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The power of interaction

The Bulletin of the EATCS
On logic and generative Al

Yuri Gurevich and Andreas Blass
University of Michigan in Ann Arbor, MI, USA

1 think the most beautiful thing about
deep learning is that it actually works.

—Ilya Sutskever [13. 29:46]

§1 Thinking fast and slow’

Q: 1 just learned that Daniel Kahneman, Nobel laureate in economics and the author
of “Thinking, fast and slow™ [7], passed away on March 27, 2024. | heard a lot about
this book but have never read it. What did he mean by thinking fast and thinking slow?

A: Daniel Kahneman and Amos Tversky discovered that human thinking is driven by
two distinet systems, System 1 and System 2.

System | supports fast thinking. It “of ically and quickly, with little or
no effort and no sense of voluntary control ... The capabilities of System 1 include
innate skills that we share with other animals” [7, pp. 41-43]. System 1 is good at

detecting patterns and reading situations on the fly. It allows us to make snap

ON A MEASURE OF INTELLIGENCE

Yuri Gurevich

The measure of intelligence is the ability to change.
— Albert Einstein'

Abstract

The Fall 2024 column is a little discussion on intelligence, measuring
intelligence, and related issues, provoked by a fascinating must-read article “On
the measure of intelligence™ by Frangois Chollet. The discussion includes a
modicum of critique of the article.

§1 Cybernetics vs. Al and podcasts vs. reading

Quisani® (walking in): What are you reading?

Author: An article “On the measure of intelligence” by Frangois Chollet [3].

Q: Is it about psychology?

A: Itis mostly about Al Chollet is a prominent figure in AL

Q: We spoke about Al last spring. But you didn’t seem to be interested in Al before
that.

A: This is largely correct, though I read Norbert Wiener’s “Cybernetics™ [18], when it
was translated to Russian in 1968, and was taken with it. For a while I tried to follow
cybemetics developments, at least in the USSR.

WHAT ARE KETS?

Yuri Gurevich Andreas Blass
Computer Science & Engineering Mathematics
University of Michigan University of Michigan
Abstract

According to Dirac’s bra-ket notation, in an inner-product space, the inner
product {x|v) of vectors x,y can be viewed as an application of the bra (] 0
the ket |y}, Here (x| is the linear functional |y} -+ ¢ x|y} and |y} is the vectar y.
But often — though not always — there are advantages in seeing |} as the function
a +» a - y where a ranges over the scalars. For example, the outer produet [y x|
becomes simply the composition |y o {x|. It would be most convenient to view
kets sometimes as vectors and sometimes as functions, depending on the context.
This turns out to be possible.

‘While the bra-ket notation arose in quantum mechanics, milnme presupposes.
no familiarity with quantum mechanics.

1 The question

Q': Gentlemen, I have a question for you. But first I need to motivate it and explain
where 1 am coming from.

The question is related to the so-called inner-product spaces which are vector spaces
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Self-Adjusting Topologies

Stefan Schmid

Yuri on Alan Turing’s 100t birthday:

>

Digital

Steue Jiivcher Jeitung 2. Ant

Geheimgesprache zweier Griindervater

In wenigen Tagen jahrt sich Alan Turings Geburtstag zum hundertsten
Mal. Er hat, von seinen Zeitgenossen kaum beachtet, die Informatik

grundlegend gepragt.

e e o [:[ Merken l’g} Drucken Q Teilen

Alan Turing in einer Ausstellung im Heinz Nixdorf Museumsforum (HNF) in Paderborn im

Januar (Bild: Keystone)
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Check out our YouTube interviews
on Reconfigurable Datacenter Networks:

N

Prof. Chen Avin - Prof. Stefan Schmid
(BGU, Israel) W (TU Berlin, Germany

=
| ISRAEL

( l SCIENCE

AP/ Founpation

Revolutionizing Datacenter Networks via Reconfigurable Topologies
Chen Avin and Stefan Schmid.

Communications of the ACM (CACM), 2025.

Watch here: https://www.youtube.com/@self-adjusting-networks-course



https://schmiste.github.io/cacm25.pdf
https://www.youtube.com/@self-adjusting-networks-course
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Datacenters (“hyper-scale”)

Interconnecting networks:
a critical infrastructure
of our digital society.

