
Networks in the Disco:
Algorithms for Demand-Aware and Self-Adjusting Networks
Stefan Schmid (University of Vienna)

t=1

ProjecToR @

SIGCOMM 2016

Motivation: Free-Space Optics
(ProjecToR)

Motivation: Free-Space Optics
(ProjecToR)

t=2

ProjecToR @

SIGCOMM 2016

Also: Reconfigurable Optical Switches
(Helios, c-Through, etc.)

v2 v4 v6 v8

v1 v3 v5 v7

Static topology:

electric

Dynamic topology:

optical switch

(e.g. matching)

t=1

Matching!

2

v2 v4 v6 v8

v1 v3 v5 v7

Static topology:

electric

Dynamic topology:

optical switch

(e.g. matching)

t=2

Matching!

2

Also: Reconfigurable Optical Switches
(Helios, c-Through, etc.)

Free-Space Optics
• Ghobadi et al., “Projector: Agile reconfigurable data center interconnect,” SIGCOMM 2016.
• Hamedazimi et al. “Firefly: A reconfigurable wireless data center fabric using free-space

optics,” CCR 2014.

Optical Circuit Switches
• Farrington et al. “Helios: a hybrid electrical/optical switch architecture for modular data

centers,” CCR 2010.
• Mellette et al. “Rotornet: A scalable, low-complexity, optical datacenter network,” SIGCOMM

2017.
• Farrington et al. “Integrating microsecond circuit switching into the data center,” SIGCOMM

2013.
• Liu et al. “Circuit switching under the radar with reactor.,” NSDI 2014

Etc.!

Emerging Technologies

Movable Antennas
• Halperin et al. “Augmenting data center networks with multi-gigabit wireless links,”

SIGCOMM 2011.

60GHz Wireless Communication
• Zhou et al. “Mirror mirror on the ceiling: Flexible wireless links for data centers,” CCR 2012.

• Kandula et al. “Flyways to de-congest data center networks,” 2009.

3

Observation: Technology Enables
“Demand-Aware Networks”

4

Traditional Networks

• Usually optimized for the “worst-
case” (all-to-all communication)

• Example, fat-tree topologies:
provide full bisection bandwidth

• Lower bounds and hard trade-offs,
e.g., degree vs diameter

5

• Demand-Aware Network (DAN)

– Optimized toward the workload it
serves (e.g., route length)

– Statically or even dynamically

TOR switches

Mirrors

Lasers

DANs

Often
hybrid

Why…?

6

ProjecToR @ SIGCOMM 2016

Growing Traffic
and Cost…

Aggregate server traffic in
Google’s datacenter fleet

Source: Jupiter Rising. SIGCOMM 2015.

… But Much
Structure!

Spatial (sparse!) and
temporal locality

Inside the Social Network’s
(Datacenter) Network @

SIGCOMM 2015

Facebook

Microsoft

Understanding Data Center Traffic
Characteristics @ WREN 2009

Benson et al.

Batch processing, web services,
distributed ML, …: data-centric
applications are distributed and

interconnecting network is critical

7

Growing Traffic
and Cost…

Aggregate server traffic in
Google’s datacenter fleet

Source: Jupiter Rising. SIGCOMM 2015.

… But Much
Structure!

Spatial (sparse!) and
temporal locality

Inside the Social Network’s
(Datacenter) Network @

SIGCOMM 2015

Facebook

Microsoft

Understanding Data Center Traffic
Characteristics @ WREN 2009

Benson et al.

Batch processing, web services,
distributed ML, …: data-centric
applications are distributed and

interconnecting network is critical

„DANs can provide same performance as demand-
oblivious networks at 25-40% lower costs.“ Firefly,

SIGCOMM CCR, 2014.

7

ProjecToR @ SIGCOMM 2016

Fun Fact

Data from Google Scholar

Roadmap

000

• Motivation: Demand-Aware Networks

• Principles of Static Demand-Aware Network Designs

• Principles of Dynamic Demand-Aware Network Designs

• Principles of Decentralized Approaches

Demand matrix: joint distribution

So
u

rc
es

Destinations

… of constant degree (scalability)

design

A “Simple” DAN Design Problem
Input: Workload Output: DAN

8

So
u

rc
es

Destinations

design

Makes sense to add link!

Demand matrix: joint distribution … of constant degree (scalability)

A “Simple” DAN Design Problem

Much from 4 to 5.

