Destinations known: controller does not learn about h2

Pattern Action

dstmac=h3 Forward(3)

dstmac=h1 Forward(1)

* send to controller

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

Ouch! Controller cannot learn about h2 anymore:
whenever h2 is source, destination is known. All future

requests to h2 will all be flooded: inefficient!

Pattern Action

dstmac=h3 Forward(3)

dstmac=h1 Forward(1)

* send to controller

 Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

Pattern Action

dstmac=h3 Forward(3)

dstmac=h1 Forward(1)

* send to controller

 Principle: only send to ctrl
if destination unknown

Ouch! Controller cannot learn about h2 anymore:
whenever h2 is source, destination is known. All future

requests to h2 will all be flooded: inefficient!

How to efficiently detect such
problems? And which rules to

use to overcome them? An
algorithmic problem!

Example Application for SDN:
Detecting Misbehavior

Allows to Deal with New Threat Vectors:
Secure Trajectory Sampling

Monitor packets, traditionally:
trajectory sampling
• Globally sample packets with

hash(imm. header)∈ [x,y]
• See full routes of some packets
• But not others! (resp. later)

sampled!

sampled!sampled!

sampled!

sampled!

Allows to Deal with New Threat Vectors:
Secure Trajectory Sampling

Monitor packets, traditionally:
trajectory sampling
• Globally sample packets with

hash(imm. header)∈ [x,y]
• See full routes of some packets
• But not others! (resp. later)

sampled!

sampled!sampled!

sampled!

sampled!

not!

not!

not!

not!

not!

Allows to Deal with New Threat Vectors:
Secure Trajectory Sampling

Monitor packets, traditionally:
trajectory sampling
• Globally sample packets with

hash(imm. header)∈ [x,y]
• See full routes of some packets
• But not others! (resp. later)

sampled!

sampled!sampled!

sampled!

sampled!

not!

not!

not!

not!

not!

mirror, exfiltrate, modify, drop,
insert, … and misreport: knows

what is currently sampled!

Allows to Deal with New Threat Vectors:
Secure Trajectory Sampling

Monitor packets, traditionally:
trajectory sampling
• Globally sample packets with

hash(imm. header)∈ [x,y]
• See full routes of some packets
• But not others! (resp. later)

2

• Idea:
– Use secure channels

between controller and
switches to distribute hash
ranges

– Give different hash ranges
hash ranges to different
switches, but add some
redundancy: risk of being
caught!

• In general: obtaining live data
from the network becomes
easier!

SDN Controller

r1

r2

r1

r2

r2r3

r3

Network Policy Checker for Adversarial Environments.
Kashyap Thimmaraju, Liron Schiff, and S. SRDS 2019.

Solution: Use SDN for Secure Trajectory Sampling

2

• Idea:
– Use secure channels

between controller and
switches to distribute hash
ranges

– Give different hash ranges
hash ranges to different
switches, but add some
redundancy: risk of being
caught!

• In general: obtaining live data
from the network becomes
easier!

SDN Controller

r1

r2

r1

r2

r2r3

r3

Network Policy Checker for Adversarial Environments.
Kashyap Thimmaraju, Liron Schiff, and S. SRDS 2019.

Solution: Use SDN for Secure Trajectory Sampling

Example: New Challenges

Ctrl

Control
Programs

Control
Programs

Recall: Our Mental Model

Challenge: Decoupling Asynchronous!

Ctrl

Control
Programs

Control
Programs

Challenge: Decoupling

Credits: He et al., ACM SOSR 2015:

without network latency

Despite centralization: SDN stays
a distributed system!

Recall: Our Mental Model

untrusted
hosts

trusted
hosts

Controller Platform

Example “Route Updates”: What can possibly go wrong?

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

Problem 1: Bypassed Waypoint

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

untrusted
hosts

trusted
hosts

Problem 2: Transient Loop

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

untrusted
hosts

trusted
hosts

Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:
❏ Install blue flow

rules internally
❏ Flip tag at ingress

ports

old route

tag red

Reitblatt et al. Abstractions for Network
Update, ACM SIGCOMM 2012.

Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:
❏ Install blue flow

rules internally
❏ Flip tag at ingress

ports

old route

tag red

Where to tag?
Header space?
Overhead!

Time till new link
becomes available!

Reitblatt et al. Abstractions for Network
Update, ACM SIGCOMM 2012.

Cost of extra rules!

Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:
❏ Install blue flow

rules internally
❏ Flip tag at ingress

ports

old route

tag red

Cost of extra rules!

Where to tag?
Header space?
Overhead!

Time till new link
becomes available!

Reitblatt et al. Abstractions for Network
Update, ACM SIGCOMM 2012.

Possible solution without
tagging, and at least
preserve weaker
consistency properties?

Idea: Schedule “Safe” Subsets of Nodes Only,
Then Wait for ACK!

Packet may take a mix of old and new path, as long as,
e.g., Loop-Freedom (LF) and Waypoint Enforcement
(WPE) are fulfilled

Controller Platform

Controller Platform

Round 1

Round 2

…

Idea: Schedule safe update subsets in multiple rounds!

Loop-Free Update Schedule

insecure
Internet

secure
zone

Loop-Free Update Schedule

insecure
Internet

secure
zone

insecure
Internet

secure
zone

insecure
Internet

secure
zone

R1:

R2:

Loop-Free Update Schedule

insecure
Internet

secure
zone

insecure
Internet

secure
zone

insecure
Internet

secure
zone

R1:

R2:

Forward edges
(wrt old policy)!
Always safe.

Backward
edge: risky!

Loop-Free Update Schedule

insecure
Internet

secure
zone

insecure
Internet

secure
zone

insecure
Internet

secure
zone

R1:

R2:
LF ok! But: WPE violated in Round 1!

Forward edges
(wrt old policy)!
Always safe.

Backward
edge: risky!

Waypoint Respecting Schedule

insecure
Internet

secure
zone

Waypoint Respecting Schedule

insecure
Internet

secure
zone

insecure
Internet

secure
zone

insecure
Internet

secure
zone

R1:

R2:

Don’t cross the
waypoint: safe!

Waypoint Respecting Schedule

insecure
Internet

secure
zone

insecure
Internet

secure
zone

insecure
Internet

secure
zone

R1:

R2:
… ok but may violate LF in Round 1!

Don’t cross the
waypoint: safe!

Can we have both LF and WPE?

insecure
Internet

secure
zone

Yes: but it takes 3 rounds!

insecure
Internet

secure
zone

insecure
Internet

secure
zone

R1:

R2:

insecure
Internet

secure
zoneR3:

Yes: but it takes 3 rounds!

insecure
Internet

secure
zone

insecure
Internet

secure
zone

R1:

R2:

insecure
Internet

secure
zoneR3:

Is there always a WPE+LF schedule?

What about this one?

❏ Cannot update any forward edge in R1: WP
❏ Cannot update any backward edge in R1: LF

No schedule exists! Resort to tagging…

LF and WPE may conflict!

What about this one?

Further reading:
Survey of Consistent Software-Defined Network Updates
Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio. IEEE
Communications Surveys and Tutorials (COMST), to appear.

https://www.univie.ac.at/ct/stefan/survey-network-update-sdn.pdf

Example: New Threats

2

SDN Controller

Outsmarting Network Security with SDN Teleportation
Kashyap Thimmaraju, Liron Schiff, and S.

EuroS&P, Paris, France, April 2017.

New Types of Attacks: Via SDN Controller

• Controller may be attacked or
exploited

– Reacts to switch events, e.g., by
packet-outs

A B

deny A<->B

2

SDN Controller

Outsmarting Network Security with SDN Teleportation
Kashyap Thimmaraju, Liron Schiff, and S.

EuroS&P, Paris, France, April 2017.

New Types of Attacks: Via SDN Controller

A B

deny A<->B

Tr
ig

ge
r

React

• Controller may be attacked or
exploited

– By design, reacts to switch
events, e.g., by packet-outs

2

SDN Controller

Outsmarting Network Security with SDN Teleportation
Kashyap Thimmaraju, Liron Schiff, and S.

EuroS&P, Paris, France, April 2017.