Traffic
Growth

Source: Facebook



>

>

>

Network equipment reaching

capacity limits
— Transistor density rates stalling
— “End of Moorefs Law in networking” [1]

Hence: more equipment,
larger networks

Resource intensive and:
inefficient

Gbps/€

[1] Source: Microsoft, 2019



How to interconnect?

(e]0]

o0

(e]o]

(o]e]

o] o)

00

o0

oo




Root Cause

Fixed and Demand-Oblivious Topology
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Many flavors,
but in common:
fixed and

oblivious to
actual demand.




Root Cause

Fixed and Demand-Oblivious Topology

.............
............
ooooooooooooo

Many flavors,
but in common:
fixed and
oblivious to
actual demand.

Highway which ignores

actual traffic:

frustrating!
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Our Vision

Flexible and Demand-Aware Topologies

123 456 78

new
demand:

Self-Adjusting
Networks

00 N OV s wWwN

e.g.,
mirrors

new flexible
\ interconnect




sources

Empirical studies:

traffic matrices sparse and skewed

Facebook

destinations
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Traffic 1s also clustered:

Small Stable Clusters

reordering based on
bicluster structure

Opportunity: exploit with little reconfigurations!

Forster et al., Analyzing the Communication Clusters
in Datacenters. WWW 2023



Sounds Crazy?
Emerging Enabling
Technology.

Photonics

H2020:
“Photonics one of only five
key enabling technologies
for future prosperity.”

US National Research Council:
“Photons are the new
Electrons.”



>

Spectrum of prototypes

— Different sizes, different reconfiguration times
— From our last year’s ACM SIGCOMM workshop OptSys

\ 4

v

v

Prototype 1

Prototype 2

Prototype 3



-» Optical Circuit Switch rapid adaption of physical layer

— Based on rotating mirrors

Fixed
Mirror

/

« X

Rotate Mirror 8§

Optical Circuit Switch

By Nathan Farrington, SIGCOMM 2010



-> Depending on wavelength, forwarded differently
-» Optical switch is passive

Wavelength

selector

Electrical switch Optical switch
with tunable laser Passive

Ballani et al., Sirius, ACM SIGCOMM 2020.



Another Example

Tunable Lasers

-> Depending on wavelength, forwarded differently
-» Optical switch is passive

Wavelength

selector

Electrical switch Optical switch
with tunable laser Passive

Ballani et al., Sirius, ACM SIGCOMM 2020.



Another Example

Tunable Lasers

-> Depending on wavelength, forwarded differently
-» Optical switch is passive

Wavelength

selector

Electrical switch Optical switch
with tunable laser Passive

Ballani et al., Sirius, ACM SIGCOMM 2020.



Flexibility

Structure

Self-Adjusting
Networks

Now is the time!

Efficiency
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Golden Gate Zipper



Everywhere, but mainly
in software

Algorithmic trading

Our focus:
in hardware

]
R d t
ecommender systems 3| e
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Neural networks
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-» Traffic matrices of two different distributed
ML applications
—~ GPU-to-GPU
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-» Traffic matrices of two different distributed
ML applications
—~ GPU-to-GPU

More uniform More structure

11



-> Two different ways to generate same traffic matrix:
— Same non-temporal structure

-» Which one has more structure?

el
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Time

LR L

— 0 500 1000 1500
Time

12



-> Two different ways to generate same traffic matrix:

— Same non-temporal structure

-» Which one has more structure?
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Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”

Original Randomize rows Uniform

»

Increasing complexity (systematically randomized) >

< More structure (compresses better)
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Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”

Original Randomize rows Uniform
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Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”

Original Randomize rows Uniform

EEI» »E=EW'
» :(_G“\QO(‘ 4 e (\0‘\
0\1 (A ?\ e“\0
Can be used to define

Shuffle

g
2-dimensional

Compress U U complexity map!
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| |

Difference in size Difference in size
(entropy)? (entropy)?




uniform

No structure

non-temporal complexity

skewed

skewed

temporal complexity
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s EEHUEUES




non-temporal complexity

bursty uniform
pF
CNS
Multi
Grnid
O
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temporal complexity
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On the Complexity of Traffic Traces and Implications