8

Input: Workload Output: DAN

Input: Workload Output: DAN

So
u

rc
es

Destinations

design

Demand matrix: joint distribution … of constant degree (scalability)

A “Simple” DAN Design Problem

1 communicates to many.

Bounded degree: route
to 7 indirectly.

8

Demand matrix: joint distribution

So
u

rc
es

Destinations

design

4 and 6 don’t
communicate…

… but “extra” link still
makes sense: not a

subgraph.

… of constant degree (scalability)

A “Simple” DAN Design Problem

8

Input: Workload Output: DAN

Case Study: DAN for Short Routes

Shorter routes: smaller bandwidth
footprint, lower latency, less energy, …

9

Bounded degree
Δ

D[𝐩 𝐢, 𝐣]: joint distribution, Δ N: DAN

Expected Path Length (EPL):
Demand-weighted route length

EPL D,N =
(u,v)∈D

p u, v ∙ dN(u, v)

=3X

Y

More Formally: DAN Design Problem
Input: Output:

Path length on DAN N.

Frequency 10

Objective:

Some Examples

• DANs of Δ = 3:
– E.g., complete binary tree

– dN(u,v) ≤ 2 log n

– Can we do better than log n?

• DANs of Δ = 2:
– E.g., set of lines and cycles

11

How hard is it to design a DAN?

12

DAN design can be NP-hard

• Example Δ = 2: A Minimum Linear
Arrangement (MLA) problem
– A “Virtual Network Embedding Problem”, VNEP

– Minimize sum of lengths of virtual edges

Embedding?

13

DAN design can be NP-hard

Bad!

e.g.,
cost 5

13

• Example Δ = 2: A Minimum Linear
Arrangement (MLA) problem
– A “Virtual Network Embedding Problem”, VNEP

– Minimize sum of lengths of virtual edges

DAN design can be NP-hard

Better!

e.g.,
cost 1

13

• Example Δ = 2: A Minimum Linear
Arrangement (MLA) problem
– A “Virtual Network Embedding Problem”, VNEP

– Minimize sum of lengths of virtual edges

DAN design can be NP-hard

Better!

e.g.,
cost 1

13

• Example Δ = 2: A Minimum Linear
Arrangement (MLA) problem
– A “Virtual Network Embedding Problem”, VNEP

– Minimize sum of lengths of virtual edges

DAN design can be NP-hard

A new knob for
optimization!

e.g.,
cost 1

• But what about > 2? Embedding
problem still hard, but we have an
additional degree of freedom:

Do topological flexibilities make problem
easier or harder?! 13

• Example Δ = 2: A Minimum Linear
Arrangement (MLA) problem
– A “Virtual Network Embedding Problem”, VNEP

– Minimize sum of lengths of virtual edges

So: How useful are DANs?

As always in computer science (e.g., also in coding, in self-
adjusting datastructures, etc.): it depends! 

14

Expected Path Length in
Traditional Networks?

15

Each network with n nodes and max degree Δ >2
must have a diameter of at least log(n)/log(Δ-1)-1.

Theorem (Traditional Networks):

Proof.

Example: Clos, Bcube, Xpander.

1 Δ Δ(Δ-1)

In k steps, reach at most 1+ Σ Δ(Δ -1)i

Constant-degree networks have at least logarithmic diameter.

Can DANs do better?

17

Can DANs do better?

17

In general not really, e.g. in all-to-all communication
(clique): logarithmic diameter unavoidable.

Example 2: high-degree but skewed demand

• If sufficiently skewed: constant-degree DAN
can serve it at cost O(1)

But sometimes, DANs can be much better!

Example 1: low-degree demand

• Already low degree: degree-4 DAN
can serve this at cost 1 .

18

So on what does it depend?

19

So on what does it depend?

We argue: on the

“entropy” of the demand!

20

?

„Coming to Wroclaw?“

00110101…

21

if demand arbitrary and unknown

log diameter

log # bits / symbol

An Analogy to Coding

01011…

21

„Coming to Wroclaw?“

if demand arbitrary and unknown

log diameter

log # bits / symbol

entropy / symbol

entropy?

DAN!

An Analogy to Coding

if demand known and fixed

011…

21

„Coming to Wroclaw?“

if demand arbitrary and unknown

log diameter

log # bits / symbol

if demand known and fixed

entropy / symbol

entropy?

DAN! SAN!

Dynamic DANs:
Aka. Self-Adjusting
Networks (SANs)!

