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Free-Space Optics
• Ghobadi et al., “Projector: Agile reconfigurable data center interconnect,” SIGCOMM 2016.
• Hamedazimi et al. “Firefly: A reconfigurable wireless data center fabric using free-space 

optics,” CCR 2014.

Optical Circuit Switches
• Farrington et al. “Helios: a hybrid electrical/optical switch architecture for modular data 

centers,” CCR 2010.
• Mellette et al. “Rotornet: A scalable, low-complexity, optical datacenter network,” SIGCOMM 

2017.
• Farrington et al. “Integrating microsecond circuit switching into the data center,” SIGCOMM 

2013.
• Liu et al. “Circuit switching under the radar with reactor.,” NSDI 2014

Etc.!

Emerging Technologies

Movable Antennas
• Halperin et al. “Augmenting data center networks with multi-gigabit wireless links,” 

SIGCOMM 2011.

60GHz Wireless Communication
• Zhou et al. “Mirror mirror on the ceiling: Flexible wireless links for data centers,” CCR 2012.

• Kandula et al. “Flyways to de-congest data center networks,” 2009.
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Observation: Technology Enables 
“Demand-Aware Networks”
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Traditional Networks

• Usually optimized for the “worst-
case” (all-to-all communication)

• Example, fat-tree topologies: 
provide full bisection bandwidth

• Lower bounds and hard trade-offs, 
e.g., degree vs diameter

5

• Demand-Aware Network (DAN)

– Optimized toward the workload it 
serves (e.g., route length)

– Statically or even dynamically

TOR switches

Mirrors

Lasers

DANs

Often
hybrid



Why…?
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ProjecToR @ SIGCOMM 2016

Growing Traffic 
and Cost…

Aggregate server traffic in 
Google’s datacenter fleet

Source: Jupiter Rising. SIGCOMM 2015.

… But Much 
Structure!

Spatial (sparse!) and 
temporal locality 

Inside the Social Network’s 
(Datacenter) Network @ 

SIGCOMM 2015

Facebook

Microsoft

Understanding Data Center Traffic 
Characteristics @ WREN 2009

Benson et al.

Batch processing, web services, 
distributed ML, …: data-centric
applications are distributed and 

interconnecting network is critical
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Aggregate server traffic in 
Google’s datacenter fleet

Source: Jupiter Rising. SIGCOMM 2015.

… But Much 
Structure!

Spatial (sparse!) and 
temporal locality 

Inside the Social Network’s 
(Datacenter) Network @ 

SIGCOMM 2015

Facebook

Microsoft

Understanding Data Center Traffic 
Characteristics @ WREN 2009

Benson et al.

Batch processing, web services, 
distributed ML, …: data-centric
applications are distributed and 

interconnecting network is critical

„DANs can provide same performance as demand-
oblivious networks at 25-40% lower costs.“ Firefly, 

SIGCOMM CCR, 2014.
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Fun Fact

Data from Google Scholar



Roadmap

000

• Motivation: Demand-Aware Networks

• Principles of Static Demand-Aware Network Designs

• Principles of Dynamic Demand-Aware Network Designs

• Principles of Decentralized Approaches



Demand matrix: joint distribution

So
u

rc
es

Destinations

… of constant degree (scalability)

design

A “Simple” DAN Design Problem
Input: Workload Output: DAN
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So
u

rc
es

Destinations

design

Makes sense to add link!

Demand matrix: joint distribution … of constant degree (scalability)

A “Simple” DAN Design Problem

Much from 4 to 5.

8

Input: Workload Output: DAN



Input: Workload Output: DAN

So
u

rc
es

Destinations

design

Demand matrix: joint distribution … of constant degree (scalability)

A “Simple” DAN Design Problem

1 communicates to many.

Bounded degree: route 
to 7 indirectly.
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Demand matrix: joint distribution

So
u

rc
es

Destinations

design

4 and 6 don’t 
communicate…

… but “extra” link still
makes sense: not a 

subgraph.

… of constant degree (scalability)

A “Simple” DAN Design Problem

8

Input: Workload Output: DAN



Case Study: DAN for Short Routes

Shorter routes: smaller bandwidth
footprint, lower latency, less energy, …
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Bounded degree
Δ

D[𝐩 𝐢, 𝐣 ]: joint distribution, Δ N: DAN

Expected Path Length (EPL): 
Demand-weighted route length

EPL D,N =  
(u,v)∈D

p u, v ∙ dN(u, v)

=3X

Y

More Formally: DAN Design Problem
Input: Output:

Path length on DAN N.