CHEN AVIN, School of Electrical and Computer Engineering, Ben Gurion University of the Negev, Israel
MANYA GHOBADI, Computer Science and Artificial Intelligence Laboratory, MIT, USA

CHEN GRINER, School of Electrical and Computer Engineering, Ben Gurion University of the Negev,
Israel

STEFAN SCHMID, Faculty of Computer Science, University of Vienna, Austria

This paper presents a systematic approach to identify and quantify the types of structures featured by packet
traces in communication networks. Our approach leverages an information-theoretic methodology, based on
iterative randomization and compression of the packet trace, which allows us to systematically remove and
measure dimensions of structure in the trace. In particular, we introduce the notion of trace complexity which
approximates the entropy rate of a packet trace. Considering several real-world traces, we show that trace
complexity can provide unique insights into the characteristics of various applications. Based on our approach,
we also propose a traffic generator model able to produce a synthetic trace that matches the complexity levels
of its corresponding real-world trace. Using a case study in the context of datacenters, we show that insights
into the structure of packet traces can lead to improved demand-aware network designs: datacenter topologies
that are optimized for specific traffic patterns.

CCS Concepts: « Networks — Network performance evaluation; Network algorithms; Data center
networks; - Mathematics of computing — Information theory;

Additional Key Words and Phrases: trace complexity, self-adjusting networks, entropy rate, compress, com-
plexity map, data centers

ACM Reference Format:

Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. 2020. On the Complexity of Traffic Traces and
Implications. Proc. ACM Meas. Anal. Comput. Syst. 4, 1, Article 20 (March 2020), 29 pages. https://doi.org/10.
1145/3379486

1 INTRODUCTION

Packet traces collected from networking applications, such as datacenter traffic, have been shown
to feature much structure: datacenter traffic matrices are sparse and skewed [16, 39], exhibit




A first insight: entropy of the demand.

15



Traditional BST




Traditional BST Demand-aware BST Self-adjusting BST

More structure: improved access cost >




Traditional BST Demand-aware BST Self-adjusting BST
(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)
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O
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More structure: improved access cost / shorter codes >
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Similar benefits? >
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Traditional BST Demand-aware BST Self-adjusting BST

(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST;
O

BSTy+1
©)]

Reduced expected route lengths! >

Generalize methodology:
... and transfer
entropy bounds and
algorithms of data-
structures to networks.

First result:
Demand-aware networks
of asymptotically
optimal route lengths.
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~» DAN for A=3

— E.g., complete binary
tree would be log n

— Can we do better?
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-> DAN for A=2

— Set of lines and cycles ‘ ' ‘ ‘ ‘ ‘




-> DAN for A=3

— E.g., complete binary
tree would be log n

— Can we do better?
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-> DAN for A=2
— Set of lines and cycles




Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

O O0000




Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

cost 5
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Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

cost 1

666666




Example A=2: A Minium Linear
Arrangement (MLA) Problem

— Minimizes sum of virtual
edges

MLA is NP-hard
— .. and so 1is our problem!

O-0-0-000

\
\
\
\
\
\
\
\
\




Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

MLA is NP-hard
— .. and so 1is our problem!

But what about A>2?

Ot

— Embedding problem still hard
— But we have a new degree of

freedom!



Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

MLA is NP-hard
— .. and so 1is our problem!

But what about A>2?

Ot

— Embedding problem still hard
— But we have a new degree of

freedom!



Destinations
1 2 3 4 5 6 7

Sources

Huffman tree:
“ego-tree”
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-> Idea for algorithm:
— union of trees




-> Idea for algorithm:

— union of trees
— reduce degree

— but keep distances
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-> Idea for algorithm:
— union of trees
— reduce degree
— but keep distances

~> Ok for sparse demands

— not everyone gets tree
— helper nodes

>
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-> Idea for algorithm:

— union of trees
— reduce degree
— but keep distances

~> Ok for sparse demands

— not everyone gets tree
— helper nodes
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Demand graph: Demand-aware network:

Ego-trees for
large nodes
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-» So far: tip of the iceberg

-» Many challenges
— Demand-aware graphs for dense matrices?
— Online competitive algorithms?
— Scalable control (e.g., Google Jupiter)
— Impact on routing, congestion control,
buffer management?