New Types of Attacks: Via SDN Controller

A B

deny A<->B

Tr
ig

ge
r

React

• Controller may be attacked or
exploited

– By design, reacts to switch
events, e.g., by packet-outs

– Or even multicast: pave-path
technique more efficient than
hop-by-hop

React

React

2

SDN Controller

Outsmarting Network Security with SDN Teleportation
Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.

EuroS&P, Paris, France, April 2017 + CVEs.

New Types of Attacks: Via SDN Controller

A B

deny A<->B

Tr
ig

ge
r

React

• Controller may be attacked or
exploited

– By design, reacts to switch
events, e.g., by packet-outs

– Or even multicast: pave-path
technique more efficient than
hop-by-hop

React

React

May introduce new communication paths
which can be used in unintendend ways!

2

New Types of Attacks: Via SDN Controller

SDN Controller

A B

deny A<->B

• In particular: new covert communication
channels

– E.g., exploit MAC learning (use
codeword „0xBADDAD“) or modulate
information with timing

• May bypass security-critical elements: e.g.,
firewall in the dataplane

• Hard to catch: along „normal communication
paths“ and encrypted

Outsmarting Network Security with SDN Teleportation
Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.

EuroS&P, Paris, France, April 2017 + CVEs.

Roadmap

• Software-defined networks

• Programmable dataplanes

• Network virtualization

5

Innovation is Slow:
Example VxLAN

Switch OS

Driver

OSPF BGP etc.

© Nick McKeown

VxLAN: In principle, addition of a simple
function to be added to switches and
routers
• Defined 2010 by Cisco and Vmware

Innovation is Slow:
Example VxLAN

Switch OS

Driver

OSPF BGP etc.

© Nick McKeown

VxLAN: In principle, addition of a simple
function to be added to switches and
routers
• Defined 2010 by Cisco and Vmware

At heart: devices running an OS
(e.g. based on Linux or UNIX)

On top: user space processes
implementing control

Below: driver communicating to add and
delete entries into a forwarding chip

Innovation is Slow:
Example VxLAN

Switch OS

Driver

OSPF BGP etc.

© Nick McKeown

Needed steps to add VxLAN:
• Add control of VxLAN protcol
• Change driver to add/remove entries

into VxLAN table in switch ASIC
• Update ASIC

At heart: devices running an OS
(e.g. based on Linux or UNIX)

On top: user space processes
implementing control

Below: driver communicating to add and
delete entries into a forwarding chip

VXLAN

Innovation is Slow:
Example VxLAN

Switch OS

Driver

OSPF BGP etc.

© Nick McKeown

Needed steps to add VxLAN:
• Add control of VxLAN protcol
• Change driver to add/remove entries

into VxLAN table in switch ASIC
• Update ASIC

At heart: devices running an OS
(e.g. based on Linux or UNIX)

On top: user space processes
implementing control

Below: driver communicating to add and
delete entries into a forwarding chip

VXLAN

Doable in weeks!

Doable in weeks!

Took 4 years to add
feature to ASIC! 

Network
Equipment

Vendor

Network
Owner

ASIC
Team

Software
Team

Need feature!

Years

Why Does It Take So Long?

© Nick McKeown

Vendors get
together at IETF:

which feature exactly?

We can do that!

Network
Equipment

Vendor

Network
Owner

ASIC
Team

Software
Team

Need feature!

Years

Why Does It Take So Long?

© Nick McKeown

Vendors get
together at IETF:

which feature exactly?

We can do that!

In the meantime, owners probably figured out a
workaround making network more complex and brittle.

Besides Slow Innovation: Process is Inflexible and Expensive

I need extended VTP
(VLAN Trunking
Protocol) / a 3rd
spanport etc. !

Buy one of these!

Operator says: Vendor's answer:

I need
something

better than STP
for my data-

center...

We don't
have that!

Operator says: Vendor's answer:

Besides Slow Innovation: Process is Inflexible and Expensive

Programmable Networks

Switch OS

Driver

OSPF BGP etc.

This is how I
process packets!

Fixed-function
switch

Traditionally: features defined by chip
designers, defines what can be done.