Frequency 10

Objective:



Some Examples

• DANs of Δ = 3:
– E.g., complete binary tree

– dN(u,v) ≤ 2 log n

– Can we do better than log n?

• DANs of Δ = 2:
– E.g., set of lines and cycles

11



How hard is it to design a DAN?
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DAN design can be NP-hard

• Example Δ = 2: A Minimum Linear 
Arrangement (MLA) problem
– A “Virtual Network Embedding Problem”, VNEP

– Minimize sum of lengths of virtual edges

Embedding?

13



DAN design can be NP-hard

Bad!

e.g., 
cost 5

13
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DAN design can be NP-hard

Better!

e.g., 
cost 1
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• Example Δ = 2: A Minimum Linear 
Arrangement (MLA) problem
– A “Virtual Network Embedding Problem”, VNEP

– Minimize sum of lengths of virtual edges



DAN design can be NP-hard

A new knob for 
optimization!

e.g., 
cost 1

• But what about > 2? Embedding
problem still hard, but we have an 
additional degree of freedom:

Do topological flexibilities make problem
easier or harder?! 13

• Example Δ = 2: A Minimum Linear 
Arrangement (MLA) problem
– A “Virtual Network Embedding Problem”, VNEP

– Minimize sum of lengths of virtual edges



So: How useful are DANs? 

As always in computer science (e.g., also in coding, in self-
adjusting datastructures, etc.): it depends! 

14



Expected Path Length in 
Traditional Networks?
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Each network with n nodes and max degree Δ >2 
must have a diameter of at least log(n)/log(Δ-1)-1.

Theorem (Traditional Networks):

Proof.

Example: Clos, Bcube, Xpander.

1 Δ Δ(Δ-1)

In k steps, reach at most 1+ Σ Δ(Δ -1)i

Constant-degree networks have at least logarithmic diameter.



Can DANs do better? 
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Can DANs do better? 

17

In general not really, e.g. in all-to-all communication
(clique): logarithmic diameter unavoidable.



Example 2: high-degree but skewed demand

• If sufficiently skewed: constant-degree DAN 
can serve it at cost O(1)

But sometimes, DANs can be much better!

Example 1: low-degree demand

• Already low degree: degree-4 DAN 
can serve this at cost 1 .

18



So on what does it depend?
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So on what does it depend?

We argue: on the

“entropy” of the demand!

20

?



„Coming to Wroclaw?“

00110101…

21

if demand arbitrary and unknown

log diameter

log # bits / symbol

An Analogy to Coding
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entropy?

DAN!
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if demand known and fixed
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Dynamic DANs: 
Aka. Self-Adjusting 
Networks (SANs)! 
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if demand unknown but reconfigurable



An Analogy to Coding 011…

21

„Coming to Wroclaw?“

if demand arbitrary and unknown

log diameter

log # bits / symbol

DAN! SAN!

Dynamic DANs: 
Aka. Self-Adjusting 
Networks (SANs)! 

Can exploit
spatial locality!

Additionally exploit
temporal locality!

if demand known and fixed if demand unknown but reconfigurable



An Analogy to Coding 011…

21

„Coming to Wroclaw?“

if demand arbitrary and unknown

log diameter

log # bits / symbol

DAN! SAN!

Dynamic DANs: 
Aka. Self-Adjusting 
Networks (SANs)! 

Can exploit
spatial locality!

Additionally exploit
temporal locality!

if demand known and fixed if demand unknown but reconfigurable



Analogous to Datastructures: Oblivious…

• Traditional, fixed BSTs do not rely on any
assumptions on the demand

• Optimize for the worst-case

• Example demand: 

1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

• Items stored at O(log n) from the root, 
uniformly and independently of their
frequency

many many many many
Many requests 

for leaf 1…
… then for 

leaf 3…

many

22

Corresponds to 
max possible demand!



• Demand-aware fixed BSTs can take
advantage of spatial locality of the
demand

• E.g.: place frequently accessed elements
close to the root

• E.g., Knuth/Mehlhorn/Tarjan trees

• Recall example demand:       
1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)
– Amortized cost O(loglog n)

Amortized cost corresponds 
to empirical entropy of demand!

loglog n

… Demand-Aware …

23



• Demand-aware reconfigurable BSTs 
can additionally take advantage of
temporal locality

• By moving accessed element to the
root: amortized cost is constant, i.e., 
O(1)
– Recall example demand:       

1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

… Self-Adjusting!