An Analogy to Coding

if demand unknown but reconfigurable

An Analogy to Coding 011…

21

„Coming to Wroclaw?“

if demand arbitrary and unknown

log diameter

log # bits / symbol

DAN! SAN!

Dynamic DANs:
Aka. Self-Adjusting
Networks (SANs)!

Can exploit
spatial locality!

Additionally exploit
temporal locality!

if demand known and fixed if demand unknown but reconfigurable

An Analogy to Coding 011…

21

„Coming to Wroclaw?“

if demand arbitrary and unknown

log diameter

log # bits / symbol

DAN! SAN!

Dynamic DANs:
Aka. Self-Adjusting
Networks (SANs)!

Can exploit
spatial locality!

Additionally exploit
temporal locality!

if demand known and fixed if demand unknown but reconfigurable

Analogous to Datastructures: Oblivious…

• Traditional, fixed BSTs do not rely on any
assumptions on the demand

• Optimize for the worst-case

• Example demand:

1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

• Items stored at O(log n) from the root,
uniformly and independently of their
frequency

many many many many
Many requests

for leaf 1…
… then for

leaf 3…

many

22

Corresponds to
max possible demand!

• Demand-aware fixed BSTs can take
advantage of spatial locality of the
demand

• E.g.: place frequently accessed elements
close to the root

• E.g., Knuth/Mehlhorn/Tarjan trees

• Recall example demand:
1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)
– Amortized cost O(loglog n)

Amortized cost corresponds
to empirical entropy of demand!

loglog n

… Demand-Aware …

23

• Demand-aware reconfigurable BSTs
can additionally take advantage of
temporal locality

• By moving accessed element to the
root: amortized cost is constant, i.e.,
O(1)
– Recall example demand:

1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

… Self-Adjusting!

24

Datastructures

Oblivious Demand-Aware Self-Adjusting

Lookup

O(log n)

Exploit spatial locality:
empirical entropy O(loglog n)

Exploit temporal locality as well:

O(1)

25

Analogously for Networks

Oblivious DAN SAN

Const degree

(e.g., expander):

route lengths O(log n)

Exploit spatial locality Exploit temporal locality as well

000
Avin, S.: Toward Demand-Aware Networking: A Theory

for Self-Adjusting Networks. SIGCOMM CCR 2018.

Limitations of (Static) DANs:
Entropy-Based Lower Bounds?

26

Indeed!

Lower Bound Idea:
Leverage Coding or Datastructure!

So
u

rc
es

Destinations
• DAN just for a single (source) node 1: cannot do

better than Δ-ary Huffman tree for its
destinations [0,1/65,1/13,1/65,1/65,2/65,3/65]
– resp. Knuth/Mehlhorn/Tarjan tree if search property

required

• How good can this tree be?

• Entropy lower bound on EPL known for binary
trees, e.g. Mehlhorn 1975 for BST

27

Lower Bound Idea:
Leverage Coding or Datastructure!

So
u

rc
es

Destinations

27

An optimal “ego-tree“
for this source!

• DAN just for a single (source) node 1: cannot do
better than Δ-ary Huffman tree for its
destinations [0,1/65,1/13,1/65,1/65,2/65,3/65]
– resp. Knuth/Mehlhorn/Tarjan tree if search property

required

• How good can this tree be?

• Entropy lower bound on EPL known for binary
trees, e.g. Mehlhorn 1975 for BST

Lower Bound Idea:
Leverage Coding or Datastructure!

So
u

rc
es

Destinations

27

An optimal “ego-tree“
for this source!

• DAN just for a single (source) node 1: cannot do
better than Δ-ary Huffman tree for its
destinations [0,1/65,1/13,1/65,1/65,2/65,3/65]
– resp. Knuth/Mehlhorn/Tarjan tree if search property

required

• How good can this tree be?

• Entropy lower bound on EPL known for binary
trees, e.g. Mehlhorn 1975 for BST

So: what is the entropy of the
whole demand?