Programmable Networks

Switch OS

Driver

OSPF BGP etc.

This is how I
process packets!

Fixed-function
switch

Switch OS

Driver

OSPF BGP etc.

Future? Features defined by operator,
tells switch what we really want!

This is how I want to
process packets!

Programmable
switch

Traditionally: features defined by chip
designers, defines what can be done.

SDN

Networking is Catching Up: Happening in Other Domains

Computers

Domain specific processors are a trend:

CPU

Java
Compiler

Graphics

GPU

OpenCL
Compiler

DSP

Matlab
Compiler

Java
Compiler

Machine
Learning

TPU

TensorFlow

Compiler

Networking

PISA/Tofino

P4
Compiler

Signal
Processing

What About Performance?

• Are programmable switches not much slower than fixed-function switches?
– And cost more and consume more power?

• As data models, ASIC technology etc. are evolving: no!
• Tofino chip: operates at 6.5 Tb/s (fastest in world!)

– Can switch entire Netflix catalogue in 20sec
– While running a 4000 line program on any packet...
– ... and not being more costly or consume more power

What About Performance?

• Are programmable switches not much slower than fixed-function switches?
– And cost more and consume more power?

• As data models, ASIC technology etc. are evolving: no!
• Tofino chip: operates at 6.5 Tb/s (fastest in world!)

– Can switch entire Netflix catalogue in 20sec
– While running a 4000 line program on any packet...
– ... and not being more costly or consume more power

Another Takeaway

Programmable networks can enable
faster innovation without decreasing

performance or increasing cost.

The Protocol Independent Switch Architecture (PISA)

Roadmap

• Software-defined networks

• Programmable dataplanes

• Network virtualization

5

Network Virtualization:
A Killer Application for SDN

Virtual Networks through Overlays

Source: Bilal, et. al. Blue Tenant Network Yellow Tenant Network

• Recall basic idea of an overlay:
– Tunnel (e.g., using IP) tenant packets through underlying physical Ethernet or IP network
– Overlay forms a conceptually separate network providing a separate service from underlay

• L2 service like VPLS or EVPN
– Overlay spans a separate broadcast domain

• L3 service like IP VPNs
– Different tenant networks have separate IP address spaces

• Dynamically provision and remove overlay as tenants need network service
• Multiple tenants with separate networks on the same server

Virtual Networks through Overlays

Source: Bilal, et. al. Blue Tenant Network Yellow Tenant Network

• Recall basic idea of an overlay:
– Tunnel (e.g., using IP) tenant packets through underlying physical Ethernet or IP network
– Overlay forms a conceptually separate network providing a separate service from underlay

• L2 service like VPLS or EVPN
– Overlay spans a separate broadcast domain

• L3 service like IP VPNs
– Different tenant networks have separate IP address spaces

• Dynamically provision and remove overlay as tenants need network service
• Multiple tenants with separate networks on the same server

Tunnel logic at servers: encapsulation (e.g., IP)!
Simple fabric/interconnect otherwise, no need to
reconfigure (e.g., to support mobility).

Advantages of Overlays

• Overlays can potentially support large numbers of tenant
networks

• Virtual network state and end node reachability are handled in
the end nodes (the servers, “fabric”)

• Tenant addresses hidden from other tenants
– Multiple tenants with the same IP address space

• Addresses in underlay are hidden from the tenant
– Inhibits unauthorized tenants from accessing data center

infrastructure
• Tunneling is used to aggregate traffic

Challenges of Overlays

• Efficient multicast is challenging
• Management tools to co-ordinate overlay and underlay and

performance
– Overlay networks probe for bandwidth and packet loss, which can

lead to inaccurate information
– Lack of communication between overlay and underlay can lead to

inefficient usage of network resources
– Lack of communication between overlays can lead to contention and

other performance issues
• Overlay packets may fail to traverse firewalls
• Path MTU limit may cause fragmentation
• …

VxLAN: Virtual eXtensible Local Area Network

• Virtual Extensible LAN (VXLAN) is an evolution of efforts to standardize on an
overlay encapsulation protocol, increasing scalability up to 16 million logical
networks

• Concretely: VLAN-like encapsulation technique to encapsulate MAC-based Layer-
2 frames with Layer-4 UDP

• VxLAN segments constitute a broadcast domain

• VxLAN endpoints terminate tunnels and may be both virtual or physical switch
ports
– E.g., Open Vswitch (OVS)

Another Trend: Virtualization of Switches

Trend in Datacenter Networks: Virtual Switches

SDN Controller

Clever at edge: virtualized and
Programmable.

