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CACM’25 (with Chen Avin)

Revolutionizing Datacenter Networks via Reconfigurable Topologies

Chen Avin and Stefan Schmid.

Communications of the ACM (CACM), 2025.

Watch here: https://www.youtube.com/@self-adjusting-networks-course

https://schmiste.github.io/cacm25.pdf
https://www.youtube.com/@self-adjusting-networks-course


A bit of context
Data-Centric Applications

1

Datacenters (“hyper-scale”)

Traffic
Growth
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Interconnecting networks:  

a critical infrastructure

of our digital society.

+network



The Problem
Huge Infrastructure, Inefficient Use

⇢ Network equipment reaching

capacity limits
⇀ Transistor density rates stalling

⇀ “End of Moore‘s Law in networking” [1]

⇢ Hence: more equipment, 

larger networks

⇢ Resource intensive and:

inefficient

Annoying for companies,

opportunity for researchers

[
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Root Cause
Fixed and Demand-Oblivious Topology
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How to interconnect?
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Many flavors, 

but in common: 

fixed and 

oblivious to 

actual demand.
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Root Cause
Fixed and Demand-Oblivious Topology

Highway which ignores 

actual traffic: 

frustrating!

Many flavors, 

but in common: 

fixed and 

oblivious to 

actual demand.
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Our Vision
Flexible and Demand-Aware Topologies
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Self-Adjusting

Networks

new
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new flexible
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Our Motivation
Much Structure in the Demand
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Our hypothesis: can 

be exploited.

Empirical studies: 

s
o
u
r
c
e
s

destinations

Facebook

s
o
u
r
c
e
s

destinations

Microsoft

traffic bursty over time

M
b
p
s

Facebook

Time (seconds)

traffic matrices sparse and skewed



Traffic is also clustered:

Small Stable Clusters

reordering based on
bicluster structure

Förster et al., Analyzing the Communication Clusters 
in Datacenters. WWW 2023

Opportunity: exploit with little reconfigurations!



Sounds Crazy? 
Emerging Enabling
Technology.

6

H2020: 

“Photonics one of only five

key enabling technologies

for future prosperity.”

US National Research Council: 

“Photons are the new

Electrons.”
Photonics



Enabler
Novel Reconfigurable Optical Switches
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⇢ Spectrum of prototypes
⇀ Different sizes, different reconfiguration times 

⇀ From our last year’s ACM SIGCOMM workshop OptSys

Prototype 1

Prototype 2

Prototype 3



Example
Optical Circuit Switch

⇢ Optical Circuit Switch rapid adaption of physical layer
⇀ Based on rotating mirrors

Optical Circuit Switch
By Nathan Farrington, SIGCOMM 2010

Lenses
Fixed
Mirror

Mirrors on Motors

Rotate Mirror



Another Example
Tunable Lasers 

Multi-
wavelength 

source

Wavelength
selector

⇢ Depending on wavelength, forwarded differently

⇢ Optical switch is passive

Ballani et al., Sirius, ACM SIGCOMM 2020.

Electrical switch

with tunable laser
Optical switch

Passive
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The Big Picture

8

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!

Our goal: Develop the 

theoretical foundations

of demand-aware, self-

adjusting networks.



Analogy

Golden Gate Zipper

5



Unique Position
Demand-Aware, Self-Adjusting Systems

9

Everywhere, but mainly 
in software

Our focus: 
in hardware

vs
Algorithmic trading

Neural networks

Recommender systems



Question 1:

How to Quantify 
such “Structure” 
in the Demand?

10
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vs
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Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

Systematically?

vsvs
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Trace Complexity
Information-Theoretic Approach 

“Shuffle&Compress”

Difference in size 
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size 
(entropy)?

Can be used to define 
2-dimensional 

complexity map! 



bursty uniform
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temporal complexity

Our Methodology

Complexity Map

14

No structure

bursty & skewed
skewed

Our approach: iterative 

randomization and 

compression of trace to 

identify dimensions of 

structure.
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DB

Web

HadMulti 
Grid

temporal complexity

14

Potential 

gain!

bursty & skewed
skewed

bursty uniform

NN

Different 

structures!

Our Methodology

Complexity Map

Our approach: iterative 

randomization and 

compression of trace to 

identify dimensions of 

structure.



Further Reading

ACM SIGMETRICS 2020



Question 2:

Given This Structure, 
What Can Be Achieved? 
Metrics and Algorithms?