Lower Bound & Entropy of the Demand

• Proof idea (EPL=Ω(HΔ(Y|X))):

• Compute ego-tree for each source
node

• Take union of all ego-trees

• Violates degree restriction but valid
lower bound

sources destinations

28

entropy

Do this in both dimensions:

Ω(HΔ(X|Y))

D

EPL ≥ Ω(max{HΔ(Y|X), HΔ(X|Y)})

Ω(HΔ(Y|X))

Lower Bound & Entropy of the Demand:
Sources + Destinations

29

Can DANs Match The Entropy Speed Limit?
Upper Bounds

30

Ego-Trees Revisited

• Recall: ego-tree
– optimal tree for a row

(= given source)

D[i]
TiΔ

31

Ego-Trees Revisited

• Recall: ego-tree
– optimal tree for a row

(= given source)

D[i]
TiΔ

Can we merge the trees without
distortion and keep degree low?

31

Ego-Trees Revisited

• Recall: ego-tree
– optimal tree for a row

(= given source)

D[i]
TiΔ

Can we merge the trees without
distortion and keep degree low?

For sparse demands yes:
enough low-degree nodes which can

serve as “helper nodes“!

31

• Find low degree nodes

– Half of the nodes of lowest degree: “below
twice average degree”

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Find high degree nodes having only low
degree neighbors (e.g., 15 but not 12):
– Create optimal binary tree with low degree

neighbors

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2):

one is enough so distanced increased by +1

• Now high degree nodes have only low
degree neighbors: make tree again 32

DAN for Sparse Demand

Low: can
be helper

Low: can
be helper

• Find low degree nodes

– Half of the nodes of lowest degree: “below
twice average degree”

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Find high degree nodes having only low
degree neighbors (e.g., 15 but not 12):
– Create optimal binary tree with low degree

neighbors

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2):

one is enough so distanced increased by +1

• Now high degree nodes have only low
degree neighbors: make tree again 32

DAN for Sparse Demand

Low: can
be helper

Low: can
be helper

low-low

1 2

3 4

5 6

6 8

9 10

• Find low degree nodes

– Half of the nodes of lowest degree: “below
twice average degree”

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2):

one is enough so distanced increased by +1

– Create optimal binary tree with low degree
neighbors

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2):

one is enough so distanced increased by +1

• Now high degree nodes have only low
degree neighbors: make tree again

32

DAN for Sparse Demand

High and has high
neighbor (e.g., 14)

High-high edge

• Find low degree nodes

– Half of the nodes of lowest degree: “below
twice average degree”

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2):

one is enough so distanced increased by +1

• Now high degree nodes have only low
degree neighbors: make tree
– Create optimal binary tree with low degree

neighbors

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2):

one is enough so distanced increased by +1

32

DAN for Sparse Demand

Only low
neighbors

15

2

3 11

4

• Find low degree nodes

– Half of the nodes of lowest degree: “below
twice average degree”

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2):

one is enough so distanced increased by +1

• Now high degree nodes have only low
degree neighbors: make tree
– Create optimal binary tree with low degree

neighbors

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2):

one is enough so distanced increased by +1

32

DAN for Sparse Demand

Only low
neighbors

Theorem [Asymptotic Optimality]: Helper node does not participate
in many trees, so constant degree, and constant distortion.

Remark: The Problem is
Related To Spanners

• Sparse, distance-preserving (low-distortion) spanners

• But:
– Spanners aim at low distortion among all pairs; in our case, we are

only interested in the local distortion, 1-hop communication neighbors

– We allow auxiliary edges (not a subgraph): similar to geometric
spanners

– We require constant degree

33

Yet: We can leverage the connection to
spanners sometimes!

34

Theorem: If request distribution D is regular and uniform, and if we can find a constant
distortion, linear sized (i.e., constant, sparse) spanner for this request graph: then we can

design a constant degree DAN providing an optimal EPL (i.e., O(H(X|Y)+H(Y|X)).

r-regular and uniform
demand:

Sparse, irregular
(constant) spanner:

Constant degree optimal
DAN (EPL at most log r):

subgraph! auxiliiary edges

Yet: We can leverage the connection to
spanners sometimes!

34

Theorem: If request distribution D is regular and uniform, and if we can find a constant
distortion, linear sized (i.e., constant, sparse) spanner for this request graph: then we can

design a constant degree DAN providing an optimal EPL (i.e., O(H(X|Y)+H(Y|X)).

subgraph! auxiliiary edges

Optimal: in r-regular graphs,
conditional entropy is log r.

r-regular and uniform
demand:

Sparse, irregular
(constant) spanner:

Constant degree optimal
DAN (EPL at most log r):

Proof Idea

• Degree reduction again, this time from sparse spanner (before:
from sparse demand graph)

• Optimal DAN designs for
– Hypercubes (with n log n edges)

– Chordal graphs

– Trivial: graphs with polynomial degree (dense graphs)

– Graphs of locally bounded doubling dimension

35

Has sparse 3-spanner.