Simple in core: hardware switches.

Another New Vulnerability: Virtual Switch

Virtualization
Layer

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Virtual switches reside in the server’s virtualization layer (e.g.,
Xen’s Dom0). Goal: provide connectivity and isolation.

The Underlying Problem: Complexity

Number of parsed high-level protocols constantly increases…

Complexity: Parsing

User

Kernel

VM VM VM

N
I
C

Virtual SwitchL2,L2.5,
L3,L4

Ethernet
LLC
VLAN
MPLS
IPv4
ICMPv4
TCP
UDP
ARP
SCTP
IPv6
ICMPv6
IPv6 ND
GRE
LISP
VXLAN
PBB
IPv6 EXT HDR
TUNNEL-ID
IPv6 ND
IPv6 EXT HDR
IPv6HOPOPTS
IPv6ROUTING
IPv6Fragment
IPv6DESTOPT
IPv6ESP
IPv6 AH
RARP
IGMP

Parser directly faces attacker and vSwitch runs
with high security privileges.

Enables Very Low-Cost Attacks

User

Kernel

VM VM VM

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch

Enables Very Low-Cost Attacks

User

Kernel

Ctrl

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch

Enables Very Low-Cost Attacks

User

Kernel

Ctrl

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch
User

Kernel

VM VM VM

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch

Enables Very Low-Cost Attacks

Taking Control of SDN-based Cloud Systems via the Data Plane (Best Paper Award)
Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-Pierre Seifert,

Anja Feldmann, and Stefan Schmid.
ACM Symposium on SDN Research (SOSR), Los Angeles, California, USA, March 2018.

Further Reading

2
MTS: Bringing Multi-Tenancy to Virtual Switches

Kashyap Thimmaraju, Saad Hermak, Gabor
Retvari, and S. USENIX ATC, 2019.

Challenge: How to provide better isolation efficiently?

VM

Virtual Switch

• Idea for better isolation: put vSwitch in a VM
• But what about performance?
• Or container?

Another Threat:
Algorithmic Complexity Attacks

2
Tuple Space Explosion: A Denial-of-Service Attack Against a Software

Packet Classifier. Levente Csikor et al. ACM CoNEXT, 2019.

Algorithmic Complexity Attacks

eMail

Social Media

virtualized
Packet classifier
(e.g., Open vSwitch, VPP)

• Network dataplane runs many complex algorithms: may perform
poorly under specific or adversarial inputs

• E.g., packet classifier: runs Tuple Space Search algorithm (e.g., in
OVS)

• Can be exploited: adversary can degrade performance to ~10% of
the baseline (10 Gbps) with only <1 Mbps (!) attack traffic

• Idea:
– Tenants can use the Cloud Management System (CMS) to set up their ACLs to

access-control, redirect, log, etc.
– Attacker’s goal: send some packet towards the virtual switch that when

subjected to the ACLs will exhaust resources

2
Tuple Space Explosion: A Denial-of-Service Attack Against a Software

Packet Classifier. Levente Csikor et al. ACM CoNEXT, 2019.

Algorithmic Complexity Attacks

eMail

Social Media

virtualized
Packet classifier
(e.g., Open vSwitch, VPP)

How to find such attacks?!