24



Datastructures

Oblivious Demand-Aware Self-Adjusting

Lookup 

O(log n)

Exploit spatial locality: 
empirical entropy O(loglog n)

Exploit temporal locality as well:

O(1)

25



Analogously for Networks

Oblivious DAN SAN

Const degree

(e.g., expander): 

route lengths O(log n)

Exploit spatial locality Exploit temporal locality as well

000
Avin, S.: Toward Demand-Aware Networking: A Theory 

for Self-Adjusting Networks. SIGCOMM CCR 2018.



Limitations of (Static) DANs:
Entropy-Based Lower Bounds?

26

Indeed!



Lower Bound Idea: 
Leverage Coding or Datastructure!

So
u

rc
es

Destinations
• DAN just for a single (source) node 1: cannot do 

better than Δ-ary Huffman tree for its 
destinations [0,1/65,1/13,1/65,1/65,2/65,3/65]
– resp. Knuth/Mehlhorn/Tarjan tree if search property 

required

• How good can this tree be?

• Entropy lower bound on EPL known for binary 
trees, e.g. Mehlhorn 1975 for BST

27
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An optimal “ego-tree“ 
for this source!

• DAN just for a single (source) node 1: cannot do 
better than Δ-ary Huffman tree for its 
destinations [0,1/65,1/13,1/65,1/65,2/65,3/65]
– resp. Knuth/Mehlhorn/Tarjan tree if search property 

required
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• Entropy lower bound on EPL known for binary 
trees, e.g. Mehlhorn 1975 for BST



Lower Bound Idea: 
Leverage Coding or Datastructure!

So
u

rc
es

Destinations

27

An optimal “ego-tree“ 
for this source!

• DAN just for a single (source) node 1: cannot do 
better than Δ-ary Huffman tree for its 
destinations [0,1/65,1/13,1/65,1/65,2/65,3/65]
– resp. Knuth/Mehlhorn/Tarjan tree if search property 

required

• How good can this tree be?

• Entropy lower bound on EPL known for binary 
trees, e.g. Mehlhorn 1975 for BST

So: what is the entropy of the
whole demand?



Lower Bound & Entropy of the Demand

• Proof  idea (EPL=Ω(HΔ(Y|X))): 

• Compute ego-tree for each source 
node

• Take union of all ego-trees

• Violates degree restriction but valid 
lower bound

sources destinations

28

entropy



Do this in both dimensions:

Ω(HΔ(X|Y)) 

D

EPL ≥ Ω(max{HΔ(Y|X), HΔ(X|Y)}) 

Ω(HΔ(Y|X)) 

Lower Bound & Entropy of the Demand: 
Sources + Destinations

29



Can DANs Match The Entropy Speed Limit?
Upper Bounds

30



Ego-Trees Revisited

• Recall: ego-tree
– optimal tree for a row

(= given source)

D[i]
TiΔ

31
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Can we merge the trees without
distortion and keep degree low?
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Ego-Trees Revisited

• Recall: ego-tree
– optimal tree for a row

(= given source)

D[i]
TiΔ

Can we merge the trees without
distortion and keep degree low?

For sparse demands yes: 
enough low-degree nodes which can 

serve as “helper nodes“!

31



• Find low degree nodes

– Half of the nodes of lowest degree: “below 
twice average degree”

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Find high degree nodes having only low 
degree neighbors (e.g., 15 but not 12):
– Create optimal binary tree with low degree 

neighbors

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2): 

one is enough so distanced increased by +1

• Now high degree nodes have only low 
degree neighbors: make tree again 32

DAN for Sparse Demand

Low: can 
be helper

Low: can 
be helper
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• Find low degree nodes

– Half of the nodes of lowest degree: “below 
twice average degree”

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2): 

one is enough so distanced increased by +1

– Create optimal binary tree with low degree 
neighbors

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2): 

one is enough so distanced increased by +1

• Now high degree nodes have only low 
degree neighbors: make tree again

32

DAN for Sparse Demand

High and has high 
neighbor (e.g., 14)

High-high edge



• Find low degree nodes

– Half of the nodes of lowest degree: “below 
twice average degree”