15

A first insight: entropy of the demand.
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Insight:

Connection to 
Datastructures & Coding

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding) More than 

an analogy!

Reduced expected route lengths!

entropy
rate?

entropylog n

entropy
rate?

entropylog n

Generalize methodology:

... and transfer 

entropy bounds and 

algorithms of data-

structures to networks. 

First result: 

Demand-aware networks 

of asymptotically 

optimal route lengths. 
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Examples

⇢ DAN for △=3

⇀ E.g., complete binary

´ tree would be log n

⇀ Can we do better? 

⇢ DAN for △=2

⇀ Set of lines and cycles

How
hard?



Related Problem

Virtual Network 
Embedding Problem (VNEP)

Embedding?

Example △=2: A Minium Linear 

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual  

edges
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Related Problem

Virtual Network 
Embedding Problem (VNEP)

Example △=2: A Minium Linear 

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual  

edges

MLA is NP-hard

⇀ … and so is our problem!

But what about △>2?

⇀ Embedding problem still hard

⇀ But we have a new degree of

freedom!

Simplifies problem?!
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⇢ Idea for algorithm:
⇀ union of trees

⇀ reduce degree

⇀ but keep distances

⇢ Ok for sparse demands
⇀ not everyone gets tree 

⇀ helper nodes

Static

Entropy Upper Bound



Intuition of Algorithm

Demand graph: Demand-aware network:

Ego-trees for 

large nodes



ERL=Ω(HΔ(Y|X))

Entropy Lower Bound



Dynamic Algorithm

Dynamic



⇢ So far: tip of the iceberg

⇢ Many challenges
⇀ Demand-aware graphs for dense matrices?

⇀ Online competitive algorithms?

⇀ Scalable control (e.g., Google Jupiter)

⇀ Impact on routing, congestion control, 

buffer management?

Much Research Ahead



Thank you! Questions?



Reality: Tech Diversity

Demand-
oblivious

Demand-
aware

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic



Static

Demand-
oblivious

Demand-
aware

Dynamic

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Reality: Tech Diversity
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Static

Demand-
oblivious

Demand-
aware

Dynamic

e.g., RotorNet
(SIGCOMM‘17),
Sirius: MSR
(SIGCOMM‘20), 
Mars 
(SIGMETRICS‘23) 

e.g., Helios 
(SIGCOMM‘10), 
ProjecToR
(SIGCOMM‘16),
SplayNet (ToN‘16)

e.g., Clos
(SIGCOMM‘08),
Slim Fly
(SC‘14), Xpander
(SIGCOMM‘17)

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Reality: Tech Diversity
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Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Reality: Tech Diversity

83



Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach 

is best?

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Reality: Tech Diversity
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Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach 

is best?

As always in CS: 

It depends…

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Reality: Tech Diversity

85



Diverse patterns:

⇀ Shuffling/Hadoop: 

all-to-all

⇀ All-reduce/ML: ring or  

tree traffic patterns 
⇀ Elephant flows

⇀ Query traffic: skewed
⇀ Mice flows

⇀ Control traffic: does not evolve

but has non-temporal structure 

Diverse requirements:

⇀ ML is bandwidth hungry, 

small flows are latency-

sensitive

Shuffling 

All-to-All

ML

Large flows

Delay 
sensitive

Telemetry 
/ control

86

… On Traffic Diversity
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sensitive

Telemetry 
/ control

Demand

Static
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Dynamic

Rotor
Demand-
Aware

Static

Topology 87
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Static
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Topology

Serving elephant flows on static? 

Bad idea! Bandwidth tax.  
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Throughput Analysis

𝑇

Demand Matrix

Metric: throughput

of a demand matrix…
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Throughput Analysis

𝑇 𝜃(𝑇)×

Demand Matrix

… is the maximal scale

down factor by which

traffic is feasible.

Metric: throughput

of a demand matrix…

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

⇒

Throughput of network 𝜃∗:
worst case 𝑇
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Throughput Analysis

𝑇 𝜃(𝑇)×

Demand Matrix

Worst demand matrix for static

and rotor: permutation. Best 

case for demand-aware! 

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

⇒

96



Completion Time

Data mining workload

⇢ Demand completion time: How long does 

it take to serve a demand matrix?

⇢ Also useful in analysis: throughput can be computed more 

easily via demand completion time. 
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