• Network dataplane runs many complex algorithms: may perform
poorly under specific or adversarial inputs

• E.g., packet classifier: runs Tuple Space Search algorithm (e.g., in
OVS)

• Can be exploited: adversary can degrade performance to ~10% of
the baseline (10 Gbps) with only <1 Mbps (!) attack traffic

• Idea:
– Tenants can use the Cloud Management System (CMS) to set up their ACLs to

access-control, redirect, log, etc.
– Attacker’s goal: send some packet towards the virtual switch that when

subjected to the ACLs will exhaust resources

5

• Why networks need more innovation
• Programmable control and data planes
• Network virtualization and datacenters

Conclusion

Fu
rt

he
r R

ea
di

ng
Toward Active and Passive Confidentiality Attacks On Cryptocurrency Off-Chain Networks
Utz Nisslmueller, Klaus-Tycho Foerster, Stefan Schmid, and Christian Decker.
6th International Conference on Information Systems Security and Privacy (ICISSP), Valletta, Malta, February 2020.
NetBOA: Self-Driving Network Benchmarking
Johannes Zerwas, Patrick Kalmbach, Laurenz Henkel, Gabor Retvari, Wolfgang Kellerer, Andreas Blenk, and Stefan Schmid.
ACM SIGCOMM Workshop on Network Meets AI & ML (NetAI), Beijing, China, August 2019.
MTS: Bringing Multi-Tenancy to Virtual Switches
Kashyap Thimmaraju, Saad Hermak, Gabor Retvari, and Stefan Schmid.
USENIX Annual Technical Conference (ATC), Renton, Washington, USA, July 2019.
Taking Control of SDN-based Cloud Systems via the Data Plane (Best Paper Award)
Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-Pierre Seifert, Anja Feldmann, and Stefan Schmid.
ACM Symposium on SDN Research (SOSR), Los Angeles, California, USA, March 2018.
Outsmarting Network Security with SDN Teleportation
Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.
2nd IEEE European Symposium on Security and Privacy (EuroS&P), Paris, France, April 2017.
Preacher: Network Policy Checker for Adversarial Environments
Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.
38th International Symposium on Reliable Distributed Systems (SRDS), Lyon, France, October 2019.
P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures
Jesper Stenbjerg Jensen, Troels Beck Krogh, Jonas Sand Madsen, Stefan Schmid, Jiri Srba, and Marc Tom Thorgersen.
14th International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Heraklion, Greece, December 2018.

And

https://www.univie.ac.at/ct/stefan/icissp20.pdf
https://www.univie.ac.at/ct/stefan/netai19netboa.pdf
https://www.univie.ac.at/ct/stefan/atc19mswitch.pdf
https://www.univie.ac.at/ct/stefan/sosr18.pdf
https://www.univie.ac.at/ct/stefan/eurosp17.pdf
https://www.univie.ac.at/ct/stefan/srds19sats.pdf
https://net.t-labs.tu-berlin.de/%7Estefan/conext18.pdf