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2): 

one is enough so distanced increased by +1

• Now high degree nodes have only low 
degree neighbors: make tree
– Create optimal binary tree with low degree 

neighbors

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2): 

one is enough so distanced increased by +1

32

DAN for Sparse Demand

Only low 
neighbors

15

2

3 11
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• Find low degree nodes

– Half of the nodes of lowest degree: “below 
twice average degree”

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2): 

one is enough so distanced increased by +1

• Now high degree nodes have only low 
degree neighbors: make tree
– Create optimal binary tree with low degree 

neighbors

• Put the low-low edges and the binary tree
into DAN and remove from demand

• Mark high-high edges
– Put (any) low degree nodes in between (e.g., 1 or 2): 

one is enough so distanced increased by +1

32

DAN for Sparse Demand

Only low 
neighbors

Theorem [Asymptotic Optimality]: Helper node does not participate 
in many trees, so constant degree, and constant distortion.



Remark: The Problem is 
Related To Spanners

• Sparse, distance-preserving (low-distortion) spanners

• But:
– Spanners aim at low distortion among all pairs; in our case, we are 

only interested in the local distortion, 1-hop communication neighbors

– We allow auxiliary edges (not a subgraph): similar to geometric 
spanners

– We require constant degree

33



Yet: We can leverage the connection to 
spanners sometimes!

34

Theorem: If request distribution D is regular and uniform, and if we can find a constant 
distortion, linear sized (i.e., constant, sparse) spanner for this request graph: then we can 

design a constant degree DAN providing an optimal EPL (i.e., O(H(X|Y)+H(Y|X)).

r-regular and uniform
demand:

Sparse, irregular 
(constant) spanner:

Constant degree optimal
DAN (EPL at most log r):

subgraph! auxiliiary edges



Yet: We can leverage the connection to 
spanners sometimes!

34

Theorem: If request distribution D is regular and uniform, and if we can find a constant 
distortion, linear sized (i.e., constant, sparse) spanner for this request graph: then we can 

design a constant degree DAN providing an optimal EPL (i.e., O(H(X|Y)+H(Y|X)).

subgraph! auxiliiary edges

Optimal: in r-regular graphs, 
conditional entropy is log r.

r-regular and uniform
demand:

Sparse, irregular 
(constant) spanner:

Constant degree optimal
DAN (EPL at most log r):



Proof Idea

• Degree reduction again, this time from sparse spanner (before: 
from sparse demand graph)

• Optimal DAN designs for
– Hypercubes (with n log n edges)

– Chordal graphs

– Trivial: graphs with polynomial degree (dense graphs)

– Graphs of locally bounded doubling dimension

35

Has sparse 3-spanner.

Has sparse O(1)-spanner.

Corollaries

We also know
some more algos, 

e.g., for BSTs.



Another Example: Demands of Locally-
Bounded Doubling Dimension

• LDD: GD has a Locally-bounded 
Doubling Dimension (LDD) iff all 2-
hop neighbors are covered by 1-hop 
neighbors of just 𝝀 nodes
– Note: care only about 2-neighborhood

• Formally, B(u, 2)⊆  i=1
λ B(vi, 1)

• Challenge: can be of high degree! 67

We only consider 2 hops!

Nodes 1,2,3 cover 2-hop
neighborhood of u.



Lemma: There exists a sparse 9-(subgraph)spanner for LDD. 

Def. (ε-net): A subset V’ of V is a ε-net for a graph G = (V,E) if 
– V’ sufficiently “independent”: for every  u, v ∈ V’, dG(u, v) > ε

– “dominating” V: for each w ∈ V , ∃ at least one u ∈ V’ such that, dG(u,w) ≤ ε

DAN for Locally-Bounded Doubling Dimension

68

This implies optimal DAN: still 
focus on regular and uniform!

37



Simple algorithm:  

1. Find a 2-net 

69

9-Spanner for LDD (= optimal DAN)

Easy: Select nodes into 2-net 
one-by-one in decreasing 

(remaining) degrees, remove
2-neighborhood. Iterate.

2-net (clusterhead)

2-net (clusterhead)

38



Simple algorithm:  

1. Find a 2-net 

2. Add nodes to one of the 
closest 2-net nodes

70

9-Spanner for LDD (= optimal DAN)

Assign: at most 2 hops.

Union of these shortest paths:
a forest. Add to spanner.