Has sparse O(1)-spanner.

Corollaries

We also know
some more algos,

e.g., for BSTs.

Another Example: Demands of Locally-
Bounded Doubling Dimension

• LDD: GD has a Locally-bounded
Doubling Dimension (LDD) iff all 2-
hop neighbors are covered by 1-hop
neighbors of just 𝝀 nodes
– Note: care only about 2-neighborhood

• Formally, B(u, 2)⊆ i=1
λ B(vi, 1)

• Challenge: can be of high degree! 67

We only consider 2 hops!

Nodes 1,2,3 cover 2-hop
neighborhood of u.

Lemma: There exists a sparse 9-(subgraph)spanner for LDD.

Def. (ε-net): A subset V’ of V is a ε-net for a graph G = (V,E) if
– V’ sufficiently “independent”: for every u, v ∈ V’, dG(u, v) > ε

– “dominating” V: for each w ∈ V , ∃ at least one u ∈ V’ such that, dG(u,w) ≤ ε

DAN for Locally-Bounded Doubling Dimension

68

This implies optimal DAN: still
focus on regular and uniform!

37

Simple algorithm:

1. Find a 2-net

69

9-Spanner for LDD (= optimal DAN)

Easy: Select nodes into 2-net
one-by-one in decreasing

(remaining) degrees, remove
2-neighborhood. Iterate.

2-net (clusterhead)

2-net (clusterhead)

38

Simple algorithm:

1. Find a 2-net

2. Add nodes to one of the
closest 2-net nodes

70

9-Spanner for LDD (= optimal DAN)

Assign: at most 2 hops.

Union of these shortest paths:
a forest. Add to spanner.

38

Simple algorithm:

1. Find a 2-net

2. Add nodes to one of the
closest 2-net nodes

3. Join two clusters if there are
edges in between

71

9-Spanner for LDD (= optimal DAN)

Connect forests (single „connecting
edge“): add to spanner.

38

Simple algorithm:

1. Find a 2-net

2. Add nodes to one of the
closest 2-net nodes

3. Join two clusters if there are
edges in between

72

9-Spanner for LDD (= optimal DAN)

Sparse: Spanner only includes forest (sparse) plus
“connecting edges”: but since in a locally doubling
dimension graph the number of cluster heads at
distance 5 is bounded, only a small number of
neighboring clusters will communicate.

Distortion 9: Short detour via
clusterheads: u,ch(u),x,y,ch(v),v

38

Further Reading

39

Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.

31st International Symposium on Distributed Computing (DISC),
Vienna, Austria, October 2017.

Roadmap

000

• Motivation: Demand-Aware Networks

• Principles of Static Demand-Aware Network Designs

• Principles of Dynamic Demand-Aware Network Designs

• Principles of Decentralized Approaches

Objectives and Metrics for Dynamic DANs, i.e. SANs?

40

A Cost-Benefit Tradeoff

Short routes

High reconfiguration cost

Low reconfiguration cost

Long routes

Basic question:

How often to reconfigure?

Tradeoff

Input for Dynamic DANs

A sequence σ = (u1,v1), (u2,v2), (u3,v3)….

chosen arbitrarily

Chosen i.i.d. from initially
unknown fixed distribution

A Taxonomy: Reconfigurable Networks

Demand-Aware

Reconfigurable

Offline Online

Awareness

Topology

Input

AlgorithmOFF ON

Revealed over time:
learning or online

algorithm

Static Optimality:

“Not worse than static
which knows demand

ahead of time!”

ρ = Cost(ON)/Cost(STAT*)
is constant.

Property

42

Static
Optimality

Static
Optimality

A Taxonomy: Reconfigurable Networks

Demand-Aware

Reconfigurable

Offline Online

Awareness

Topology

Input

AlgorithmOFF ON

Revealed over time:
learning or online

algorithm

Static Optimality:

“Not worse than static
which knows demand

ahead of time!”

ρ = Cost(ON)/Cost(STAT*)
is constant.

Property

42

Note: may be <<1. ON has
advantage of adjusting, but

the disadvantage of not knowing the
workload. E.g. if much temporal locality.