	Emerging paradigms in networking: Software-defined networks, programmable dataplanes, and network virtualization
	A warmup: �How to design a datacenter network?
	How to design a datacentre network?
	How to design a datacentre network?
	How to design a datacentre network?
	Refresher: Layer-2 Networks
	Refresher: Layer-2 Networks
	Datacenter Network Design: Proposal #1
	Datacenter Network Design: Proposal #1
	Datacenter Network Design: Proposal #1
	Datacenter Network Design: Proposal #1
	Datacenter Network Design: Proposal #2
	Datacenter Network Design: Proposal #2
	Datacenter Network Design: Proposal #2
	Datacenter Network Design: Proposal #2
	Motivation: Why networks still require research and innovation
	Slide Number 17
	Slide Number 18
	The Internet Is A Huge Success Story
	But how secure are our networks?
	But how secure are our networks?
	A 1st Issue with Today’s Networks: �Trust Assumptions
	More exploits in the news…
	A 2nd Issue with Today’s Networks: �Complexity
	Even Tech-Savvy Companies Struggle to Provide Reliable Networks
	A 3rd Issue: Lack of Tools�Anecdote “Wall Street Bank”�
	Also: How much can we trust technology?
	Takeaway
	Another Takeaway
	Roadmap
	Roadmap
	Control Plane vs Data Plane
	Roadmap
	Control Plane
	Control Plane
	Control Plane
	In more details: Traditionally…
	… and SDN:
	Why logically centralized control plane?
	Analogy: Mainframe to PC Evolution
	The SDN Perspective
	The SDN Perspective
	The SDN Perspective
	The OpenFlow Protocol
	Controller-to-Switch Messages
	Switch-to-Controller Messages
	OpenFlow
	OpenFlow: Flow Table Entries
	Examples
	OpenFlow 1.5 Switch Model
	Example
	Example: MAC Learning With SDN
	Slide Number 53
	Recall: Networking 101
	Recall: Networking 101
	Recall: Networking 101
	Recall: Networking 101
	Recall: Networking 101
	Recall: Networking 101
	From Traditional Networks to SDN
	Example: SDN MAC Learning �Done Wrong
	Example: SDN MAC Learning �Done Wrong
	Example: SDN MAC Learning �Done Wrong
	Example: SDN MAC Learning �Done Wrong
	Example: SDN MAC Learning �Done Wrong
	Example: SDN MAC Learning �Done Wrong
	Example: SDN MAC Learning �Done Wrong
	Example: SDN MAC Learning �Done Wrong
	Example: SDN MAC Learning �Done Wrong
	Example: SDN MAC Learning �Done Wrong
	Example: SDN MAC Learning �Done Wrong
	Example Application for SDN: �Detecting Misbehavior
	Allows to Deal with New Threat Vectors: �Secure Trajectory Sampling
	Allows to Deal with New Threat Vectors: �Secure Trajectory Sampling
	Allows to Deal with New Threat Vectors: �Secure Trajectory Sampling
	Allows to Deal with New Threat Vectors: �Secure Trajectory Sampling
	Solution: Use SDN for Secure Trajectory Sampling
	Solution: Use SDN for Secure Trajectory Sampling
	Example: New Challenges
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Problem 1: Bypassed Waypoint
	Problem 2: Transient Loop
	Tagging: A Universal Solution?
	Tagging: A Universal Solution?
	Tagging: A Universal Solution?
	Idea: Schedule “Safe” Subsets of Nodes Only, Then Wait for ACK!
	Loop-Free Update Schedule
	Loop-Free Update Schedule
	Loop-Free Update Schedule
	Loop-Free Update Schedule
	Waypoint Respecting Schedule
	Waypoint Respecting Schedule
	Waypoint Respecting Schedule
	Can we have both LF and WPE?
	Yes: but it takes 3 rounds!
	Yes: but it takes 3 rounds!
	What about this one?
	LF and WPE may conflict!
	What about this one?
	Example: New Threats
	New Types of Attacks: Via SDN Controller
	New Types of Attacks: Via SDN Controller
	New Types of Attacks: Via SDN Controller
	New Types of Attacks: Via SDN Controller
	New Types of Attacks: Via SDN Controller
	Roadmap
	Innovation is Slow: �Example VxLAN
	Innovation is Slow: �Example VxLAN
	Innovation is Slow: �Example VxLAN
	Innovation is Slow: �Example VxLAN
	Why Does It Take So Long?
	Why Does It Take So Long?
	Besides Slow Innovation: Process is Inflexible and Expensive
	Besides Slow Innovation: Process is Inflexible and Expensive
	Programmable Networks
	Programmable Networks
	Networking is Catching Up: Happening in Other Domains �
	What About Performance?
	What About Performance?
	Another Takeaway
	The Protocol Independent Switch Architecture (PISA)
	Roadmap
	Network Virtualization: �A Killer Application for SDN
	Virtual Networks through Overlays
	Virtual Networks through Overlays
	Advantages of Overlays
	Challenges of Overlays
	VxLAN: Virtual eXtensible Local Area Network
	Another Trend: Virtualization of Switches
	Trend in Datacenter Networks: Virtual Switches
	Another New Vulnerability: Virtual Switch
	The Underlying Problem: Complexity
	Complexity: Parsing
	Enables Very Low-Cost Attacks
	Enables Very Low-Cost Attacks
	Enables Very Low-Cost Attacks
	Enables Very Low-Cost Attacks
	Further Reading
	Challenge: How to provide better isolation efficiently?
	Another Threat:�Algorithmic Complexity Attacks
	Algorithmic Complexity Attacks
	Algorithmic Complexity Attacks
	Conclusion
	Further Reading