Diverse topology components:
— demand-oblivious and
demand-aware

Demand- Demand-
oblivious aware
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Diverse topology components:

— demand-oblivious and
demand-aware

— static vs dynamic

Demand- Demand-
oblivious aware

Static



Reality: Tech Diversity

Diverse topology components:

— demand-oblivious and
demand-aware

— static vs dynamic

Demand-
oblivious

Dynamic

(’Ve.g., RotorNet )

(SIGCOMM‘17),
Sirius: MSR
(SIGCOMM*20),
Mars

\_ (SIGMETRICS23)

e.g., Helios
(SIGCOMM“10),
ProjecToR
(SIGCOMM“16),
SplayNet (ToN€16)

\
e.g., Clos
(SIGCOMM 08),
Slim Fly
(SC€14), Xpander
(SIGCOMM‘17)

)

Static

Demand-
aware



Reality: Tech Diversity

Demand-
Aware

Dynamic
Diverse topology components:
— demand-oblivious and — ~N
demand-aware
— static vs dynamic Rotor
& N\
Demand-
oblivious
4 )
Static
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Demand-
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Diverse topology components:
— demand-oblivious and

demand-aware
— static vs dynamic

Demand-
oblivious

Dynamic
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Diverse topology components:
— demand-oblivious and

demand-aware
— static vs dynamic

As always in CS:
It depends..

Demand-
oblivious

Dynamic

Demand-
Aware

N\
Rotor
O\
\
Static
J
Static

Demand-
aware



Diverse patterns:

— Shuffling/Hadoop:
all-to-all

— All-reduce/ML: ring or

tree traffic patterns
— Elephant flows

— Query traffic: skewed
— Mice flows

— Control traffic: does not evolve
but has non-temporal structure

Diverse requirements:

— ML is bandwidth hungry,
small flows are latency-
sensitive

54
4
?

Shuffling
All-to-All

LL_,.LI Y

ML

Large flows

Delay
sensitive

]
Telemetry

/ control
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Delay Telemetry
sensitive / control
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Dynamic
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Demand-
Aware

Static
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Topology

Demand-
aware
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Shuffling

Dynamic

Demand-
Aware
Telemetry
sensitive / control
Demand- Demand-
oblivious aware
Demand
Static
Serving mice flows on demand-aware? Static

Topology
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Shuffling

Dynamic

Demand-
Aware
Delay Telemetry
sensitive / control
Demand- Demand-
oblivious aware
Demand
Static
Serving mice flows on demand-aware? Static

Bad idea! Latency tax.

Topology
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Serving elephant flows on static? Static
Bad idea! Bandwidth tax.
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Demand Matrix
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Demand Matrix

123 45686 78

u
i.-'
u

0 N OV AW N R

Metric: throughput
of a demand matrix..

X 0(T) =

. 1s the maximal scale
down factor by which
traffic is feasible.

111, 000 |
-ire]]

Throughput of network 6*:
worst case T



Throughput Analysis

Demand Matrix

123458678

“m

0 N OV AW N R

ar

expander-net | rotor-net | CERBERUS
BW-Tax v v X
LT-Tax X v v
o(T) Thm 2 Thm 3 Thm 5
0" 0.53 0.45 Open
Datamining 0.53 0.6 0.8 (+33%)
Permutation 0.53 0.45 ~ 1 (+88%)
Case Study 0.53 0.66 0.9 (+36%)

M

K K, Kq
static rotor demand-aware
switches switches switches

o

203 [go3| [zos| [zos| o3| et [gos| [zes
3 4 5 6 7 8

Worst demand matrix for static

and rotor: permutation. Best
case for demand-aware!
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-> Demand completion time: How long does
it take to serve a demand matrix?

1.0 r ’lf‘
i im g
B aal Rl
] 0.8¢ o |
g :
g 067 !
% 3 —0O— expander—net
B 041 =/~ rotor—net
g" i —{— Cerberus
g 027 -+ Optimal
0'07 ' L L 1 L L L 1 L L L 1 L L L 1 L L "
0.0 0.2 0.4 0.6 0.8 1.0

Data mining workload

-» Also useful in analysis: throughput can be computed more
easily via demand completion time.