38



Simple algorithm:  

1. Find a 2-net 

2. Add nodes to one of the 
closest 2-net nodes

3. Join two clusters if there are 
edges in between

71

9-Spanner for LDD (= optimal DAN)

Connect forests (single „connecting 
edge“): add to spanner.

38



Simple algorithm:  

1. Find a 2-net 

2. Add nodes to one of the 
closest 2-net nodes

3. Join two clusters if there are 
edges in between

72

9-Spanner for LDD (= optimal DAN)

Sparse: Spanner only includes forest (sparse) plus 
“connecting edges”: but since in a locally doubling 
dimension graph the number of cluster heads at 
distance 5 is bounded, only a small number of 
neighboring clusters will communicate.

Distortion 9: Short detour via
clusterheads: u,ch(u),x,y,ch(v),v

38



Further Reading

39

Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.

31st International Symposium on Distributed Computing (DISC), 
Vienna, Austria, October 2017.



Roadmap

000

• Motivation: Demand-Aware Networks

• Principles of Static Demand-Aware Network Designs

• Principles of Dynamic Demand-Aware Network Designs

• Principles of Decentralized Approaches



Objectives and Metrics for Dynamic DANs, i.e. SANs?

40



A Cost-Benefit Tradeoff

Short routes

High reconfiguration cost

Low reconfiguration cost

Long routes

Basic question:

How often to reconfigure?

Tradeoff

Input for Dynamic DANs 

A sequence σ = (u1,v1), (u2,v2), (u3,v3)…. 

chosen arbitrarily

Chosen i.i.d. from initially
unknown fixed distribution



A Taxonomy: Reconfigurable Networks

Demand-Aware

Reconfigurable

Offline Online

Awareness

Topology

Input

AlgorithmOFF ON

Revealed over time:
learning or online

algorithm

Static Optimality:

“Not worse than static 
which knows demand 

ahead of time!”

ρ = Cost(ON)/Cost(STAT*)  
is constant.

Property

42

Static
Optimality



Static
Optimality

A Taxonomy: Reconfigurable Networks

Demand-Aware

Reconfigurable

Offline Online

Awareness

Topology

Input

AlgorithmOFF ON

Revealed over time:
learning or online

algorithm

Static Optimality:

“Not worse than static 
which knows demand 

ahead of time!”

ρ = Cost(ON)/Cost(STAT*)  
is constant.

Property

42

Note: may be <<1. ON has 
advantage of adjusting, but 

the disadvantage of not knowing the 
workload. E.g. if much temporal locality.



A Taxonomy: Reconfigurable Networks

Demand-Aware

Reconfigurable

Offline Online

Awareness

Topology

Input

AlgorithmOFF ON

Revealed over time:
learning or online

algorithm

Static
Optimality

Dynamic Optimality:

“No worse than an  
offline algorithm which
knows the sequence!”

ρ = Cost(ON)/Cost(OFF*)  
is constant.

Property
Dynamic

Optimality

Always >=1.

42



How to Design SANs?

Inspiration from self-adjusting 
datastructures again!

43



• A Binary Search Tree (BST)

• Inspired by “move-to-front”: move to root!

• Self-adjustment: zig, zigzig, zigzag
– Maintains search property

• Many nice properties
– Static optimality, working set, (static,dynamic) 

fingers, …

Recall: Splay Tree
On access 4

1 4

2

5

7

2

4

5

7

1 7

2

4

5

1

zag@2

zig@5

root!

44



A Simple Idea: 
Generalize Splay Tree To SplayNet

Splay Tree

1 4

2

5

7

1 4

2

5

7comm.

SplayNet

vs

BST is nice for networks:
local (greedy) search!

45



Splay Tree

1 4

2

5

7

1 4

2

5

7comm.

SplayNet

vs

But how?

45

A Simple Idea: 
Generalize Splay Tree To SplayNet



SplayNet: A Simple Idea

Splay Tree SplayNet

x

@t: access x

x
@t+1

x

@t: comm
(x,y)

@t+1

y

LCA

y

x
splay

double-
splay

46



Example

t=1 t=2

1 4

2

5

7

4

7

5

2

1

adjust

Challenges: How to minimize reconfigurations?
How to keep network locally routable?

New connection!