A Taxonomy: Reconfigurable Networks

Demand-Aware

Reconfigurable

Offline Online

Awareness

Topology

Input

AlgorithmOFF ON

Revealed over time:
learning or online

algorithm

Static
Optimality

Dynamic Optimality:

“No worse than an
offline algorithm which
knows the sequence!”

ρ = Cost(ON)/Cost(OFF*)
is constant.

Property
Dynamic

Optimality

Always >=1.

42

How to Design SANs?

Inspiration from self-adjusting
datastructures again!

43

• A Binary Search Tree (BST)

• Inspired by “move-to-front”: move to root!

• Self-adjustment: zig, zigzig, zigzag
– Maintains search property

• Many nice properties
– Static optimality, working set, (static,dynamic)

fingers, …

Recall: Splay Tree
On access 4

1 4

2

5

7

2

4

5

7

1 7

2

4

5

1

zag@2

zig@5

root!

44

A Simple Idea:
Generalize Splay Tree To SplayNet

Splay Tree

1 4

2

5

7

1 4

2

5

7comm.

SplayNet

vs

BST is nice for networks:
local (greedy) search!

45

Splay Tree

1 4

2

5

7

1 4

2

5

7comm.

SplayNet

vs

But how?

45

A Simple Idea:
Generalize Splay Tree To SplayNet

SplayNet: A Simple Idea

Splay Tree SplayNet

x

@t: access x

x
@t+1

x

@t: comm
(x,y)

@t+1

y

LCA

y

x
splay

double-
splay

46

Example

t=1 t=2

1 4

2

5

7

4

7

5

2

1

adjust

Challenges: How to minimize reconfigurations?
How to keep network locally routable?

New connection!

47

Properties of SplayNets

• Statically optimal if demand comes from a
product distribution
– Product distribution: entropy equals conditional

entropy, i.e., H(X)+H(Y)=H(X|Y)+H(X|Y)

• Converges to optimal static topology in
– Multicast scenario: requests come from a BST as

well

– Cluster scenario: communication only within
interval

– Laminated scenario : communication is „non-
crossing matching“

Multicast
Scenario

Cluster

Scenario

Laminated

Scenario

I

I

48

Remark: Static SplayNet

I=[1..8]

23

25

21

4

1 7

v 8

10

18

19 22

I‘=[9..25]

Theorem: Optimal static SplayNet can be computed
in polynomial-time (dynamic programming)

– Unlike unordered tree?

49

Further Reading

50

SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard

Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016.

Better Idea: Back to Ego-Trees!

D[i] TiΔ

i

51

Better Idea: Back to Ego-Trees!

D[i]

Idea: let each
node adjust its

ego-tree!

TiΔ

i

51

A Balanced Self-Adjusting Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s

52

A Balanced Self-Adjusting Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s

Equivalent: structure
fix, moving nodes,

not edgesUnordered!

A Balanced Self-Adjusting Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s

A useful dynamic property: Most-Recently Used (MRU)!
Similar to Working Set Property: more recent communication Partners closer to source.

Equivalent: structure
fix, moving nodes,

not edgesUnordered!

A Balanced Self-Adjusting Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s

u

s communicates to u

52

A Balanced Self-Adjusting Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s

u

Strict MRU requires: move u to root! But
how? Cannot swap with v: v no longer MRU!

s communicates to u
v

52

A Balanced Self-Adjusting Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s

u

Strict MRU requires: move u to root! But
how? Cannot swap with v: v no longer MRU!

s communicates to u
v

r

s

Idea: Push v down, in a balanced manner, up to
depth(u): left-right-left-right („rotate-push“)

A Balanced Self-Adjusting Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s

u

Strict MRU requires: move u to root! But
how? Cannot swap with v: v no longer MRU!

s communicates to u

v

r

s

push-down up to
depth(u)

Idea: Push v down, in a balanced manner, up to
depth(u): left-right-left-right („rotate-push“)

A Balanced Self-Adjusting Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s

t

s communicates to u

Then: promote u to available root, and
t to u: at original depth!

v

r

s

push-down up to
depth(u)

u

52

Remarks

• Unfortunately, alternating push-down
does not maintain MRU (working set)
property

• Tree can degrade, e.g.: sequence of
requests from level 4,1,2,1,3,1,4,1

s

s1

s2 s3

s4 s5

s6 s7

s8 s9

52

Solution: Random Walk

s

t

s comm. to u

At least maintains approximate
working set / MRU!

v

r

s

rotate push-
down

u

s

t

v

r

s

random
walk!

u

s comm. to u

52

Further Reading

53

Push-Down Trees: Optimal Self-Adjusting Complete Trees
Chen Avin, Kaushik Mondal, and Stefan Schmid.

ArXiv Technical Report, July 2018.

Roadmap

000

• Motivation: Demand-Aware Networks

• Principles of Static Demand-Aware Network Designs

• Principles of Dynamic Demand-Aware Network Designs

• Principles of Decentralized Approaches

A “Simple” Decentralized Solution:
Distributed SplayNet (DiSplayNet)

• SplayNet attractive: ordered BST supports local routing
– Nodes maintain three ranges: interval of left subtree, right

subtree, upward

• If communicate (frequently): double-splay toward LCA

• Challenge: concurrency!
– Access Lemma of splay trees no longer works: potential function

does not „telescope“ anymore: a concurrently rising node may
push down another rising node again

19

4
15

22

18
1 7

3
12

8

10

LCA

SplayNet

54

DiSplayNet: Challenges

• DiSplayNet: Rotations (zig,zigzig,zigzag)
are concurrent

• To avoid conflict: distributed
computation of independent clusters

• Still challenging:

Sequential SplayNet: requests one after another DiSplayNet: Analysis more challenging: potential function sum
no longer telescopic. One request can “push-down” another.

DiSplayNet: Challenges

Telescopic: max
potential drop

Sequential SplayNet: requests one after another DiSplayNet: Analysis more challenging: potential function sum
no longer telescopic. One request can “push-down” another.

• DiSplayNet: Rotations (zig,zigzig,zigzag)
are concurrent

• To avoid conflict: distributed
computation of independent clusters

• Still challenging:

Further Reading

Brief Announcement: Distributed SplayNets
Bruna Peres, Olga Goussevskaia, Stefan Schmid, and Chen Avin.

31st International Symposium on Distributed Computing (DISC), Vienna,
Austria, October 2017.

56

Demand-Oblivious

Fixed

Unknown

Bisection

Demand-Aware

Fixed Reconfigurable

Sequence Generator Offline Online

Awareness

Topology

Input

Static
Optimality

AlgorithmOFF ON

PropertyDiameter

Resiliency

Dynamic
Optimality

Learning
Optimality

STAT GENOBL

Uncharted Landscape! 000
Toward Demand-Aware Networking: A Theory for

Self-Adjusting Networks. SIGCOMM CCR, 2018.

57

Conclusion

• Reconfigurable switches: Yoga for Networks?

• New metrics needed: e.g., entropy?

• New algorithms needed: static, offline and online!

• Let’s chat!

Thank you!
Question?

Fu
rt

h
er

 R
ea

d
in

g
Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks
Chen Avin and Stefan Schmid.
SIGCOMM CCR, October 2018.
Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
31st International Symposium on Distributed Computing (DISC), Vienna, Austria, October 2017.
Push-Down Trees: Optimal Self-Adjusting Complete Trees
Chen Avin, Kaushik Mondal, and Stefan Schmid.
ArXiv Technical Report, July 2018.
Online Balanced Repartitioning
Chen Avin, Andreas Loukas, Maciej Pacut, and Stefan Schmid.
30th International Symposium on Distributed Computing (DISC), Paris, France, September 2016.
rDAN: Toward Robust Demand-Aware Network Designs
Chen Avin, Alexandr Hercules, Andreas Loukas, and Stefan Schmid.
Information Processing Letters (IPL), Elsevier, 2018.
SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016. Early version: IEEE IPDPS 2013.
Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures
Klaus-Tycho Foerster, Monia Ghobadi, and Stefan Schmid.
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Ithaca, New York, USA, July 2018.
Charting the Complexity Landscape of Virtual Network Embeddings
Matthias Rost and Stefan Schmid. IFIP Networking, Zurich, Switzerland, May 2018.

https://net.t-labs.tu-berlin.de/~stefan/dan-san.pdf
https://net.t-labs.tu-berlin.de/~stefan/disc17.pdf
https://net.t-labs.tu-berlin.de/~stefan/pushdowntrees.pdf
https://www.net.t-labs.tu-berlin.de/~stefan/disc16repartition.pdf
https://net.t-labs.tu-berlin.de/~stefan/ipl18.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7066977&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber%3D7066977
https://net.t-labs.tu-berlin.de/~stefan/ancs18.pdf
https://www.net.t-labs.tu-berlin.de/~stefan/ifip18landscape.pdf