47



Properties of SplayNets

• Statically optimal if demand comes from a 
product distribution
– Product distribution: entropy equals conditional 

entropy, i.e., H(X)+H(Y)=H(X|Y)+H(X|Y)

• Converges to optimal static topology in
– Multicast scenario: requests come from a BST as

well

– Cluster scenario: communication only within
interval

– Laminated scenario : communication is „non-
crossing matching“

Multicast 
Scenario

Cluster

Scenario

Laminated

Scenario

I

I

48



Remark: Static SplayNet

I=[1..8]

23

25

21

4

1 7

v 8

10

18

19 22

I‘=[9..25]

Theorem: Optimal static SplayNet can be computed 
in polynomial-time (dynamic programming)

– Unlike unordered tree?

49



Further Reading

50

SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard 

Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016.



Better Idea: Back to Ego-Trees!

D[i] TiΔ

i
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Better Idea: Back to Ego-Trees!

D[i]

Idea: let each
node adjust its

ego-tree!

TiΔ

i
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A Balanced Self-Adjusting Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s
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A Balanced Self-Adjusting Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s

A useful dynamic property: Most-Recently Used (MRU)!
Similar to Working Set Property: more recent communication Partners closer to source. 

Equivalent: structure
fix, moving nodes, 

not edgesUnordered!
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A Balanced Self-Adjusting Tree:
Push-Down Tree

• Push-down tree: a self-adjusting
complete tree

• Dynamically optimal

• Not ordered: requires a map

s

t

s communicates to u

Then: promote u to available root, and
t to u: at original depth!

v

r

s

push-down up to
depth(u)

u
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Remarks

• Unfortunately, alternating push-down 
does not maintain MRU (working set) 
property

• Tree can degrade, e.g.: sequence of 
requests from level 4,1,2,1,3,1,4,1

s

s1

s2 s3

s4 s5

s6 s7

s8 s9
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Solution: Random Walk

s

t

s comm. to u

At least maintains approximate
working set / MRU!

v

r

s

rotate push-
down

u

s

t

v

r

s

random
walk!

u

s comm. to u
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Further Reading
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Push-Down Trees: Optimal Self-Adjusting Complete Trees
Chen Avin, Kaushik Mondal, and Stefan Schmid.

ArXiv Technical Report, July 2018.



Roadmap

000

• Motivation: Demand-Aware Networks

• Principles of Static Demand-Aware Network Designs

• Principles of Dynamic Demand-Aware Network Designs

• Principles of Decentralized Approaches



A “Simple” Decentralized Solution: 
Distributed SplayNet (DiSplayNet)

• SplayNet attractive: ordered BST supports local routing
– Nodes maintain three ranges: interval of left subtree, right

subtree, upward

• If communicate (frequently): double-splay toward LCA

• Challenge: concurrency! 
– Access Lemma of splay trees no longer works: potential function

does not „telescope“ anymore: a concurrently rising node may
push down another rising node again

19

4
15

22

18
1 7

3
12

8

10

LCA

SplayNet
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DiSplayNet: Challenges

• DiSplayNet: Rotations (zig,zigzig,zigzag) 
are concurrent

• To avoid conflict: distributed
computation of independent clusters

• Still challenging:

Sequential SplayNet: requests one after another DiSplayNet: Analysis more challenging: potential function sum 
no longer telescopic. One request can “push-down” another.



DiSplayNet: Challenges

Telescopic: max
potential drop

Sequential SplayNet: requests one after another DiSplayNet: Analysis more challenging: potential function sum 
no longer telescopic. One request can “push-down” another.

• DiSplayNet: Rotations (zig,zigzig,zigzag) 
are concurrent

• To avoid conflict: distributed
computation of independent clusters

• Still challenging:



Further Reading

Brief Announcement: Distributed SplayNets
Bruna Peres, Olga Goussevskaia, Stefan Schmid, and Chen Avin.

31st International Symposium on Distributed Computing (DISC), Vienna, 
Austria, October 2017.
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Demand-Oblivious

Fixed

Unknown

Bisection

Demand-Aware

Fixed Reconfigurable

Sequence Generator Offline Online

Awareness

Topology

Input

Static
Optimality

AlgorithmOFF ON

PropertyDiameter

Resiliency

Dynamic
Optimality

Learning
Optimality

STAT GENOBL

Uncharted Landscape! 000
Toward Demand-Aware Networking: A Theory for 

Self-Adjusting Networks. SIGCOMM CCR, 2018.
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Conclusion

• Reconfigurable switches: Yoga for Networks? 

• New metrics needed: e.g., entropy?

• New algorithms needed: static, offline and online!

• Let’s chat!

Thank you! 
Question?
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